
Midterm Solutions - Math 132/3

14 May 2012

1. (20pts) Compute all values of the following complex powers: (a) (1+ i)1/4,
(b) ii, (c) 31/5, (d) (1 + i)1+i.

Solution 1a) (1 + i)1/4 takes on the values 21/8eiπ/16eiπk/2 for k = 0, 1, 2,
or 3, where 21/8 is the real 8th root of 2.

1b) ii takes on the values e−π/2−2πk where k ∈ Z.
1c) 31/5 takes on the values 31/5ei2kπ/5 for k = 0, 1, 2, 3 or 4, where 31/5 in

this answer is the real 5th root of 3.

1d) (1 + i)1+i takes on the values (1 + i)ei
log 2
2 e−π/4−2πk where k ∈ Z

2. (20pts) Verify that the following functions are harmonic and compute
their harmonic conjugates on the given domains: (a) u(x, y) = y

x2+y2
on

C− {0}, (b) u(x, y) = ex(x cosx− y cos y) on C.

Solution 2a) x
x2+y2

2b) ex(x sin y + y cos y)

3. (20pts) We showed in class that linear fractional transformations are
3-transitive. That is, for any 2 sets of 3 distinct points in P1 = C ∪ {∞}, say
{x0, x1, x2} and {y0, y1, y2}, there is a linear fractional transformation f(z) =

1



2

az+b
cz+d

such that f(xi) = yi for i = 0, 1, 2. Are linear fractional transformations
4-transitive? That is, given 2 sets of 4 distinct points {x0, x1, x2, x3} and
{y0, y1, y2, y3}, is there a linear fractional transformation f(z) such that
f(xi) = yi for i = 0, 1, 2, 3? If yes, prove it. If no, provide a counterexample
with proof.

Solution Möbius transformations are not 4-transitive. There are many
ways to show this; we give one. There is no fractional linear transformation
taking the points 1, 2, 3, and 4 respectively to 1, 2, 3, and i. For a fractional
linear transformation takes lines to either lines or circles, and therefore, if
such a fractional linear transformation existed, it would take the line passing
through 1, 2, 3 to a line or circle passing through 1, 2, 3 – and of course this
is just same line as before, comprised of real complex numbers. But then
4 must be taken to a point on this same lane, but i does not lie on this
line. (Alternatively, with some calculation, one can easily show that the only
map taking 1, 2, 3 to 1, 2, 3 is z 7→ z, which of course does not take 4 to i.)
Hence there does not exists such a fractional linear transformation, and the
collection of fractional linear transformations is not 4-transitive.

4. (10pts) Determine the linear fractional transformation f = az+b
cz+d

that
satisfies f(0) = 1, f(1) = 5, and f(∞) = 3.

Solution Most everyone got

f(z) =
6z − 1

2z − 1
=
−6z + 1

−2z + 1
=

3z − 1
2

z − 1
2

.

5. (20pts) Compute the following line integrals: (a)
∫
γ
xdy, where γ is the

semicircle in the upper half-plane from R to −R and R is a positive real
number, (b)

∫
γ
xy4dx where γ is the right half of the circle |z| = 4, in the

counterclockwise direction.

Solution There are two natural ways to do this problem. First, you can
parameterize the curves and compute from the definitions. Second, you can
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apply Green’s theorem. However, note that Green’s theorem applies only
to closed curves; neither curve appearing in this problem is closed. If you
lost points on the problem, it is most likely because you didn’t take this into
account.

Here is the correct way to apply Green’s theorem in part (a). Let σ be the
path from −R to R on the x-axis. Let D be the interior of the upper-half disk
of radius R. The boundary of D is γ followed by σ. So, by Green’s theorem,∫

γ

x dy +

∫
σ

x dy =

∫
∂D

x dy =

∫ ∫
D

dx dy.

Now, observe that
∫
σ
x dy = 0 because y is constant on the path so that

dy = 0. Parameterizing the half disk by x = r cos θ and y = r sin θ for
0 ≤ r ≤ R and 0 ≤ θ ≤ π, we get dx dy = r dr dθ, and we compute∫

γ

x dy =

∫ ∫
D

dx dy =

∫ π

0

∫ R

0

r dr dθ =

∫ π

0

R2/2 dθ = πR2/2.

Completing part (b) with Green’s theorem involves similar reasoning.
To do it by parameterizing the path, let x = 4 cos θ and y = 4 sin θ, where
−π/2 ≤ θ ≤ π/2. Then,∫

γ

xy4 dx =

∫ π/2

−π/2
(4 cos θ)(4 sin θ)4(−4 sin θ dθ)

= −46

∫ π/2

−π/2
cos θ sin5 θ dθ

= −46

(
sin6 θ

6

)
|π/2−π/2

= −46

(
16

6
− (−1)6

6

)
= 0.

6. (20pts) Show that if f = u+ iv and f = u− iv are both analytic, where
u and v are real-valued functions, then f is a constant function.
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Solution Recall my e-mail correcting this problem:

In problem 6, ignore f. Suppose that u(x,y) and v(x,y)

are real-valued function such that u+iv and u-iv are both

analytic. Then, u(x,y) and v(x,y) are constant.

In the language of that problem, it is assuming that f(z)

and the complex conjugate of f(z) are both analytic. Then,

show that f(z) is constant.

Let f = u + iv and let f = u − iv be the complex conjugate. The
Cauchy-Riemann equations for f and f say that

f :

{
∂u
∂x

= ∂v
∂y

∂u
∂y

= −partialv
∂x

f :

{
∂u
∂x

= ∂(−v)
∂y

∂u
∂y

= −∂(−v)
∂x

Together, these imply that

∂u

∂x
=
∂v

∂y
= −∂v

∂y
∂u

∂y
= −∂v

∂x
=
∂v

∂x
,

and hence that ∂u
∂x

= ∂u
∂y

= 0. Similarly, ∂u
∂x

= ∂u
∂y

= 0. Since u and v are
differentiable, this implies that u and v are both constant functions, and
hence so is f .

