4 I The Complex Plane and Elementary Fllnctioﬁ;,,

where ag, ... , @, are complex numbers, and a, # 0. A key property of the

complex numbers, not enjoyed by the real numbers, is that any polynomjaj- -

with complex coefficients can be factored as a product of linear factors,

Fundamental Theorem of Algebra. Ever
degree n > 1 has a factorization

P(z) = clz—z)™ .. (5 gym
where the z;’s are distinct and m;
a permutation of the factors.

We will not prove this theor
Some remarks are in order.

The uniqueness of the factorization is
Z1;--- 22 are uniquely characterized as t
of p(z). These are the points where (z)
ized as the unique integer m with the prop

as (2 — z;)™g(z) where 4(z) is a polynomial satisfying g(z;) # 0.

tion on the degree n of the polynomial. The
a point z; such that P(z1) = 0. With a root
?(z) as a product (2~ 21)q(z), where g(2) is a polynomial of degree n — 1,
(See the exercises.) The induction hypothesis allows one to factor g{z) as a

» and this yields the factorization of p(z). Thus the

fundamental theorem of algebra is equivalent to the statement that every
complex polynomial of degree n > 1 has a Zero.

z1 in hand, one easily factors

Example. The polynomial p(x) = z2
factored as a product of linear polyno
does not have any real roots. Howe
2% +1 has the factorization

+ 1 with real coefficients cannot be
mials with real coefficients, since it
ver, the complex polynomial p(z) =

241 = (z~4)(z +3),
corresponding to the two complex roots 4.4 of 2% 4+ 1.

Exercises for 1.1

1. Identify and sketch the set of points satisfying:
(@ lz—1-4 =1 ) 0<Imz<r
B 1<i2z -6 <2 (8) ~m <Rez<n
{c) iz——l[2+fz+1]2<8 (b} |Rez| < |2
@lz-1+]z+1] 52 (i) Re(iz+2) >0
(€) lz—1] < [2] @ lz—iP+ |z +i2 <2

2. Verify from the definitions each of the identities (a) 2+ w = 3 +

W, (b) 7w = zw, (c) 12l = |21, (d) J2)? = 2z. Draw sketches to
illustrate (a) and (c).

¥ complex polynomial p(z) of'_:.f |

2 1. This factorization js unique, up to

em now, but we will give several proofs later. -

€asy to establish. The points -
he roots of p(z), or the zeros
= 0. The integer m; is character-
erty that p(2) can be factored :

5

Representation |
L = p? circle
that the equation |z|?—2 Re(@z)+]al® = p? represents a
Show ; !
> centered at a with radius p. o
that |z| < |Rez| + |Imz}, and sketch the set of po
Show that 12| =
* which equality holds. t
Show that |Rez| < [2] and {Im2| < |z}. Show tha
" z+wf? = |22+ wl? +2 Re(z@).
Use this to prove the triangle inequality |7 -+ w} < {z| + w].
se

az| =11 =1 and
6. For fixed a € C, show that |z — al/ll — &z = 1if |7|
. Fo
1—az#0. "
that the set of 2 satisfying
. 1, and fix 2p, 21 € C. Sht?w - s ng
iinls >| % Zlf— z1] is a circle. Sketch it for p ;—— sand p=2,w
= %}and z; = 1. What happens when p = 17 "
o tha
i > 1 and let zp € C. Show
be a polynomial of degree n > Show that
8. i‘]i’rz(izs) a polynomial h(z) of degree n —1 hm:fh(i;})lai ?;E.}ze)h(z).
20)h(z) +p(z0). In particular, if p(zo) = 0, then p
0 i i following
Find the polynomial h(z) in the preceding exe_rmts;t)e f(()z )t}: zg+zz e
> cillrcjices of p(z) and zg: (a) p(2) = z: and zg = i é(md;pzo ) ==
and zo = -1, {¢) pz) =1+2+2"+---+ 2 |
£ olyno-
10. Let g{z) be a polynomial of degree m > 1. Show that any p
- mial p(z) can be expressed in the form
p(2) = h{z)a(2) +r(2),

in-

ials and the degree of the rema

and 7(z) are polynomials f the remain-

gieie(g(il o e vo 11? Hrggi;holzir‘;;e::llgg ;lleudivision
he resulting

the degree of p(z). T

algorithm.

