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Theorem 9.7.3

This is a contradiction. Therefore, no algorithm that sorts three items has worst-case

time less than 3, and the algorithm of Figure 9.7.7 is optimal,

Since 4! = 24, there are 24 possible outcomes to the problem of sorting four items
(when the items are distinct). To accommodate 24 terminal vertices, we must have a
tree of height at least 5 (see Figure 9.7.9). Therefore, any algorithm that sorts four items
requires at least five comparisons in the worst case. Exercise 9 is to give an algorithm

that sorts four items using five comparisons in the worst case.

Figure 9.7.% Level compared with the maximum number of vertices in that level in a binary tree.

The method of Example 5.7.2 can be used to give a lower bound on the number
of comparisons required in the worst case to sort an arbitrary number of items.

Theorem 7.3.10 states that merge sort (Algorithm 7.3.8) uses &@(nlgn) compat-
1sons in the worst case and is, by Theorem 9.7.3, optimal. Many other sorting algorithms
are known that also attain the optimal number & (# lg n) of comparisons; one, tournament

sort, is described before Exercise 14.
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£, What is a decision tree? 3. Use decision trees to explain why worst-case sorting requires at
least S2(n lgn) comparisons.

g

How is the height of a decision tree that represents an: algorithm
related to the worst-case time of the algorithm?

i. Four coins are identical in appearance, but one coin is either are otherwise identical in appearance. All of the good coins have

heavier or tighter than the others, which all weigh the same, the same weight. All of the bad coins also have the same weight,
Draw a decision tree that gives an algorithm that identifies in but they are lighter than the good coins. We assume that there is at
at most two weighings the bad coin (but not necessarily de- least one bad coin and at least one good coin among the n coins.
termines whether it is heavier or lighter than the others) using The task is to determine the number of bad coins.

only a pan balance. oy
%. Show that at least logz(n — 1) weighings are necessary to de-

2. Show that at least two weighings are required to solve the termine the number of bad coins.

bl fE ise 1. .
probiein of Bxercise 10. Show how to determine the number of bad coins in at most

3. Eight coins are identical in appearance, but one coin is either n — 1 weighings.
heavier or lighter than the others, which all weigh the same.
Draw a decision tree that gives an algorithm that identifies in
at most three weighings the bad coin and determines whether
it is heavier or lighter than the others using only a pan balance.

11. Give an algorithm that sorts four items using five comparisons
in the worst case.

. Use decision trees te find a lower bound on the number of
comparisons required to sort five items in the worst case. Give
an algorithm that uses this number of comparisons to sort five
items in the worst case.

4, Twelve coins are identical in appearance, but one coin is ei-
ther heavier or lighter than the others, which all weigh the
same. Draw a decision tree that gives an algorithm that iden-

tifies in at most three weighings the bad coin and determines 13, Use decision trees to find a lower bound on the number of
whether it is heavier or lighter than the others using only a pan comparisons required to sort six items in the worst case. Give
halance. an algorithm that uses this number of comparisons to sort six

. . . . items in the worst case.
5. What is wrong with the following argument, which suppos-

edly shows that the twelve-coins puzzle requires at least four Exercises 14 -20 refer to tournament sort.
weighings in the worst case if we begin by weighing four coins
against four coins?

If we weigh four coins against four coins and they bal- Sle ey S
ance, we must thenr determine the bad coin from the remain-
ing four coins. But the discussion in this section showed that
determining the bad coin from among four coins requires at
least three weighings in the worst case. Therefore, in the worst
case, if we begin by weighing four coins against four coins,
the twelve-ceins puzzle requires at least four weighings.

Tournament Sort. We are given a sequence

to sort in nondecreasing order.
We will build a binary tree with terminal vertices labeled
Siy ..., 5. An example is shown.

*6

Thirteen coins are identical in appearance, but one coin is ei-
ther heavier or lighter than the others, which all weigh the
same. How many weighings in the worst case are required to
find the bad coin and determine whether it is heavier or lighter
than the others using only a pan balance? Prove your answer,

?. Solve Exercise 6 for the fourteen-coins puzzle. } 30 1 12 40 3 9 35 50

8. (3" —3}/2, n = 2, coins are identical in appearance, bul one
coin is either heavier or lighter than the others, which all weigh
the same. [Kurosaka] gave an algerithm to find the bad coin
and determine whether it is heavier or lighter than the others
using only a pan halance in # weighings in the worst case.«
Prove that the coin cannot be found and identified as heavy or
light in fewer than » weighings.

Working left to right, create a parent for each pair and
label it with the maximum of the children. Continue in this way
until you reach the root. At this point, the largest value, m, has
been found.

