Chapter 8 % Graph Theory

1. What is an adjacency matrix?

% If A is the adjacency matrix of a simple graph, what are the

values of the entries in A™?

s

X3

4. The graph of Figure 8.2.2
5. The complete graph on five vertices K
6. The complete bipartite graph X 3
In Exercises 7-12, write the incidence matrix of each graph.

7. The graph of Exercise 1 8. The graph of Exercise 2

9. The graph of Exercise 3

#ib. The graph of Figure 8.2.1

Notice that in a graph without loops each column has two 1's and that the sum of
a row gives the degree of the vertex identified with that row.

%, What is an incidence matrix?

11.
12.

In Exercises 13~17, draw the graph represented by each adjacency
matrix.

15,

17.

18

b

20

21

The complete graph on five vertices K5
The cormplete bipartite graph Ko 3

14.

a b ¢ d e f s a b c d e f
a {001 001 a f4 1 1 1 0 2
10 201 20 b1 01 110
c|1 000 01 ¢ |1 1 01 1 3
d|0 1 0010 d]lt 11 0 1 1
e |0 2 0 1 0 0 e |0 1 1 1 0 1
F\1 01 000 F\N2 03 110
The 7 x 7 matrix whose i jth entry is 1if i <+ 1 divides j + I

or j+ 1dividesi +1,i # j; whose ijthentry 15 2 if { = j;
and whose #jth entry is 0 otherwise

Write the adjacency matrices of the components of the graphs
given by the adjacency matrices of Exercises 13—17.

1%, Compute the squares of the adjacency matrices of K5 and the

graphs of Exercises 1 and 3.

Let A be the adjacency matrix for the graph of Exercise 1.
What is the entry in row a, column J of 457

Suppose that a graph has an adjacency matrix of the form

Ai’
A—( )’
AH

where all entries of the submatrices A’ and A” are 0. What
must the graph look like?

. Repeat Exercise 21 with “adjacency” replaced by “incidence.”

Let A be an adjacency matrix of a graph. Why is A® symmetric
about the main diagonal for every positive integer n?

In Exercises 24 and 25, draw the graphs represented by the inci-
dence matrices.

5iE

a 1 ¢ 000 I\ 25 a /0 L 0 0 1 1
L1011 01 0 (0 1 101 0
cl|1 0 0 1 00 ¢c |0 0 00 01
d10 1 01 0 0 d{1 00 1 00
e \O 01 0 1 1 e \1 001 0 0©

. What must a graph look like if some row of its incidence matrix

consists only of ('s?

7. Let A be the adjacency matrix of a graph ( with »n vertices.

Let
Y=A+A%+.. 4471

If some off-diagonal entry in the matrix ¥ is zero, what can
you say about the graph G?

Exerciser 28-31 refer to the adjacency matrix A of Ks.

28. Let n be a positive integer. Explain why all the diagonal
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of
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elements of A" are equal and all the off-diagonal elements of
A" are equal.

Let dy be the common value of the dingonal elements of A" and let
an be the common value of the off-diagonal elements of A"

=29,

*30,

%32,

*33.

=

Show that
dn+l = 451)1; Uyl = dy +3a,; y+1 = 351)1 +4ay 1.
Show that
1
ap = [4"+ (1"
5
i. Show that

4
@:EWPMwAVL

Derive results similar to those of Exercises 29-31 for the ad-
Jjacency matrix A of the graph K.

Let A be the adjacency matrix of the graph K, ,. Find a for-
mula for the entries in AS.

Graphs

The following instructions are given to two persons who cannot see each other’s paper:
“Draw and label five vertices a, b, ¢, d, and e. Connect @ and b, b and ¢, ¢ and d, 4 and
e, and a and e The graphs produced are shown in Figure 8.6.1. Surely these figures
define the same graph even though they appear dissimilar. Such graphs are said to be

isomerphic.

a *

Graphs Gy and G, are isomorphic if there is a one-to-one, onto function f from the

Dietinition 8.5.1 &

Isomorphic graphs.

vertices of G to the vertices of G and a one-to-one, onto function g from the edges of

G to the edges of G, so that an edge e is incident on v and w in Gy if and only if the
edge g(e) is incident on f(v) and f(w) in G,. The pair of functions f and g is cai]ed

an isomorphism of Gy onto G5.
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It would be easy to test whether a pair of graphs is isomorphic if we could
find a small number of easily checked invariants that isomorphic graphs and only
isomorphic graphs share. Unfortunately, no one has succeeded in finding such a set
of invariants.