1 1 i 1 i ( ) ( )

2. Polar Representation

i di-
int (z,3) # (0,0) in the plane can be described by polar coor
Any point (zx, ,

/2 i le subtended by (z,y)
= /22 4+ y% and 9 is the ang ; Y
nates 7 ond ?,SWI'}?ITZ ;ngle @ is determined only up to 3dg“fig;’i$ ;(gﬁar
andlti';hf x;’a;‘r .The Cartesian coordinates z,y are recovered iro
multiple of 2.

coordinates r,8 by
z =rcosh,
{ 7y =rsinb.
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where each formula is understood to hold modulo adding integral multiples
of 2r. To establish (2.8) and (2.9), note that if thel polar representation
of z is re®, then the polar representation of z is re™™ and that of /zis
(1/r)e™*. For (2.10), write 21 = rye®r 4, = r2¢"2 and use the addition
formula $o obtain the polar form of %120,

2z = rirgee® = g oil01305)

The addition formula (2.6) can be used to derive formulae for cos(ng)
and sin{nf) in terms of cos# and sin 6. Write

cos(nf) + isin(nf) = ¢ _ (e = (cosd + isin )",
expand the right-hand side, and equate rea] and imaginary parts. This
yields expressions for cos(nf) and sin(nf) that are polynomials in cos # and
sinf. These identities are known as de Moivre’s formulae, For instance,
by equating cos(36) -+ i5in(36) to
(cosf -+ising)® = cogdp - 3cos0sinf + i(3 cos® Bsin § — sin’ &)

and taking real and imaginary parts, we obtain

cos(30) = Re(cosd + isin #)° = cos®0 - 3cosfsin 8,

sin{30) = Im(cosf + isin ¢)?

3cos® fsin g — sin® 9,

A complex number 2 is an nth root of w if 2" = 4, Thus the nth roots
of w are precisely the zeros of the polynomial z" -y of degree n. Since thig
polynomial has degree n, w has at most n nth roots. If w £ 0, then w has
exactly n nth roots, and these are determined as follows. First eXpress w
in polar form,

w = pe'¥,
The equation 2" = 1 becomes
7 ing

re™ = pete,

Thus 1™ = p and ng = {o+2nk for some integer k. This leads to the explicit
solutions

ro= pl/n’
2
4 — E+_7f§7 k=0,1,2,... ,n—1,
I n

where we take the usual positive root of p. Since these n roots are distinct,
and there are at most n nth roots, this list includes all the nth roots of w.
Other values of k do not give different roots, since any other integer % leads
to a value of # that is obtained from the above List by adding an integral
multiple of 2. Graphically, the roots are distributed in equal arcs on the
circle centered at 0 of radius fwft/n,

Exercises

i 7= rem = plfner"p.'n

8= ypin

am ] ;1 lar
ts of 44, first express 4¢ in po

Example. To find and plot the square roo : 4l

form pe’?. Here p = |4il =4 and p = arg(4i) = m/2. One root is given by

ot .

ip/2 —. 9¢i7/4 The other is 2e#{"/4+®) = ..9¢i"/4, In Cartesian form,
giel? = .

£ roots are vV4i = £(v/2 + v20).

Q178 gHm[12+2km[3) k=612
o1 4i=I™ o 23
£, = 23T
: 29 = 21612
1
i3

f17x/12
= Zlfﬁél'n‘rl

fl+4i cube roots of unity
cube roots o

i e
The nth roots of 1 are also called the nth roots of unity. They ar

given explicitly by

W = ezﬂ'ik/n’ 0<k<n-1

\ i it circle in
Graphically, they are situated at equal intervals a.roun.d the u:{;t Eu‘;: i
the I:():omple;c plane. Thus the two square roots of unity are ¢ =

L —1. N

e The procedure for finding the nth roots of w # Op(;?glr?ei ;eggfaisiirm
ity. We express w =

termlf o ﬂg :t:(l):: ?;;Sgicfesrg;y Zp = pl/ neie/n The others are found by

as above. On o

multiplying zg by the nth roots of unity:

1/neiw/ne21rik/n’ 0<k<n-1.

g = ZoWg = P
Exercises for 1.2
i i i nd
1. Express all values of the following expressions in both polar a
' cartesian coordinates, and plot them,
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i = ™2

The eight eighth roots of unity

(@ vi @VT @O

OVIET @ @) 3 - aiyve f(h)(lj_)

V2
2. Sketch the following sets;
(a) [arg 2| < /4 (¢) Jol = arg 2
(D)0 < arg(z—1~ iy <w/3 (d) log [2] = -2 arg z
" 8. For a fixed complex number b, sketch the curve {e*f L pe—if . g <

¥ < 2r}. Differentiate between the cases [b] < 1, |b] = 1 and B > 1.

Hint. First consider the case b > 0, and then reduce the general
case to this case by a rotation,

4. For which n is ; an nth root of unity?
5. For n > 1, show that
(a)1+z+z2+---+z":(1—3”*1}/(1—2), z#1,

1 sin(n+1)

b) 1 g 2+ ... =V T 3V

(b) 1+ cos 6+ cos 20 + + cos nd 5+ 25in6/2

6. Fixn > 1. Show that the nth roots of unity Wo, -« vy in satisfy:
(a) (z—wo)(z— Wi) (2~ wWpq) = o7 1,
(b) Wot rtwp 1 =0ifn> 2,
(€) wp+wy = (=1t

n—i
0 I1<k<n-1
d § - ’ - = ’
@ .=0w“7 {n, k=n.

