(1) $V = M_{2\times 2}(C), S = \left\{ \begin{pmatrix} 1-i & -2-3i \\ 2+2i & 4+i \end{pmatrix}, \begin{pmatrix} 8i & 4 \\ -3-3i & -4+4i \end{pmatrix} \right\}$ $\begin{pmatrix} -25 - 38i & -2 - 13i \\ 12 - 78i & -7 + 24i \end{pmatrix}$, and $A = \begin{pmatrix} -2 + 8i & -13 + i \\ 10 - 10i & 9 - 9i \end{pmatrix}$

(m)
$$V = M_{2\times 2}(C)$$
, $S = \left\{ \begin{pmatrix} -1+i & -i \\ 2-i & 1+3i \end{pmatrix}, \begin{pmatrix} -1-7i & -9-8i \\ 1+10i & -6-2i \end{pmatrix}, \begin{pmatrix} -11-132i & -34-31i \\ 7-126i & -71-5i \end{pmatrix} \right\}$, and $A = \begin{pmatrix} -7+5i & 3+18i \\ 9-6i & -3+7i \end{pmatrix}$

3. In \mathbb{R}^2 , let

$$\beta = \left\{ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right), \left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}} \right) \right\}.$$

Find the Fourier coefficients of (3,4) relative to β .

4. Let
$$S = \{(1,0,i), (1,2,1)\}$$
 in C^3 . Compute S^{\perp} .

- 5. Let $S_0 = \{x_0\}$, where x_0 is a nonzero vector in \mathbb{R}^3 . Describe S_0^{\perp} ge ometrically. Now suppose that $S = \{x_1, x_2\}$ is a linearly independent subset of \mathbb{R}^3 . Describe S^{\perp} geometrically.
- 6. Let V be an inner product space, and let W be a finite-dimensional subspace of V. If $x \notin W$, prove that there exists $y \in V$ such that $y \in W^{\perp}$, but $\langle x, y \rangle \neq 0$. Hint: Use Theorem 6.6.
- 7.\Let β be a basis for a subspace W of an inner product space V, and let $z \in V$. Prove that $z \in W^{\perp}$ if and only if $\langle z, v \rangle = 0$ for every $v \in \beta$.
- Prove that if $\{w_1, w_2, \ldots, w_n\}$ is an orthogonal set of nonzero vectors then the vectors v_1, v_2, \ldots, v_n derived from the Gram-Schmidt process satisfy $v_i = w_i$ for i = 1, 2, ..., n. Hint: Use mathematical induction.
- Let $W = \text{span}(\{(i,0,1)\})$ in C^3 . Find orthonormal bases for W and W^1
- 10. Let W be a finite-dimensional subspace of an inner product space V Prove that there exists a projection T on W along W^{\perp} that satisfies $N(T) = W^{\perp}$. In addition, prove that $||T(x)|| \leq ||x||$ for all $x \in V$ Hint: Use Theorem 6.6 and Exercise 10 of Section 6.1. (Projections are defined in the exercises of Section 2.1.)
- 11. Let A be an $n \times n$ matrix with complex entries. Prove that $AA^* = I$ if and only if the rows of A form an orthonormal basis for \mathbb{C}^n .
- 12. Prove that for any matrix $A \in M_{m \times n}(F)$, $(R(L_{A^*}))^{\perp} = N(L_A)$.

Chap. 6 Inner Product Spaces Sec. 6.2 Gram-Schmidt Orthogonalization Process

- 13. Let V be an inner product space, S and S_0 be subsets of V, and W be a finite-dimensional subspace of V. Prove the following results.