I. Define what it means for two graphs to be isomorphic.

2. Give an example of isomorphic, nonidentical graphs. Explain
why they are isomorphic.

Give an example of two graphs that are not isomorphic.
Explain why they are not isomorphic.

Lk

4, Whal is an invariant in a graph?

G Gy
2.
a 1 2
AL y
< e
N P
5 6
Gq Ga
3

5. How is “nvariant” related to isomorphisim?

7. How can one determine whether graphs are isomorphic from

their adjacency matrices?

7. What is the mesh model for parallel computation?

Any graph isomorphic to (G and G5 is called the Petersen
graph. The Petersen graph is much used as an example; in
fact, D. A. Holton and I. Sheehan wrote an entire back about
it (see [Holton]).

Prove that the following graph is the Petersen graph; that is,
prove that it is isomorphic to the graphs in Exercise 4.

Draw a graph with 10 vertices. Label each vertex with one of
the 10O distinet two-element subsets of {I, 2, 3, 4, 5}. Put an
edge between two vertices if their labels (i.e., subsets) have
no elements in common. Prove that your graph is the Petersen
graph; that is, prove that it is isomorphic to the graphs in
Exercise 4.

In Exercises 7-9, prove that the graphs Gy and Go are not iso-
morphic.

1 2
6
5 4
G G2
LR a
f< *C
~, ./"/
e da

G

b

In Exercises 10-15, determine whether the graphs Gy and Ga are
isomorphic. Prove Your answer.

Hi a b 1 2
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12.

Gq Gy

«14.

*15,

16. Show that if M isa p; x py X - X p, mesh, where p; < 27
fori =1,...,k, then the (#; + 13 - - - - + £;.)-cube contains a
subgraph isomorphic to M.

In Exercises 17-21, show that the property given is an invariant.

Has a simple cycle of length &

. Has n vertices of degree k&

. Is connected

24, Has n simple cycles of length &
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21. Has an edge (v, w), where §(v) = i and §(w) = j

22. Find an invariant not given in this section or in Exercises
17-21. Prove that your property is an invariant.

Three cities, Cy, Cz, and C3, are to be directly connected by expressways to each of three
other cities, Cy, Cs, and Cq. Can this road systemn be designed so that the expressways
do not cross? A system in which the roads do cross is illustrated in Figure 8.7.1. If you
try drawing a system in which the roads do not cross, you will soon be convinced that it
cannot be done. Later in this section we explain carefully why it cannot be done,

In Exercises 23-25, tell whether or not each property is an invari- /
ant. If the property is an invariant, prove that it is; otherwise, give
a counterexample. Y /

2% Has an Euler cycle N

24. Has a vertex inside some simple cycle 5 4 .
25, Ts bipartite z Y

. . . G
26. Draw all nonisomorphic simple graphs having three vertices. G z

27. Draw all nonisomorphic simple graphs having four vertices.
28. Draw all nonisomorphic, cycle-free, connected graphs having 40+ G1 = G1 of Exercise 39; Gy = Gy of Exercise 38
five vertices. 4%1. (71 = | of Bxercise 38

2%, Draw all nonisomorphic, cycle-free, connected graphs having
81X vertices.

. Show that graphs G1 and G are isomorphic if their vertices

Figure 8.7.1 Cities connected by

can be ordered so that their adjacency matrices are equal. 5 / ¢Xpressways

- — S / :
The complement of a simple graph G is the simple graph G with ‘\ 7/

. ; ; v (1 7 it i A / e S O SR S . P . : - .
fhﬂ; éa’ﬁff;egwes as G. An edge exists in G {f and only if it does N/ Definiiion 8.7.1 » | A graph is planar if it can be drawn in the plane without its edges crossing.
ot XIS B
31, Draw the complement of the graph G of Exercise 7. 1 In designing printed circuits it is desirable to have as few lines cross as possible;
32, Draw the complement of the graph G of Exercise 7. G D '\\ e thus the designer of printed circuits faces the problem of planarity.