7.Fix R>1andn 21, m >0, Show that

m

— | « v
z"+11 T Rr_q

2m

|zl = R.

Sketch the set where equality holds. Hint. See (1.1).

11
3 Stereographic Projection

. s
(<]

Of cOs 9 a.nd Sin 9.

3. Stereographic Projection

her with the
is the complex plane toget
d complex plane is . that
The exm?nf(ii eit,y We denote the extended complex plane by C_ ’t;(;ough
point gbl{n I; 6ne way to visualize the extended complex ptl};:ne lr?it sphere
c = S is is a function, or map, from the u
ic projection. This is a > Jene,

smﬁifﬁiﬁi&mial Euclidean space R3 t)o the exte;c:e;if (;}OII:E:;C si)here
in = (X,Y, Z) is any po

b follows. If P = (X,Y, oy N
which lf; deiﬁ:dnzftl(l) pole N = (0,0,1}, we draw a,.stralght lmt;) tl;r;;ilgint
other amd we define the stereographic projection of P to diiate plane
and P, an (,y,0) where the straight line meets the coor iate b one
ZZ= 930‘1' 2'ghe ste’re:)graphic projection of the north pole IV is

be 0o, the point at infinity.

i jection i i follows.

An explicit formula for the stereographic pm]ect!::i:;?;r;e‘ij\raiz >
line through P and N parame ' -

YVV;? rex;gessr;t; }::J. The line meets the (x,y)-plane at a point (x,y,0) tha

satisfies '
(z,5,0) = (0,0,1) +[(X,Y,2) - (0,0,1)]
= (tX,tY,14+(Z - 1))

i btain
i third components, we o
ter value t. Equating the
301' Sflfi(%af_aflﬂ)e :vhich allows us to solve for the parameter value ¢,

t = 1/(1-2).
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d as w approaches —r from below, the values f,(w)} approach the valug
3:'\/17 on the positive imaginary axis. Again we think of the slit as havjng...%:
two edges, though on this sheet the top edge is mapped to the negative.

imaginary axis and the bottom edge is mapped to the positive im
axis. Further, we have

fil=r b i0) =i = fal=r —i0), fi(=r~i0) = —iyff = fo(—p 4 i0). -

This leads us to the idea of constructin

coincide. We glue the top edge of the br
to fi(w) to the bottom edge of the br
to f2(w), and similarly for the remain
surface. Since the values of f, {(w) an

surface, with values in the 2-plane that move continuously with .

i

Since each sheet of the surface is a copy of the slit g~
of the sheets as “lying over” the w-plane. Each w ¢ C\{0} corresponds
to exactly two points on the surface, The function f(w) on the sirface
represents the multivalued function v in the sense that the values of /w
are precisely the values agsumed by f(w) at the points of the surface lying
over w.

The surface we have constructed is called the Riemann surface of /2.
The surface is essentially a sphere with two bunctures corresponding to (
and co. One way to see this is to note that the function f(w) maps the
surface one-to-one onto the z-plane punctured at 0. Another way to see this
is to deform the surface by prying open each sheet at the slit, opening it to
a hemisphere, and then Jjoining the two hemispheres along the slit edges to

form a sphere with two punctures corresponding to the endpoints 0 and oo
of the slits.

Exercises for 1.4
1. Sketch each curve in the z-plane
() 1z-1=1 (y—1
byz=1 Dy==z+1 By=1/z, 20

2. Sketch the image of each curve in the preceding problem under the
principal branch of w — vz, and also sketch, on the same grid but

» and sketch its image under 1 — P28
@y*=a?-1,2>0

5. The Exponential Function

aginary

g a surface to represent the inverse
function by gluing together the edges where the funciions fi(w) and f, (w):
anch cut on the sheet corresponding -
anch cut on the sheet corresponding
ng two edges, to obtain a two-sheeted |

d f2(w) coincide on the edges we have ;
glued together, they determine 4 function f{w) defined on the two-sheeted .

plane, we may think

19

branch
in a different color, the image of each curve under the other

of V/z. 3 |
i = sidered
) Give a brief description of the function z — w = Se,s :;ge feroc
s mapping from the z-plane to the w-plane. ( be what
;i & ensllo w as z traverses a ray ema{x?{tmg fronl& tll:e t?:;ic}; o
aszptraverses a circle centered at the orfxgllrll.) (b) rsea ;apping o
icl branches of the inve .
define explicitly three ‘ P
aﬁr;c:cribe the construction of the Riemann surface of z

o

4. Describe how to construct the Riemar}n surfaces foxl' tzl}g f?zli(:,?;:r:
. jons: (a)w = z/4, (b)w = vz —1, (¢) w= (z-1) : e
funCthHS_-b the Riemann surface of a multivalued function, "
T(') e (;1 t for each branch of the function, make branch cu :‘;
:Z)lttlalh;: i}?e e!:ranches are defined continuouslzhon ea::) psﬁz«:te, ef;r; !

i i e of a cut on one sheet to ano er ap g

ls?)e:}i?:;:hfuﬁiion values match up continuously.

