115b/1 - Homework 4^*

Due 31 January 2011

For any problem involving inner products, you may assume that the underlying field is either the real numbers or the complex numbers.

- 1. Find an example of a normal matrix over the real numbers that is not diaganolizable. You should prove both that your candidate matrix is normal and that it is not diagonalizable.
- 2. Prove that a normal matrix is self-adjoint if and only if its spectrum consists of real numbers.
- **3.** Let A be an $n \times n$ matrix over \mathbb{C} , and suppose that for any $n \times n$ matrix X such that tr(X) = 0, we have tr(AX) = 0. Prove that $A = \lambda I_n$ [Prasolov].
- **4.** Do problem (6.4.15).
- **5.** A quadratic form $q: V \to F$ over a field is called anisotropic if it has no non-trivial zeros, and it is called isotropic if it has non-trivial zeros. The dimension of the quadratic form is the dimension of V by definition. A zero of quadratic form is an element v of V such that q(v) = 0. Such a zero is called trivial if v = 0. Show that any quadratic form of dimension at least 2 over $\mathbb C$ is isotropic. (See section 6.8 for material on quadratic forms.)
- **6.** Construct anisotropic quadratic forms over \mathbb{R} of any dimension n > 0.
- 7. Consider the vector space $V = \mathbb{C}^{2n}$ with basis $\{x_1, \ldots, x_n, y_1, \ldots, y_n\}$. On V, let q be the quadratic form $x_1y_1 + \cdots + x_ny_n$. Find an n-dimensional subspace of V on which q vanishes identically.
- **8.** Do problem (6.2.18).
- **9.** Do problem (6.4.13).

^{*}Numbers in parentheses like (1.2.11) refer to the 11th problem in the second section of the first chapter of Friedberg et. al., while [Prasolov] refers to the book Problems and Theorems in Linear Algebra by Prasolov.