+33. Show that if G is a simple graph, either G or & is connected. ) \C _ Ifa c.onnected, planar graph is drawn in .the plane, the plane is divided into con-
. ) ] : - — 42. 6« B ¥ tiguous regions called faces. A face is characterized by the cycle that forms its boundary.
34. A simple graph G is self-complementary if G and G are i 8 For exarple. in th h of B 7.2, face A is hounded bv th Je (5.2. 3. 4
isomorphic, a 4 p , e graph of Higure 8.7.2, tace A is bounded by the cycle (5, 2, 3,4, 3)
(& Find a self-compl t b having five vertices e ) ;1 3 and face C is bounded by the cycle (1, 2, 5, 1). The outer face DI is considered to be
- av . - e .
a f‘.tn a plementary graph having ¥ g r " e 4 bounded by the cycle (1, 2, 3, 4, 6, 1). The graph of Figure 8.7.2 has f = 4 faces, ¢ = 8

(b) Find another self-complementary graph, 1 37 Fizure 7.2 A edges, and v = 6 vertices. Notice that f, e, and v satisfy the equation
35. Let Gy and G be simple graphs. Show that G and G5 are ff e F'(\\\ connected, planar

isomorphic if and only if G and G are isomorphic, \\\ / 45 graph with f =4 f=e—v+2 8.7.1)
3%, Given two g'raphs G_1 and Gy, suppose that there is a one-to- . '{i faie%(ili’ B" c. é) ) In 1752, Buler proved that equation (8.7.1) holds for any connected, planar graph. At

t();nﬂ, Ogto function f from thue ve.mcesfof Glhm ﬂée Vel“;lcés of z - 6 ie;g‘t?;e? the end of this section we will show how to prove (8.7.1), but for now let us show how

2 and a one-to-one, onto function g from the edges of &y o G G ~ N 8.7.1) can be used to show that certain graphs are not planar
the edges of Go, so that if an edge e is incident on v and w . T f=e-v+2 ( ) SHep netp )

in G, the edge g(e) isincident on f (v} and f(w) in G1. Are
() and (7 isomorphic?

Show that the graph K 5 of Figure 8.7.1 is not planar.

Suppose that K3 3 is planar. Since every cycle has at least four edges, each face
is bounded by at least four edges. Thus the number of edges that bound faces is at least
4f. In a planar graph, each edge belongs to at most two bounding cycles. Therefore,

#43. [Hell] Show that the only homomorphism from the graph to
A homomorphism from a graph G to a graph Gz Us a function itself is the identity function.
I from the vertex set of (1 to the vertex set of G2 with the prop-
erty that if v and w are adjacent in Gy, then f(v) and f{w) are
adjacent in Go.

2e = 47
¥7. Suppose that Gy and G are simple graphs. Show that if f is :
a homomorphism of G to G2 and f is one-to-one and onto, Using (8.7.1), we find that
(71 and G are isomorphic. 2e > e — v+ 2). (8.7.2)

In Exercises 3842, for each pair of graphs, give an example of a

_ For the graph of Figure 8.7.1, ¢ = 9 and v = 6, 0 (8.7.2) becomes
homomorphism from G to G,

I8 =2-9>49—-0642) =20,

which is a contradiction. Therefore, K3 5 is not planar. #

Fizure 8.7.3 The By a similar kind of argument (see Exercise 15), we can show that the graph K
nonplanar graph Ks. of Figure 8.7.3 is not planar.
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Theorem 8.7.9

Basis Step of
Theorem 8.7.9,

ff:Euiar s Formu!a for Graphs e

: _"If G IS a connected plcmar gmph wzrh e edges v vemces and f faces then

: Praof We wr]l use 1nduet10n on the number of edges i ' '
o Suppose that e="1. Then G is one of the two graphs shown 111 Flgure 8 7 8 Iu_
' erther case, ihe formula holds We have venﬁed the Basis Step e :
e Suppose that the formula holds for connected planar graphs wrth " edges Let.
G bea graph with n+ I edges Frrst suppose that G contains no cycles Prck a vertex
g’v and trace a path startmg at v, Smce G is cycle—free “every time we trace an edge; g
G we arrive at a new vertex Eventually, we will reach a vertex ‘a, Wlth degree 1, that~
U we cannot leave (see Frgure 8.7.9).. We delete a and the edge X merdent ofa from

- the graph G.The resulting graph G has n edges Hence, by the mduenve assumptlon

S (8.7.3) holds for (. Since & has one mote edge thar G/, one more veitex than [
“and the same number of faces as G’ it f()llOWS that (8 7 3) also holds for G

We will conclude this section by proving Euler’s formula.