5. The Exponential Function

e* = e®cosy +ie” siny, z=z+iycC.

H - a . . - 1 t to
Since e®¥ = cosy + isiny, this is equivalen

e* = e%e¥, z=1x+1y.

H ¥
This identity is simply the polar representation of 7,

T

(5.1) le*] = €7,
(5.2) arge® = y.

definition of e given in Section 2.
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A fundamental property of the exponential function is that it is periodic,
The complex number } is a period of the function f(z) if f (z+A) = f(z)
for all z for which f(z) and f(z + )) are defined. The function f(2) is

periodic if it has a nonzero period. Since sinz and cosy are periodic

functions with period 27, the function e? is periodic with period 2rxi:
et o gz zeC.

In fact, 2mik is a period of e* for any integer k.

Another fundamental property of the exponential function is the addi- -

tion formula

(5.3) et = % L wecl.
To check this, let z = ¢ + ty and w = u + iv. Then
etw _ ettupilytr) _ e:ceueiyeiv - ezew’

where we have used the addition formulae for ¢* and eif.

From the addition formula (5.3) we have efe=2 = 0 — 7. Consequently, -

the inverse of e is e—* ,

l/ez = e—z! zeC.

To understand the exponential function better, we view w — e’ asa
mapping from the z-plane to the w-plane. If we restrict the exponential -

function to the real line R, we obtain the usual exponential function z —
e, ~00 < 7 < 00, which maps the real line R to the positive real axis
(0,00). The equation {5.2) shows that an arbitrary horizontal line x + Yo,
—00 < T < 00, is mapped to the curve €% o0 < g < 00, which is a
ray issuing from the origin at angle y. If we move the horizontal line up,
the angle subtended by the ray increases, and the image ray is rotated in
the positive (counterclockwise) direction. As we move the horizontal line
upwards from the z-axis at Yo =0 to height yo = /2, the image rays
sweep out the first quadrant in the w-plane. The horizontal line at height
Yo = 7/2 is mapped to the Positive imaginary axis, the horizontal line of
height yy = 7 is mapped to the negative real axis, and when we reach the
horizontal line of height 49 = 27, the image rays have swept out the full
w-plane and returned to the Positive real axis. The picture then repeats
itself periodically. Each point in the w-plane, except w = 0, is hit infinitely
often, by a sequence of z-values spaced at equal intervals of length 27 along
a vertical line.

While the images of horizontal lines are rays issuing from the origin, the
images of vertical lines are circles centered at the origin. The equation (5.1)
shows that the image of the vertical line @ + iy, —00 < y < 00, is & circle
in the w-plane of radius e, Ag traverses the vertical line, the value 1
wraps infinitely often around the circle, completing one turn each time
¥ = Im z increases by 2.

g, The Logarithm Function

21

horizontat lines ——»~ rays
vertical lines — circles

Exercises for 1.5
1.. Calculate and plot e* for the following Points 2
()0 (@ n(-1)/3 () wi/m,
(bymi+1 {d) 37mi (£} m(i —1),

|. ] z I ]- I - E] . I ] i . ]
2. S

m=1,2,3,...
m=1,23,...

lines in your sketch.

{a) the \Yertical strip ‘0 < Rez <1, /3
{b) the horizontal strip 57 /3 <Imz < :lr ,
(c) the rectangle 0 <z <1, 0<y< /4,
(d) the disk |z| < /2,

(e) the disk {z{ < m,

(f) the disk |2| < 3=/2.

3. Show that €* = é%.

4. Show tha y peri £ the integral multiples of 273,
h t the Onl perlods Of e arel ! ! ;
. that is. if e*¥» = e? for all 2, then X is an integer times 2mi.
H

6. The Logarithm Function
For z # 0 we define log z to be the multivalued function

logz = log|z| +iargz

log |z| + ¢ Arg z + 2mim, m=0,x1,+2,....

W=z,
The values of log z are precisely the complex numbers w such _:121?;1; ; =
To see this, we plug in and compute. If w = log|z| + i Arg z ,

i 3 iArgz __
e = eloglzlezArgze?.mm = Iziet B2 . o
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Exercises for 1.6

1. Find and plot log z for the following complex numbers z. Specify:

the principal value. (a) 2, (b) 4, (c) 1 43, (d) (1+iv3)/2.