To find the second-largest value, first pick a value v less
than gl the items in the sequence. Replace the terminal veriex
w containing m with v. Relabel the vertices by following the
Exercises 9 and 10 concern the following variant of the coin- path from w to the roor, as shown. Ar this point, the second-
weighing problem. We are given n coins, some of which are bad, but largest value is found. Continue until the sequence is ordered.
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o 37, Show that any algorithm that finds the largest value among »
P items requires at least 1 — 1 comparisons.

‘1‘35 ; 18. How many comparisons does tournament sort require o find
o the second-largest element?

40 : 35 19, Write tournament sort as a forrmal algorithm.

P ‘ I i Show that if # is a power of 2, tournament sort requires
Lo T A ®(rn 1g n) comparisons.

30 1 12 40 3 935 v=40 . L . .

21. Give an example of a real situation (like that of Figure 9.7.1)

that can be modeled as a decision tree. Draw the decision tree,

. Why is the name “tournament” appropriate? . )
Y PPOp 22. Draw a decision tree that can be used to determine who must

15. Draw the two trees that would be created after the preceding file a federal (ax retum.

tree when tournament sort is applied. .. ,
PP 23. Draw a decision tree that gives a reasonable strategy for play-

16. How many comparisons does tournament sort require to find ing blackjack (see, e.g., [Ainslie]).

the largest elernent?

9.8

In Section 8.6 we defined what it means for two graphs to be isomoiphic. (You might
want to review Section 8.6 before continuing.} In this section we discuss isomorphic
trees, isomorphic rooted trees, and isomorphic binary trees.

Corollary 8.6.5 states that simple graphs G| and G are isomorphic if and only if
there is a one-to-one, onto function f from the vertex set of G to the vertex set of G,
that preserves the adjacency relation in the sense that vertices v; and v; are adjacent in
G if and only if the vertices f{v;) and f(v;) are adjacent in G». Since a (free) tree is
a simple graph, trees 77 and T3 are isomorphic if and only if there is a one-to-one, onto.
function f from the vertex set of 7} to the vertex set of 75 that preserves the adjacency
relation; that is, vertices v; and v; are adjacent in 71 if and only if the vertices f(v;} and
f(v;) are adjacent in T5.

The function f from the vertex set of the tree T} shown in Figure 9.8.1 to the vertex set
of the tree T, shown in Figure 9.8.2 defined by

fhy=3, floy=2,

flay=1, fldy=4, fley=5

is a one-to-one, onto function that preserves the adjacency relation. Thus the trees 73
and T, are isomorphic.

rsomorphlc to the tree
in Figure 9.8.1. e

As in the case of graphs, we can show that two trees are not isomorphic if we can
exhibit an invariant that the trees do not share.

The trees T; and T of Figure 9.8.3 are not isomorphic because 73 has a vertex (x) of
degree 3, but 77 does not have a vertex of degree 3.

Theorem 92.8.3

_-There are three nomsomorphzc trees wrth ﬁve vernces

all nomsomorph1c trees Wlth ﬁve vert1ces
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<
[
N
.

trees Tg has a vertex of degree 3,
but T does not. &

We can show that there are three nonisomorphic trees with five vertices, The three

nonisomorphic irees are shown in Figures 9.8.1 and 9.8.3.

;_Proof We w1]_1 g1ve an argument to show that any tree wrth ﬁve Vert1ces 1s 1somorph1c B
to one of the trees in Figure 9.8.1 or 9 8.3: :

CIf T is a tree with five: vertices, by Theorem 9, 2 3 T has four edges If v had -

'- a. Vertex o of degree greater than 4; v ~would be 1nc1dent on rnore than four edges It :
fo]lows thiat each vertex in'7" has degree at. most 4. U -

We will first find all nomsomorphlc trees w1th five vemces 1 whlch the piaK-

_:1mum vertex degree that occurs is 4. We will next find all nomsomorphlc trees Wlth
: _:ﬁve vertrces in which the maximum vertex degree that occurs is 3, and so on

‘Let T be a tree. w1th ﬁve vertices and suppose ‘that T has a vertex of de— :

.gree 4. Then there “are four edges ‘incident on v and, because of Theorem 9.2 3,
'_'these are all the edges It follows that m tlns case T is 1somorph1c to the tree m"
:_-'Flgure 9.8.1.: : .