- The proof of Theorem 8 7 9 for the case that G has no
; eycles We ﬁnd a vertex a of degree 3 and delete a and the edge X
: mcrdent on it

_ “Now suppose that G contams a cycle Let X be an edge mn'a eyele (see F1g-- E
ure 8 7.10). Now x is.partof a boundary for two faces; This time we delete the edge x:
~butno vertices to obtain the graph G/ (see Figure 8.7. lO) Again G* has n edges_,- hence, -

.-has 4 cycle We delete edg" X m cycl:

e

¢, What is a planar graph?

%, What is a face?

., What are series edges?

In Exercises 1-3, show that each graph is planar by redrawing it
so that no edges cross.

_-'Inductron the theorem is prove .

8.7 & Planar Graphs 429

1 _by the mductwe assumption (8 7. 3) holds for G’ Smce G has one more faee than G’
 one more edge than G’ and the same number of vertlces as &, 1t fo]lows that (8.7. 3)'
‘.'also holds forG. - ' S

- Since 'we have vertﬁed the: Induct1 %

. by ‘hé..PriﬁnsiPls- o Mat'héiﬁafﬁcalf

. What is a series reduction?

LEy

%, Define homeomorphic graphs.

3, State Euler’s equation for a connected, planar graph. 7. State Kuratowski’s theorem.

In Exercises 4 and 5, show that each graph is not planar by finding
a subgraph homeomorphic to either K5 or K3 1.

4. a b

In Exercises 68, determine whether each graph is planar. If the
graph is plarnar, redraw it so that no edges cross; otherwise, find a
subgraph homeomorphic to either Ks or K 3.

&, a b
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7.
1 b
//’ﬂ”:/ e e
f/e,,,,/.,!, ...... [
h
"\~ N
N |
8.

b
i

. A connected, planar graph has nine vertices having degrees
2,2,2,3,3 3, 4,4, and 5. How many edges are there? How
many faces are there?

10. Show that adding or deleting loops, parallel edges, or edgesin
series does not affect the planarity of a graph.

11. Show that any graph having four or fewer vertices is planar.

12. Show that any graph having five or fewer vertices and a vertex
of degree 2 is planar.

13, Show that in any simple, connected, planar graph, ¢ < 3v —6.

14, Give an example of a simple, connected, nonplanar graph for
which e < 3v — 6.

1%, Use Hxercise 13 to show that K5 is not planar.

+16. Show that if a simple graph G has 11 or more vertices, then
either (¢ or its complement & is not planar.

*17. Prove that if a planar graph has an Eunler cycle, it has an Eu-
ler cycle with no crossings. A path P in a planar graph has a
crossing if a vertex v appears at least twice in P and P crosses
itself at v; that is,

Po==( Wi, v, wa, .., W3, U, Wa, -4,
where the vertices are arranged so that w1, ¥, wo crosses wa,
v, wq at v as in the following figare.

A coloring of a graph G by the colors Cy, Cs, ..., C,, assigns to
each vertex a color C; so that any vertex has a color different from
that of any adjacent veriex. For example, the following graph is col-
ored with three colors. The rest of the exercises deal with coloring
planar graphs.

€1 Ca
e g ",
Cy >C 3
Cs Cs o
AN / N
N j
C Cr C1

A planar map is a planar graph where the faces are interpreted as
countries, the edges are interpreted as borders between countries,
and the vertices represent the intersections of borders. The problem
of coloring a planar map G, so that no countries with adjoining
boundaries have the same color, can be reduced to the problem of
coloring a graph by first constructing the dual graph G' of G i
the following way. The vertices of the dual graph G’ consist of one
point in each face of G, including the unbounded face. An edge in
&' connects two vertices if the corresponding faces in G are sepa-
rated by a boundary. Coloring the map G is eguivalent to coloring
the vertices of the dual graph G'.