2. Sketch the image under the map w = Log z of each of the following

figures,

{a) the right half-plane Rez > 0,

(b) the half-disk |2] <1, Rez > 0,

(c) the unit circle [2| =1,

(d) the slit annulus /e < 2] <€ 2 ¢ (—€?, - /e),
(e) the horizontal line y=ce,

{f) the vertical line = = e,

3. Define explicitly a continuous branch of log z in the complex plane

slit along the negative imaginary axis, C\[0, —ico).

4. How would you make & branch cut to define a single-valued branch =

of the function log(z + ¢ — 1)? How about log(z — z)?

7. Power Functions and Phase Factors

Let o be an arbitrary complex number. We define the power function z®

to be the multivalued function

2 = e"’l"gz, z#£0.
Thus the values of z* are given by
2% ea[log {#]+t Arg 2 +27im)]

= M loBiIniam 041,42, .

The various values of 2* are obtained from the principal value e®lozz
by multiplying by the integral powers (e*™)m of g2%ia  If o ic itself an
integer, then 2™ — 1, and the function 2® is single-valued, the usual
power function, If o = 1 /n for some integer n, then the integral powers
emim/n of e2xi/n are exactly the nth roots of unity, and the values of z1/n
are the n nth roots of z discussed earlier (Section 2)

Example. The values of i¢ are given by

ez]ogz — e—Argi-—Zwm = e—Tr/2e—2m-n,

m=0,+1,42,....
The values form a two-tailed sequence of pogitive real numbers, accumu-

lating at 0 and at +cc. Similarly, the values of i~ are given by
e—i]ogi = g~ Arg(-—‘i)—?‘ﬂk = 8“/26g2ﬂk, L= 0,:*:1, Zi:2, o

1 The Complex Plane and Elementary Functions

25
7, Power Functions and Phase Factors

2 -
e ~5xi2 e w2 € 3w

er! If we multiply the values of i* by those of i ™%, we obtain infinitely
g;:g v;,lues €™ —oo < n < oo. Thus

@) # =1,
d the usual algebraic rules do not apply to power functions when they
an
are multivalued.

If o is not an integer, we cannot define 2* on the fentire complex plzge

suczh a way that the values move continuously with z.WTo delizine ak:
o i i branch cut. We could m

i ust again make a bra
O v e i his time let us make the cut along
long the negative real axis, but this tim . g

g};e ;]:Jt;;ive%eal axi:, from 0 to +oc. We define a continuous branch of z

e ..
on the slit plane C\[0, co) explicitly by

w = r%ead, for z=re®, 0 <8 < 2m.

i ing to § = 0, we have the usual power
o th‘e t0I)‘J"edge.e(;’f iggfélli&firﬁzsgzai}mbedge of the slit, corresponding to
ﬁlicgmnv:e h;ve the function r*e27i®, If we fix r and let @ increase from 0
so*Zarﬂ,z = re¥ starts at the top edge of the slit and .proceit.:ls e.mrolxénilhz
i le, ending at the bottom edge of the slit. As z describes this circle, ’
CI;-'IC : w = r*¥% move continuously, starting from r* at the top edge o
:heusit and ending at r*e?™ at the bottom edge. Thus the values of sh;s
branch of z* on the bottom edge are €2™** times the \;a.lues at t(:)he top edge.
The multiplier €?™* is called the phase factor of z* at 2 = 0.

\\\ =1
// o e

If we continue any other choice w = r"‘e“"("‘*‘?z"‘;r?ﬁ i"‘ art;im;l th:dszn::;
circle, the values of w move contin_uous}y from r%e ai;l:l e ?{) o I,:g > of
the slit to reglo@ri?mm) — pagliniomelnia o the' ‘t?o_ttom alge. £
final w-value is the phase factor e?™i tirnt?s the 1mt1al&u;l-v ue.hase tor

The same analysis shows that the function {z — zo)* has ix ;() e
of e2™ at z = z, in the sense that if any .branch of_t.u —d. Zc tiog o
continued arcund a full circle centered at z in t}fe positive 1rb ma:kmc
final w-value is €2 times the initial w-value. This can be seen by g
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a change of variable ¢ = z — Zp. Further, this result does not change j

we multiply (z — 29)* by any (single-valued) function. We state the resul
formally for emphasis.

(2 —20)%g{z) is multiplied by the phase facto;
‘* when z traverses a complete circle about zy in the positive direction

Example. If o is an integer, the phase factor of z® at 0 is g¥mio
accord with the fact that 2@ is single-valued.

Example. The phase factor of VZ—zgat zpise™ =

factor of 1/+/zg — z = i/vZ =29 at zp is also —1.