 - (a) $S_0 \subseteq S$ implies that $S^{\perp} \subseteq S_0^{\perp}$. (b) $S \subseteq (S^{\perp})^{\perp}$; so $\operatorname{span}(S) \subseteq (S^{\perp})^{\perp}$.
 - (c) $W = (W^{\perp})^{\perp}$. Hint: Use Exercise 6.
 - (d) $V = W \oplus W^{\perp}$. (See the exercises of Section 1.3.)
- Let W_1 and W_2 be subspaces of a finite-dimensional inner product space. Prove that $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$ and $(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$. (See the definition of the sum of subsets of a vector space on page 22.) Hint for the second equation: Apply Exercise 13(c) to the first equation.
- 15. Let V be a finite-dimensional inner product space over F.
 - (a) Parseval's Identity. Let $\{v_1, v_2, \dots, v_n\}$ be an orthonormal basis for V. For any $x, y \in V$ prove that

$$\langle x, y \rangle = \sum_{i=1}^{n} \langle x, v_i \rangle \overline{\langle y, v_i \rangle}.$$

(b) Use (a) to prove that if β is an orthonormal basis for V with inner product $\langle \cdot, \cdot \rangle$, then for any $x, y \in V$

$$\langle \phi_{\beta}(x), \phi_{\beta}(y) \rangle' = \langle [x]_{\beta}, [y]_{\beta} \rangle' = \langle x, y \rangle,$$

where $\langle \cdot, \cdot \rangle'$ is the standard inner product on F^n .

Bessel's Inequality. Let V be an inner product space, and let S= $\{v_1, v_2, \dots, v_n\}$ be an orthonormal subset of V. Prove that for any $x \in V$ we have

$$||x||^2 \ge \sum_{i=1}^n |\langle x, v_i \rangle|^2.$$

Hint: Apply Theorem 6.6 to $x \in V$ and W = span(S). Then use Exercise 10 of Section 6.1.

- (b) In the context of (a), prove that Bessel's inequality is an equality if and only if $x \in \text{span}(S)$.
- Let T be a linear operator on an inner product space V. If $\langle \mathsf{T}(x),y\rangle=0$ for all $x,y \in V$, prove that $T = T_0$. In fact, prove this result if the equality holds for all x and y in some basis for V.
- 18. Let V = C([-1,1]). Suppose that W_e and W_o denote the subspaces of Vconsisting of the even and odd functions, respectively. (See Exercise 22

(b)
$$V = C^2$$
, $g(z_1, z_2) = z_1 - 2z_2$

(c)
$$V = P_2(R)$$
 with $\langle f, h \rangle = \int_0^1 f(t)h(t) dt$, $g(f) = f(0) + f'(1)$

3. For each of the following inner product spaces V and linear operators T on V, evaluate T* at the given vector in V.

(a)
$$V = \mathbb{R}^2$$
, $T(a, b) = (2a + b, a - 3b)$, $x = (3, 5)$.

(b)
$$V = C^2$$
, $T(z_1, z_2) = (2z_1 + iz_2, (1-i)z_1)$, $x = (3-i, 1+2i)$.

(c)
$$V = P_1(R)$$
 with $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) dt$, $T(f) = f' + 3f$, $f(t) = 4 - 2t$

- 4. Complete the proof of Theorem 6.11.
- 5. (a) Complete the proof of the corollary to Theorem 6.11 by using Theorem 6.11, as in the proof of (c).
 - (b) State a result for nonsquare matrices that is analogous to the corol lary to Theorem 6.11, and prove it using a matrix argument.
- 6. Let T be a linear operator on an inner product space V. Let $U_1 = T + T$ and $U_2 = TT^*$. Prove that $U_1 = U_1^*$ and $U_2 = U_2^*$.
- 7. Give an example of a linear operator T on an inner product space Vsuch that $N(T) \neq N(T^*)$.
- 8. Let V be a finite-dimensional inner product space, and let T be a linear operator on V. Prove that if T is invertible, then T* is invertible and $(\mathsf{T}^*)^{-1} = (\mathsf{T}^{-1})^*.$
- 9. Prove that if $V = W \oplus W^{\perp}$ and T is the projection on W along W^{\perp} , then $T = T^*$. Hint: Recall that $N(T) = W^{\perp}$. (For definitions, see the exercises of Sections 1.3 and 2.1.)
- 10. Let T be a linear operator on an inner product space V. Prove that $\|\mathsf{T}(x)\| = \|x\|$ for all $x \in \mathsf{V}$ if and only if $\langle \mathsf{T}(x), \mathsf{T}(y) \rangle = \langle x, y \rangle$ for all $x, y \in V$. Hint: Use Exercise 20 of Section 6.1.
- 11. For a linear operator T on an inner product space V, prove that T*T= T_0 implies $T=T_0$. Is the same result true if we assume that $TT^*=T_0$?
- 12. Let V be an inner product space, and let T be a linear operator on V Prove the following results.
 - (a) $R(T^*)^{\perp} = N(T)$.
 - (b) If V is finite-dimensional, then $R(T^*) = N(T)^{\perp}$. Hint: Use Exercise cise 13(c) of Section 6.2.