18, Find the dual of the following map.

B C
N

D)y H
g  F |G

19. Show that the dual of a planar map is a planar graph.

20. Show that any coloring of the map of Exercise 18, excluding
the unbeunded region, requires at least three colors.

21. Color the map of Exercise 18, excluding the unbounded region,
using ‘three colors.

i
[

. Find the dual of the following map.

D

A
s

23. Show that any coloring of the map of Exercise 22, excluding
the unbeunded region, requires at [east four colors.

24, Color the map of Exercise 22, excluding the unbounded region,
using four colors. '

A triangulation of a simple, planar graph G is obtained from G
by connecting as many vertices as possible while maintaining pla-
narity and not infroducing loops or parallel edges.

3%, Find a triangulation of the following graph.

W

26. Show that if a triangulation G’ of a simple, planar graph G can
be colored with » colors, so can G,

27. Show thatin a triangulation of a simple, planar graph, 3 /' = 2e.

Appel and Haken proved (see [Appel]) that every simple, planar
graph can be colored with four colors. The problem had been posed
in the mid-1800s and for years no one had succeeded in giving a
proaf. Those working on the four-color problem in recent years had
one advantage their predecessors did not—the use of fast elecironic
compuiters. The following exercises show how the proof begins.
Suppose there is a simple, planar graph that requires more
than four colors to color Among all such graphs, there is one
with the fewest number of vertices. Let G be a triangulation of
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this graph. Then G also has a minimal number of vertices and by
Exercise 26, G regitires mare than four colors to color,

28, If the dual of a map has a vertex of degree 3, what must the
original map look like?

29, Show that G cannot have a vertex of degree 3.
*30. Show that G cannot have a vertex of degree 4.

+31. Show that G has a vertex of degree 5.

The contribution of Appel and Haken was to show that only a finite
number of cases involving the vertex of degree 5 needed 1o be con-
sidered and to analyze all of these cases and show that all could
be colored using four colors. The reduction to a finite number of
cases was facilitated by using the computier to help find the cases
to be analyzed. The computer was then used again to analyze the
resulting cases.

*32. Show that any simple, planar graph can be colored using five
colors.

8.8

-

Cube 1 [

Cube 2

Cube 3

Cube 4

solution to the Instant
Insanity puzzle of
Figure 8.8.1.

Instant Insanity is a puzzle consisting of four cubes each of whose faces is painted one
of four colors: red, white, blue, or green (see Figure 8.8.1). (There are different versions
of the puzzle, depending on which faces are painted which colors.) The problem is to
stack the cubes, one on top of the other, so that whether the cubes are viewed from front,
back, left, or right, one sees all four colors (see Figure 8.8.2), Since 331,776 different
stacks are possible (see Exercise 12), a solution by hand by trial and error is impractical.
We present a solution, using a graph model, that makes it possible to discover a solution,
if there is one, in a few minutes!

Figure 5.8, An Instant Insanity puzzle.

First, notice that any particular stacking can be represented by two graphs, one
representing the front/back colors and the other representing the left/right colors. For
example, in Figure 8.8.3 we represent the stacking of Figure 8.8.2. The vertices represent
the colors, and an edge connects two vertices if the opposite faces have those colors. For
example, in the front/back graph, the edge labeled 1 connects R and W, since the front
and back faces of cube 1 are red and white. As another example, in the lefi/right graph,
W has a loop, since both the feft and right faces of cube 3 are white.

‘We can also construct a stacking from a pair of graphs such as those in Figure 8.8.3,
which represent a solution of the Instant Insanity puzzle. Begin with the front/back graph.
Cube 1 is to have red and white opposing faces. Arbitrarily assign one of these colors,
say red, to the front. Then cube 1 has a white back face. The other edge incident on W is
2, so make cube 2°s frofit face white. This gives cube 2 a blue back face. The other edge
incident on B is 3, so make cube 3’5 front face blue. This gives cube 3 a green back face.
The other edge incident on G is 4. Cube 4 then gets a green front face and a red back

TThis section can be omitted without loss of continuity.