Example. The function v/ #(1 — 2} has two branch points, at 0 and at 1.
At z = 0, each branch of V1 —z is single-valued, so the phase factor of
each branch of \/z(1 - 2) at z = 0 is the same as that of /2, which is

V#(1-2) at z = 1 is the same as
that of +/T -2, which is ~1. Now suppose we draw a branch cut from 0

to 1 and consider the branch f{z) of /(1 =7 that is positive on the top

rses a small circle around 0, the values of flz)
tom edge of the slit, corresponding to the phase
0. As z traverses the bottom edge of the slit and returns
to the top edge around a small circle at z — 1, the values of ~f(z) are

again multiplied by the phase factor —1. Thus the values of f(z) return -

~1. Similarly, the phase factor of

edge of the slit. As 2 trave

return to — f(z) on the bot
factor —1 at 2z =

to the original positive value on the top edge of the slit when z traverses

a dogbone path encircling both branch points. It follows that the branch

f(z) is a continuous single-valued function in the slit plane C\I0,1]. Now

we may proceed, in analogy with vz and log z, to define a Riemann surface

for the function /z(1 — z) that captures both branches of the function. We

require two sheets, since there are two choices of branches for the function
z(1 - z). On each sheet we make

the same cut, to form two copies of
C\[0,1]. On one sheet we define F(z) to be the branch f (2} of \/2(1 ~ z)
specified ebove, and on the other sheet we define F(z) to be the other
branch — f(z) of v/2(1 — z). The sheets are then Joined by identifying edges
of the slits in such a way that F(z) extends continuously to the surface.
In this case, the top edge of the slit {0,1] on one sheet is identified to the
bottom edge of the slit on the other sheet, and the remaining two edges
are identified, to form the two-sheeted Riemann surface of V(1 - 2).

In constructing the Riemann surface of a multivalued function, the num-
ber of sheets always coincides with the number of branches of the function.
However, the branch cuts can be made in many ways, as long as there are

= ~1. As z traverses a
circle about zy, the values of f(z) = \/z— 25 return to — f(2). The phase "
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Exercises

T Ny

surface with closed path

f the function can be defined con-
andlt: flristsgl;i{:: ;‘a(f:l iz;?:;ie? the branch cuts for the functi‘on
Il1t— z} could as well be made from —oo to 0 along the negative
/@) :' Z(d from +1 to +oo along the positive real axis. The branch cuts
reallg-x ;fs:nbe ;nade along more complicated paths from 0 to 1.
coll

le. Consider v/z — 1/z. We rewrite this as vz —Vb\/ z+ 1 / aﬁ (’JI(‘)!:le
B i ints, at 0 and +£1. We mus -
i three finite branch points, :
ﬂfmcmn aI;ai branch point, since there is a phase change correspogdng azﬁ
sider 90 factor —1 as z traverses a very large circle centered «':!.t .
y ph:;epoint has phase factor —1, so any branch of the funcftltogx 1:::;2}9;
re th encircling two of the
i igi iues when z traverse a pal
fo ts origal e (—o0, 1} and [0,1]. Each
i it suffices to make two cuts, say s ‘
polnts. 2 anetion i5 conti n C\((—00,~1] U [0, 1]). Again top
f the function is continuous o , -
branchog glits on one sheet are identified to bottom edges (?f the oi;znaresS
er};ggsresulting surface is a torus {doughnut, or inner ;ube), w‘z;;h punzr:rto
; i Id happen if we w
i branch points. What wou w
cortesponding to ¥io —1,0], in addition to the
initi itional branch cut along [-1,0],
make initially an addition o e o ods of
? The values of each branch a
two branch cuts above? ot the top 0 o
ith the values of the same br:
e e e eertly, i ify the top and bottom edges of
. Consequently, we would identify . p : ;
iﬁ?sfiig[il 0] on the same sheet, thereby effectively erasing the slits and
arriving at the same doughnut surface.

enough br,
tinuously 1

Exercises for 1.7

1. Find all values and plot: (a) (1+4), (b) (—&)'*%, () 272/2,(d) (1+
iv/3)-4),

2. Compute and plot log [(1+4)%].
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10.

11.

