31B/1 - Midterm 1 - Solutions

14 October 2011

Name:
Student ID \#:

This is a closed-book, closed-notes exam. Calculators are not allowed.
Show all work.
If you need more room, write on the back, and make a note on the front. There are 5 problems of 20 points each for a total of 100 points.

POINTS:

1.
2.
3.
4.
5.

TOTAL:
1.a. (20 points). Compute the derivative of $\sec ^{-1}(x)$ at $x=\frac{2}{\sqrt{2}}$.

Solution If $x=\frac{\pi}{4}$, then $\sec (x)=\frac{2}{\sqrt{2}}$. So, $\sec ^{-1}\left(\frac{2}{\sqrt{2}}\right)=\frac{\pi}{4}$. Let $f(x)=\sec (x)$ and $g(x)=\sec ^{-1}(x)$. Then,

$$
g^{\prime}\left(\frac{2}{\sqrt{2}}\right)=\frac{1}{f^{\prime} g(x)}=\frac{1}{\tan \pi / 4 \sec \pi / 4}=\frac{1}{\frac{\sqrt{2} / 2}{\sqrt{2} 2} \cdot \frac{1}{\sqrt{2} / 2}}=\frac{1}{\frac{2}{\sqrt{2}}}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}} .
$$

1.b. (10 points). Let $f(x)=\sqrt{x^{2}+6 x}$ for $x \geq 0$. Let $g(x)$ be the inverse of $f(x)$. Compute $g^{\prime}(4)$.

Solutions First let's find $g(4)$. We know that $g(4)=x$ where $f(x)=4$. So, we solve

$$
\sqrt{x^{2}+6 x}=4
$$

Squaring both sides, we find

$$
x^{2}+6 x=16
$$

Then, we solve

$$
x^{2}+6 x-16=(x+8)(x-2)=0
$$

In the given interval, we thus have $g(4)=2$. Also,

$$
f^{\prime}(x)=\frac{2 x+6}{2 \sqrt{x^{2}+6 x}}=\frac{x+3}{\sqrt{x^{2}+6 x}} .
$$

Therefore,

$$
g^{\prime}(4)=\frac{1}{\frac{2+3}{\sqrt{4+12}}}=\frac{4}{5} .
$$

2. (20 points). Compute the present value of an annuity that pays out 5000 per year continuously and then ends in 20 years with a lump sum additional payment of 10000, assuming you can invest at $r=.1$.

Solution The present value is simply the present value of the income stream $R(t)=5000$ over 20 years together with the present value of receiving 10000 in 20 years. So,

$$
\begin{aligned}
P V & =10000 e^{-.1 \cdot 20}+\int_{0}^{20} 5000 e^{-.1 t} d t \\
& =10000 e^{-2}+\frac{5000}{-.1}\left(e^{-.1 \cdot 20}-1\right) \\
& =(10000-50000) e^{-2}+50000 \\
& =50000-40000 e^{-2} .
\end{aligned}
$$

3. (20 points). Compute

$$
\lim _{x \rightarrow 0}\left(\frac{e^{x}}{e^{x}-1}-\frac{1}{x}\right)
$$

Solution By putting this over a common denominator, we get

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(\frac{e^{x}}{e^{x}-1}-\frac{1}{x}\right) & =\lim _{x \rightarrow 0} \frac{x e^{x}-e^{x}+1}{x e^{x}-x} \\
& =\lim _{x \rightarrow 0} \frac{e^{x}+x e^{x}-e^{x}}{x e^{x}+e^{x}-1} \\
& =\lim _{x \rightarrow 0} \frac{x e^{x}}{x e^{x}+e^{x}-1} \\
& =\lim _{x \rightarrow 0} \frac{x e^{x}+e^{x}}{x e^{x}+e^{x}+e^{x}} \\
& =\frac{1}{2}
\end{aligned}
$$

by two applications of L'Hôpital's rule.
4. (20 points) Compute

$$
\int x^{4} \cos x d x
$$

Solution Using integration by parts (with $u=x^{k}$ at each stage), we get the following

$$
\begin{aligned}
\int x^{4} \cos x d x & =x^{4} \sin x-4 \int x^{3} \sin x d x \\
& =x^{4} \sin x-4\left(-x^{3} \cos x+3 \int x^{2} \cos x d x\right) \\
& =x^{4} \sin x-4\left(-x^{3} \cos x+3\left(x^{2} \sin x-2 \int x \sin x d x\right)\right) \\
& =x^{4} \sin x-4\left(-x^{3} \cos x+3\left(x^{2} \sin x-2\left(-x \cos x+\int \cos x d x\right)\right)\right) \\
& =x^{4} \sin x-4\left(-x^{3} \cos x+3\left(x^{2} \sin x-2(-x \cos x+\sin x)\right)\right)+C \\
& =x^{4} \sin x+4 x^{3} \cos x-12 x^{2} \sin x-24 x \cos x+24 \sin x+C
\end{aligned}
$$

5. (20 points). Compute

$$
\int \frac{d x}{\left(4-x^{2}\right)^{3 / 2}}
$$

Solution Do the substitution $x=2 \sin \theta$. Then, $d x=2 \cos x d \theta$. We get

$$
\begin{aligned}
\int \frac{d x}{\left(4-x^{2}\right)^{3 / 2}} & =\int \frac{2 \cos x d \theta}{\left(4-4 \sin ^{2} x\right)^{3 / 2}} \\
& =\int \frac{2 \cos x d \theta}{\left(4 \cos ^{2} x\right)^{3 / 2}} \\
& =\int \frac{2 \cos x d \theta}{8 \cos ^{3} x} \\
& =\frac{1}{4} \int \sec ^{2} \theta d \theta \\
& =\frac{1}{4} \tan \theta+C \\
& =\frac{x}{4 \sqrt{4-x^{2}}}
\end{aligned}
$$

By using a triangle to compute $\tan \theta$.