Suppose that T is 2 tree “with ﬁve vertrces and the ‘maximim: Vertex degree;

: that occurs is 3. Let v be a vertex of degree 3. Then v is.incident on three edges,’
~as ‘shown in Figure 9. 8 4. The fourth -edge cannot - be 1nc1dent on v since ‘then v
E_'would have degree 4. 'Ihus the fourth edge 18 1nc1dent on one of Ui, 2y OF V3, _3
-Addmg an edge 1nc1dent on any of U] ; Ug, or v3 g1ves a tree 1somorph1c to the tree Tz of :
“ Flgure 9 8 3 :

. Addmg
~athird edge to the

v has degrec 3 R
graph of Flgure 9 8. 5' w

v has degree 2. -

' Now suppose that T isa tree wrth ﬁve Vertices and the maxrmum vertex degree

' '_that occurs is 2: Let v bé a vertex of degree 2 Then visincident on two edges as showr
Jin Frgure 9.8.5. A third edge ¢annot be incident on v thus it st be mcrdent on’ e1ther 5
“vpor vy, Adding the third edge gives the graph of Figure 9. 8.6 “For the same reason, -
j-_-:the fourth edge cannot be incident on either of the vertices w1 ‘or wz of Flgure 9. 8 6
Addmg the last edge gives a tree 1somorph1c to the tree T} of Figure 9. 8 3 "

" Since @ tree with five vertices must have a Vertex of deg-ree 2 we have found-_-."
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: ; - ¥ . o - e : 1 w1 In Exercises 10-12, determine whether each pair of binary trees
U g5 evens say ho= 2k oné an tise mducuon fo show (see Exerc1se 24) that_' Z 1 ! is isomorphic. If the pair is isomorphic, specify an isomorphism.
when two k-vertex 1somorphxc bmary trees are input to Algonthm 9.8.13; the numbet':_i . If the pair is not isomorphic, give an invariant that one tree satis-
~ of comparisons is equal to 3z +2. Using this result, one can show’ (see Exercise 25) vz U3 V4 V5 Vg Wz W3 Wg W5 W fies but the other does not. Also, determine whether the irees are
- that if:n 15 odd, say.n 2k + 1; ‘when: thie wWo' blnary trees shown in Flgure 98,15 T ) isomorphic as free frees or as rooted frees.
~are input to Algonthm 9.8.13, the number-of compansons is equal to- Sn + 1 Thus'-- 5, il Ty and T3 as in Exercise 9 ;
the worst-case tlme of Algonthm 9. 8 13 i Q(n)' B ' U1 w1 11. |
: ! ° v wi |
V2 N U ) we >
v'3 v'4 w3 w4 Ws
vy Uil wy w11 < 23
' v
vg  vg Vig wg  wyg W10 2 i
vz w1z
T] TZ -"; k“c c"{ “‘i
p Vs Vg w5 wg
’ Ty T
12.
v
S Smce the worst—case tlme is. O(n). and Q(n) the worst—case tlme of Algo—'- oy S s
: nthm 9 8 13 s ®(n) . s y v3 w2 s
Vil ¥z w1z
25
Tl T2
[Aho] gives an algorithm whose worst-case time is linear in the number of ver- In Exercises 7-9. d , heth b pai tod , v .
tices that determines whether two arbitrary (not necessarily binary) rooted trees are i Lxercises /o, deiermine whether each pair of rooted trees is U6 ws o We
isomorphic isomorphic. If the pair is isomorphic, specify an isomorphism, If
' the pair is not isomorphic, give an invariant that one tree satis- T T3
Jies bur the other does not. Also, determine whether the trees are
isomorphic as free trees. Draw all nonisomorphic free trees having three vertices.

DBraw all nonisomorphic free trees having four vertices.

Draw all nonisomorphic free trees having six vertices.

1. What does it mean for two free trees to be isomorphic? 4. How many n-vertex, nonisomorphic binary trees are there?
+ What does it ; 1 b Hic? y \ . Draw all nonisomorphic rooted trees having three veriices.
2. at does it mean for two rooted trees to be isomorphic? % Describe alinear-ti i g i ‘ l . . . . .
p : . time algorithm to test whether two binary trees vz« wUg . Draw all nonisomorphic rooted trees having five vertices.
%, What does it f bi be i i 9 are isomorphic. U3 i . L . .
3 at does it mean for two binary trees to be isomorphic? S i . Draw all nonisomorphic binary trees having two vertices.
U5y H . _— . .
5 " ve Draw all nonisomorphic binary trees having four vertices.
J \_ o " Draw all nonisomorphic full binary trees having seven ver-
= vy vg wy wsg tices. (A foll binary tree is a binary tree in which each internal
. . vertex has two children.)
In Exercises 1-6, determine whether each pair of free trees is iso- Ty Iz

morphic. If the pair is isomorphic, specify an isomorphisim. If the Draw all nonisomorphic full binary trees having nine vertices.

pair is not isomorphic, give an invariant that one tree satisfies but
the other does not.