- Sketch the image of the sector
. Find i, Show that it does not coincide with i = -1,

. Determine the phase factors of the function 2%(1— z)” at the branchfg""

.Leta:1<$2<__,<$n

. Show that \/m

I The Complex Plane and Elementary thction:s

2

w = 2% for (a) a =
principal branch of 22,

I
- Show that (2w)® = 22, where on the right we take all possib]

products.

points z =0 and z = 1. What conditions on @ and b guarantee thatf :
2%(1 - 2)® can be defined a5 a {continuous) single-valued function
on C\[0,1)?

be n consecutive points on the real axis.
Describe the Riemann surface of V{z—z1)--(z=,). Show that.
forn =1 and n = 2 the surface is topologically a sphere with certain
punctures corresponding to the branch points and oo. What is it
when n =3 or n = 4? Can you say anything for general n? {Any
compact Riemann surface is topologically a sphere with handles.‘f-;
Thus a torus is topologically a sphere with one handle, For a given
7, how many handles are there, and where do they come from?)

can be defined as a (single-valued) continy-
ous function outside the unit disk, that is, for [z] > 1. Draw branch
cuts so that the function can be defined continuously off the branch
cuts. Describe the Riemann surface of the function, ;

- Consider the branch of the function V(2 —1)(z + 1)3 thatis pos-

itive at 2 = 2. Draw branch cuts so that this branch of the function
can be defined continuously off the branch cuts. Describe the Rie-
mann surface of the function. To what value at z = 2 does this
branch return if it is continued continuously once counterclockwise
around the circle {{z| = 2}7 '

Consider the branch of the function V2B - D)z + 1% - 1) that
is positive at z = 2. Draw branch cuts so that this branch of the
function can be defined continuously off the branch cuts. Describe
the Riemann surface of the function. To what value at 2z = 2 does
this branch return if it is continued continuously once counterclock-
wise around the circle {jz| = 2)?

Find the branch points of ¥Z5_1
surface of the function.

and describe the Riemann

Tri
8' . .

Trigonometric and Hyperbolic Functions
8.
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onometric and Hyperbolic Functions
g

e solve the equations
fw cos8 +isinf,

e == cosf —isind

p cosf and sin f, we obtain

. ei9 + e—iﬂ
cosf = 7 ,

e‘w — e—iﬂ

sinf = —T—

s m

pumbers z by

COB Z

zeC.

2i

This definition agrees with the usual definitio
cosz is an even function,

sin 2
n when z is real. Evidently,

cos(—z) = cosz, zeC,
while sin z is an odd function,
sin(—z) = —sinz, z€C.

um

ried 2,
zeC,

sinz, zeC. .
checks (Exercise 1) that the addi-

€os z,

cos(z + 2m)
sin{z + 2)

After some algebraic manipulation, one o
tion formulae for cos z and sin z remain vald,

os{z +w) = coszcosw — sinzsinw,  zw€C,
Ci
i we L.
sin(z +w) = sinzcosw +coszsinw, % )
i i obtain the
bstitute w = -z in the addition formula for cosine, we
If we substitu =

familiar identity e

cos? z +sin®z = 1,
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special case of the principle of permanence of functional equatjon
proved in Chapter V.

The hyperbolic functions cosh z = {e®+e"%)/2 and sinhz = (e*—e~%)/
are also extended to the complex plane in the obvious way, by

eZ + e-—z
2 H

et — g2
2 1

Both cosh z and sinh 2 are periodic, with period 273,

coshz =

zeC,

sinhz = z€C.

cosh(z + 2mi) = cosh 2,
sinh(z + 27i) = sinhz,

z€C,
ze(.

Evidently, coshz is an even function and sinh z is an odd function. There';
are addition formulae for cosh z and sinh z, derived easily from the addition -

formulae for cos z and sin z (Exercise 1).

When viewed as functions of a complex variable, the trigonometric and :
the hyperbolic functions exhibit a close relationship. They are obtained_ '

from each other by rotating the domain space by /2,

cosh(iz) = cosz, cos(iz) = coshz,

sinh(iz) = isinz, sin(iz) = isinhz.
If we use these equations and the addition formula

sin(z + iy) = sinz cos(iy) + cos rsin(iy),
we obtain the Cartesian representation for sin z,

sinz = sinxcoshy+icos:1:sinhy, z=x+iyeC.

Thus

|sinzj> = sin® 2 cosh? Y + cos® z sinh? ¥.

Using cos?z +8in®z = 1 and cosh? ¥ =1+sinh®y, we obtain

[sinz® = sinyx 4 sinh? .
From this formula it is clear where the zeros of sin z are located; sinz = ¢
only when sinz = 0 and sinhy = 0, and this occurs only on the real axis
¥ =0, at the usual zeros 0, *m, 27, ... of sing. Similarly, the only zeros

of cos z are the usual zeros of cos z on the real axis (Exercise 2).

Other trigonometric and hyperbolic functions are defined by the usual
formulae, such as

sin z sinh z
tanz = ——  tanhy = )
cosh z

cosz’
Thus tan z and tanh 2 are odd functions, and tanh(iz) = itan z.

zeC.

3
Exercises

Vi i i i hich can
The inverse trigonometric functions are multivalued functions, w
he 100 =)

i1
i = that
i ithm function. Suppose w =sin" " z,
d in terms of the logarit
be expresse

5 iw
e p—
sinwy = ———— = 2.