- Let T be a linear operator on a finite-dimensional inner product space V. Prove the following results.
 - (a) $N(T^*T) = N(T)$. Deduce that $rank(T^*T) = rank(T)$.
 - (b) $rank(T) = rank(T^*)$. Deduce from (a) that $rank(TT^*) = rank(T)$.
 - (c) For any $n \times n$ matrix A, $\operatorname{rank}(A^*A) = \operatorname{rank}(AA^*) = \operatorname{rank}(A)$.
- 14. Let V be an inner product space, and let $y, z \in V$. Define T: V \rightarrow V by $T(x) = \langle x, y \rangle z$ for all $x \in V$. First prove that T is linear. Then show that T* exists, and find an explicit expression for it.

The following definition is used in Exercises 15–17 and is an extension of the definition of the adjoint of a linear operator.

Definition. Let T: V → W be a linear transformation, where V and W are finite-dimensional inner product spaces with inner products $\langle \cdot, \cdot \rangle_1$ and $\{x_i, y_i\}_2$, respectively. A function $\mathsf{T}^* \colon \mathsf{W} \to \mathsf{V}$ is called an adjoint of T if $T(x), y\rangle_2 = \langle x, T^*(y)\rangle_1$ for all $x \in V$ and $y \in W$.

- 15. Let T: $V \to W$ be a linear transformation, where V and W are finitedimensional inner product spaces with inner products $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$, respectively. Prove the following results.
 - (a) There is a unique adjoint T* of T, and T* is linear.
 - (b) If β and γ are orthonormal bases for V and W, respectively, then $[\mathsf{T}^*]^{\beta}_{\gamma} = ([\mathsf{T}]^{\gamma}_{\beta})^*.$
 - (c) $\operatorname{rank}(\mathsf{T}^*) = \operatorname{rank}(\mathsf{T}).$
 - $\label{eq:total_def} \textbf{(d)} \ \ \langle \mathsf{T}^*(x),y\rangle_1 = \langle x,\mathsf{T}(y)\rangle_2 \text{ for all } x\in \mathsf{W} \text{ and } y\in \mathsf{V}.$
 - (e) For all $x \in V$, $T^*T(x) = 0$ if and only if T(x) = 0.
- 6. State and prove a result that extends the first four parts of Theorem 6.11 using the preceding definition.
- 17. Let $T: V \to W$ be a linear transformation, where V and W are finitedimensional inner product spaces. Prove that $(R(T^*))^{\perp} = N(T)$, using the preceding definition.
- 18. Let A be an $n \times n$ matrix. Prove that $\det(A^*) = \overline{\det(A)}$.
- 19. Suppose that A is an $m \times n$ matrix in which no two columns are identical. Prove that A^*A is a diagonal matrix if and only if every pair of columns of A is orthogonal.
- 20. For each of the sets of data that follows, use the least squares approximation to find the best fits with both (i) a linear function and (ii) a quadratic function. Compute the error E in both cases.
 - (a) $\{(-3,9), (-2,6), (0,2), (1,1)\}$