Find a formula for the number of nonisomorphic n-vertex full
0, binary trees.

. . 23. Find all nonisomorphic (as free trees and not as rooted trees)
! spanning trees for each graph in Exercises 7-9, Section 9.3,

24

Use indaction to show that when two k-vertex isomorphic bi-
nary trees are input to Algorithm 9.8.13, the number of com-
parisons with rull is equal to 6k 4 2.

Z5. Show that when the two binary trees shown in Figure 9.8.15
are input to Algorithm 9.8.13, the number of comparisons with
null is equal to 6k + 4.
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26. Write an algorithm to generate an #-vertex random binary tree. 30. Show that if 77 and 73 are distinct trees in Xy, then X4,N
X7, =@

In Exercises 27-33, Cq, Co, ... denoies the sequence of Catalan
31. Show that UTGX] Xr = X,.

mumbers. Let X1 denote the set of nonisomorphic full binary trees

having i terminal vertices, n > 2, and let X, denote the set of non- 32, Use Exercises 29-31 to show that (n+1)C,, = 2(Zn - 1)C,,_,
isomorphic full binary trees having n+ | terminal vertices, n > 1, for all n > 2. Exercise 26, Section 7.1, asked for a proof of !
with one terminal vertex designated as “marked.” this identity using the explicit formula for ;. These exercises 1

show a way to prove the identity without using the explicit

27, Givenan (n—1)-vertex binary tree T, n > 2, construct a binary formula for C
"

tree from T by adding a left child to every vertex in T that does
not have a left child, and adding a right child to every vertex in
T that does not have a right child, (A terminal vertex will add mula for the nth Catalan number C, = C(2r, 1)/(n-+1). (See
both a left and right child.) Show that this mapping is one-to- also Example 6.2.23.)

one and onto from the set of all nonisomorphic (7 — 1)-vertex 34, An ordered tree is a tree in which the order of the children is
binary trees to X;. Conclude that | X1| = C,—y foralln > 2. taken into account, For example, the ordered trees

28. Show that |X3| = (n+ DYC, foralln > 1.

. Use Exercise 32 i give another derivation of the explicit for-

Givenatree T € X, for eachvertex vin T, we construct two trees
in X7 as follows. One tree in Xy is obtained by inserting two new
children of v—one is a new left child, which is marked, and the

other is the root of the original subtree in T rooted at v. The other are not isomorphic. Show that the number of nonisomorphic
tree in Xo is obtained by inserting two new children of v—one is ordered trees with n edges is equal to Cy, the nth Catalan num-
@ new right child, which is marked, and the other is the root of the ber. Hint: Consider a preorder traversal of an ordered tree in
original subtree in T rooted at v. Let X1 denote the set of all such which 1 means down and 0 means up.

trees constructed. This construction is due to Ira Gessel and was 35. [Projectl Report on the formulas for the number of nonisomor-

Jorwarded to the author by Arthur Benjamin. phic free trees and for the number of nonisomorphic rooted

2%, Show that [X7| = 2(2n — 1) forall T € X. trees with i vertices {see [Deo]).

I

{ A game tree for nim. The initial distribution is two piles of three and two tokens, respectively.

Trees are useful in the analysis of games such as tic-tac-toe, chess, and checkers, in which
players alternate moves. In this section we show how trees can be used to develop game-
playing strategies. This kind of approach is used in the development of many computer
programs that allow human beings to play against computers or even computers against
computers.

As an example of the general approach, consider a version of the game of nim.
Initially, there are n piles, each containing a number of identical tokens. Players alternate
moves, A move consists of removing one or more tokens from any one pile. The player
: who removes the last token loses. As a specific case, consider an initial distribution
| consisting of two piles: one containing three tokens and one containing two tokens. All
possible move sequences can be listed in a game tree (see Figure 9.9.1). The first player
is represented by a box and the second player is represented by a circle. Each vertex
shows a particular position in the game. In our game, the initial position is shown as
(g) A path represents a sequence of moves. If a position is shown in a square, it is the
first player’s move; if a position is shown in a circle, it is the second player’s move, A
terminal vertex represents the end of the game. In nim, if the terminal vertex is a circle,
the first player removed the last token and lost the game. Tf the terminal vertex is a box,
the second player lost.

The analysis begins with the terminal vertices. We label each terminal vertex with
the value of the position to the first player, If the terminal vertex is a circle, since the
first player lost, this position is worthless to the first player and we assign it the value 0
(see Figure 9.9.2). If the terminal vertex is a box, since the first player won, this position

2

The game tree of Figure 9.9.1 showing the values of all vertices.

This section can be omitted without loss of conzinuity.