2iw _ 23z — 1 = 0. This is a quadratic equa:tion in e""", whli)ch can
Thenlfred by the usual quadratic formula. The solutions are given by
be 80

eiw = dz++1- 22

Taking logarithms we obtain
sin"lz = ~tlog (z‘z +4/1- z2) )

This identity is to be understood as a set identity, 1;1 thle se(n_se ;haflz w zfzxt-
- if wi —ilog (iz — 22},
i inw = z if and only if w is one of the values o - '
ishes sinw = z if an / AR
i i i t restrict the domain
tain a genuine function, we mus n iy the
rtl;b Ot(:h One way to do this is to draw two branch.cuts, from ﬁo tfo 1lm '
fri)arx:i —I-.l to +o0o along the real axis, and to spec:?y the bra.n;: (; \/z2 z
that is positive on the interval (—1,1). With this branch of v/ ,

. . 0 ] .
obtain a continuous branch —iLog (zz ++4/1—2%) of sin™" z

Exercises for I.8

1. Establish the following addition‘forn}ulae:
(2) cos(z +w) = coszcosw — sin zsinw,
(b} sin(z + w) =sinzcosw -+ cos zsinw,
(¢) cosh(z + w) = cosh zcoshw + sinh z S}nh w,
(d) sinh{z + w) = sinh z coshw + cosh zsinhw,
2. Show that {cos 2|2 = cos®z + sinh®y, where z = z + dy. Find all |
zeros and periods of cos z.

3. Find all zeros and periods of cosh z and sinh 2.

4. Show that

1 1l 141z
tan z=ﬁ08 1-iz/)’

where both sides of the identity are to be interpreted as fszl:;ezfsn?;
ds, show that tanw = 2 1

the complex plane. In other words, ; o

if 23w is one of the values of the logarithm featured on the right

5. Let § denote the two slits along the imaginary axis_in th(? corg;})i)e;c
. plane, one running from i to +ico, the other from —i to —zoa:. Show
that El +iz)/(1 — i2) lies on the negative real axis (—o0,0] i
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6. Describe the Riemann surface for tan=! 2.

I The Complex Plane and Elementary Functioy;

only if z € §. Show that the principal branch

_ 1 144z
Tan™'z = — 1o
2 3 1—iz

maps the slit plane C\S one-to-one onto the vertical stri

iy p {{Rew| <

7. Set w = cosz and ¢ = e**, Show that ¢ = w + /w? — 1. Show that

cos ly = —ilog {w:h wzhl} ,

where both sides of the identity are to be interpreted as subsets of

the complex plane.

8. Show that the vertical strip |Re(w)] < /2 is mapped by the func- .

tion z(w) = sinw one-to-one o

ol.)tained by taking the principal valu
F:H‘St show that the function 1 - 22 on
tive real axis, so that the principal valu
and continuous on the slit plane, with
between - /2 and /2.

\ nto the complex z- i .
slits {(—oc, —1] and {+1, +00) on the real ax?s.xSig\iraizﬁa“tnzﬁ t'wo :;:
verse function is the branch of sin~!z = i Log (z'z—i- V1 _931213"-

e of the square root. Hint. .
the slit plane omits the nega-
e of the square root is defined °
argument, in the open interval .

Analytic Functions

In this chapter we take up the complex differential calculus. After review-
ing some basic analysis in Section 1, we introduce complex derivatives and
analytic functions in Section 2 and we show that the rules for complex differ-
entiation are the same as the usual rules for differentiation. In Section 3 we
characterize analytic functions in terms of the Cauchy-Riemann equations.
In Sections 4 and 5 we give several applications of the Cauchy-Riemann
equations, to inverses of analytic functions and to harmonic functions. In
Section 6 we discuss conformality, which js a direct consequence of complex
differentiability. We close in Section 7 with a discussion of fractional linear
transformations, which form an important class of analytic functions.

1. Review of Basic Analysis

We begin by reviewing the background material in analysis that will (even-
tually} be called upon, and we say something about the language of formal
mathematics. For the most part, we will not phrase our arguments com-
pletely formally, though any bilingual person will be able to translate easily
to the language of formal mathematics in such a way that our development
becomes completely rigorous.

Since the complex derivative is defined as a limit, we require some back-
ground material on limits and continuity. To be able to define and work
with analytic functions, we also require some basic topological concepts,
including open and closed sets, and domains. The confident reader may
pass directly to the definitions of complex derivative and analytic function
in the next section, and refer back to the material in this section only when
needed.

We begin with the notion of a convergent sequence. For this we have
two definitions.

Informal Definition. A sequence {s,} converges to s if the sequence
eventually lies in any disk centered at s.
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