
061 - Final

8 June 2011

1. Prove that 3n + 7n − 2 is divisible by 8 for all n ≥ 1.

Solution Proof by induction. Write f(n) = 3n + 7n− 2. Base case: when n = 1, f(1) = 8.
Now, suppose that f(k) is divisible by 8 for 1 ≤ k < n. Write f(n− 1) = 8a. Then,

f(n) = 3n + 7n − 2 = 3 · 3n−1 + 7n − 2 = 3(8a− 7n−1 + 2) + 7n − 2 = 3 · 8a + 7n − 3 · 7n−1 + 4

= 3 · 8a + (7− 3) · 7n−1 + 4 = 3 · 8a + 4 · 7n−1 + 4 = 3 · 8a + 4(7n−1 + 1).

Now, it is enough to show that 2 divides 7n−1 + 1. But, 7n−1 is always odd so that 7n−1 + 1
is always even.

2. Let X be a finite set with n elements. Determine, with proof, the number of reflexive
binary relations there are on X.

Solution A binary relation on X is just a subset of X × X. The subsets of X × X are
the elements of the powerset P (X ×X). Suppose that X = {x1, . . . , xn}. A binary relation
R ∈ P (X ×X) is reflexive if and only if it contains the subset D = {(x1, x1), . . . , (xn, xn)}.
Let Y = X×X−D. So, a reflexive binary relation R is uniquely determined by R−D ⊆ Y .
As there are n elements of D and n2 elements of X×X, there are n2−n elements of Y . The
power set of Y corresponds bijectively to the set of reflexive binary relations on X. Thus,
there are 2(n2−n) such relations.

3. How many rearrangements of MATHEMATICS are there where I is not next to C?

Solution There are
11!

2!2!2!

rearrangements of MATHEMATICS. Let Φ =IC, a new symbol. Then, there are

10!

2!2!2!

rearrangements of the word MATHEMATΦS. Of course, these are exactly the rearrangements
of MATHEMATICS where the I and C are next to each other and the I is before the C.

1



Similarly, there are
10!

2!2!2!

rearrangements where the I and C are next to each other and the C is before the I. Therefore,
there are

11!

2!2!2!
− 2

10!

2!2!2!

rearrangements where the I and C are not next to each other.

4. Consider 5 card hands from a normal deck of 52 cards. Let the cards of each of the four
suits be numbered 1 through 13. How many different hands are there with only cards with
odd values and an odd number of suits?

Solution Suppose there is only 1 suit. There are 7 odd valued cards of each suit. So, there
are 4

(
7
5

)
hands with 1 suit and only odd valued cards. If there are 3 suits, then there can

be 3 cards from one suit and 1 from the other two suits, or 2 cards from one suit, 2 from
a second suit, and 1 from the third suit. In the first case, there are 4

(
3
2

)(
7
3

)(
7
1

)(
7
1

)
possible

hands. In the second case, there are
(
4
2

)(
2
1

)(
7
2

)(
7
2

)(
7
1

)
hands. Summing up we get a total of

4

(
7

5

)
+ 4

(
3

2

)(
7

3

)(
7

1

)(
7

1

)
+

(
4

2

)(
2

1

)(
7

2

)(
7

2

)(
7

1

)
hands.

5. Suppose there are n people at a party and every person shake hands with at least one
other person but not with themselves. Show that at the end of the party there are at least
two people who have shaken hands with the same number of people.

Solution Let the people be labeled x1, . . . , xn. Then, each person has shaken the hand of
at most n− 1 people. Let f(xn) be the number of handshakes. Then f(x1), . . . , f(xn) gives
n numbers between 1 and n−1. Thus, two of those numbers are the same by the pigeonhole
principle.

6. Prove that a simple graph is bipartite if every cycle has even length.

Solution We can assume that the graph G is connected. Let T ⊆ G be a spanning tree,
and pick a root vertex v of T . Then, let X be the set of vertices of T (equivalently of G)
with even level, and let Y be the vertices of odd level. In T every edge is incident on a vertex
of X and a vertex of Y . Let e be an edge incident on two vertices x and y that is in G but
not in T , and let G′ denote T plus e. Then G′ is not a tree because it has too many edges,
so there is a cycle in G′ which includes the edge e. Deleting e from the cycle we get a path
in T of odd length from x to y. Suppose that x ∈ X. Then it follows from the fact that the
path is of odd length that y is of odd level and hence is in Y . Therefore, the partition X
and Y of the vertices of G make G into a bipartite graph.
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7. Let T be the full complete binary tree with 2100 terminal vertices. This means that
the height of the tree is 100 and every vertex of level less than 100 has two children. A
terminal vertex can be designated completely by the string RLRRRLLRL · · · of right and
left branches taken to get to the terminal vertex from the root. How many of the children
are obtained by paths from the root that never go right more than once in a row?

Solution This is just the 100th Fibonacci number

f100 =
1√
5

(
1 +
√

5

2

)100

− 1√
5

(
1−
√

5

2

)100

.

8. Show that a simple connected planar graph has a vertex of degree at most 5.

Solution Let G be a simple connected planar graph. We may assume that G has at least 6
edges. Euler’s formula applies: f − e+v = 2. On the other hand, since every face (including
the outside one) bounds at least three edges, we have 2e ≥ 3f , since no edge can bound
more than 2 faces. Therefore,

3f = 6 + 3e− 3v ≤ 2e.

Rearranging, we see e ≥ 3v− 6. Doubling this, we get 2e ≥ 6v− 12. But, 2e is also the sum
of the degrees of all the vertices. Then, 2e

v
≤ 6− 12

v
. Thus, the average degree of the vertices

is less than 6. Hence, there is some vertex with degree less than 6.

9. Let T1 and T2 be the rooted trees with exactly one vertex. Construct full binary trees Tn

inductively as follows. Let Tn−1 be the left subtree of the root vertex, and let Tn−2 be the
right subtree of the root. How many terminal vertices does Tn have?

Solution Let an be the number of vertices of Tn. Then, there is an obvious recurrence
relation an = an−1 + an−2. Since a1 = a2 = 1, the an is just the nth Fibonacci number.

10. Let G be a connected graph, and suppose that the longest simple path in G has length
n. Suppose that P1 and P2 are two simple paths in G with this maximal length. Prove that
they have a common vertex.

Solution Since G is connected, every vertex of P1 is connected by some path to every
vertex of P2. Assume that P1 and P2 don’t have a common vertex, and let Q be a simple
path from the beginning of P1 to the beginning of P2. Let S be the truncation of Q to a
path from the last vertex v of P1 on Q to the first vertex w on Q that is also on P2. Then,
no edge of S is on either P1 or P2. We construct a final path T as follows. Let x be the
endpoint on P1 farthest from v, and let T0 be the part of P1 that goes from x to v. Similarly,
let T2 be the part of P2 that goes from w to the most distant endpoint of P2. Let T1 = S,
and let T be the concatenation of T0, T1, and T2. Then, since S has length at least 1 by
hypothesis, T is a simple path longer than P1 or P2, which is a contradiction.
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