7. (30pts) A polynomial P (x, y) is called harmonic if it satisfies Laplace’s
equation. Determine all harmonic polynomials of the form P (x, y) = ax3 +
bx2y+ cxy2 + dy3, and find their harmonic conjugates. Show that a harmonic
polynomial has a harmonic conjugate on C, and that any such harmonic
conjugate is a harmonic polynomial in x and y. Then, show that for any
harmonic conjugate Q(x, y) of P (x, y), the analytic function f(x + iy) =
P (x, y) + iQ(x, y) is a complex polynomial in z.
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Solution The computational part of this problem, to which we just supply
the answer, is that a polynomial P (x, y) = ax3+bx2y+cxy2+dy3 is harmonic
iff c = −3a and b = −3d, and that in this case the harmonic conjugate is
Q(x, y) = dx3 + 3ax2y − 3dxy2 − ay3 + A, for some constant A.

The next component of the problem is to show that for a general harmonic
polynomial, it’s harmonic conjugate is also a polynomial in x and y.

If P (x, y) =
∑

j,k≤N ajkx
jyk harmonic, then it’s harmonic conjugate Q is

given up to a constant by a path integral

Q(x0, y0) =

∫ (x0,y0)

0

−∂u
∂y
dx+

∂u

∂x
dy

=
∑
j,k≤N
k 6=0

−kajk
∫ (x0,y0)

0

xjyk−1dx+
∑
j,k≤N
j 6=0

jajk

∫ (x0,y0)

0

xj−1ykdy

where we have excluded k = 0 and j = 0 from the respective sums because
the coefficients attached to these terms are 0. But clearly these path integrals
produce polynomials in x0, y0, and since a finite sum of polynomials is still a
polynomial, we are done.

In fact, though it’s not necessary to perform the computation, breaking
the path from 0 to (x0, y0) into two, traveling first from 0 to (x0, 0) on a
straight line, and then from (x0, 0) to (x0, y0),∫ (x0,y0)

0

xjyk−1dx =

∫ (x0,0)

0

xjyk−1dx+

∫ (x0,y0)

(x0,0)

xjyk−1dx = 0 + 0

unless k − 1 = 0 in which case this integral is xj+1
0 /(j + 1). Likewise,∫ (x0,y0)

0

xj−1ykdy =

∫ (x0,0)

0

xj−1ykdy +

∫ (x0,y0)

(x0,0)

xj−1ykdy = 0 +
xj−10 yk+1

0

k + 1
,

so we can explicitly compute up to additive constant,

Q(x0, y0) =
∑
j,k≤N
j 6=0

jajk
k + 1

xj−10 yk+1
0 −

∑
j≤N

aj1
j + 1

xj+1
0

[If you took a different path integral, you would get an answer which is symbol-
ically different, but actually the same; P being harmonic forces relationships
between the coefficients ajk.]
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The problem finally asks us to show that for f(x+ iy) = P (x, y)+ iQ(x, y),
f is a polynomial in z. There was some confusion about what this meant;
this means that for some constants αj

f(z) =
∑

αjz
j,

where the sum is finite. In fact, perhaps again because of confusion, no one
showed this for general P and Q, so we graded to see if you had done it for the
cubic P and Q above. In this case, algebra verifies that P (x, y) + iQ(x, y) =
(a+ id)(x+ iy)3 +A, and full credit (5 points) was given for this observation.

It is interesting to see this more generally. We have for general harmonic
P that f as defined above is an analytic function. But then, by the same
process of reasoning that gets us the Cauchy-Riemann equations,

f ′(z) =
∂f

∂x
(x+ iy),

and likewise f (n)(z) = ∂nf
∂xn

(x+ iy).
But because f(x+ iy) is a polynomial in x and y (we don’t know this yet

for z, though!), for some large enough N , f (N)(z) = 0. But then, in effect
integrating, f (N−1)(z) = βN for some constant βN . Repeating the process,
f (N−2)(z) = βNz + βN−1 for some constant βN−1. (Here we are using the
Theorem at the bottom of page 49 of Gamelin which ensures us that having
found one antiderivative, we’ve found all antiderivates up to a constant.)
Repeating this process, we have

f(z) =
N∑
k=0

βk
k!
zk,

where βk are constants. This shows f is a polynomial in z.

8. (30pts) Show that on the punctured unit disk D = {z : 0 < |z| < 1}
there is a non-exact closed differential Pdx+Qdy such that if Sdx+ Tdy is
a closed differential on D, then Sdx+ Tdy = α(Pdx+Qdy) + dh for some
real number α and some function h. Show that on the domain

E = {z : 0 < |z| < 2 and z 6= 0, i}
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there are two closed differentials P0dx + Q0dy and P1dx + Q1dy such that
every non-exact closed differential on D is equal to α(P0dx+Q0dy)+β(P1dx+
Q1dy) + dh for real numbers α and β and some function h. You make take
the first differential to be −ydx+xdy

x2+y2
. (All functions h, Pi, and Qi are assumed

to have continuous second-order partial derivatives.)

Solution This problem is rather difficult, and I gave out very, very little
credit on it. Let’s start by proving the bit about the punctured unit disk
D = {z : 0 < |z| < 1}.

Recall that a differential P dx+Q dy is exact on D if and only if all path
integrals depend only on the endpoints, or, equivalently, if∫

γ

P dx+Q dy = 0

for all closed paths γ on D.
We saw in class that ∫

|z|=1

−y dx + x dy

x2 + y2
= 2π.

It follows that −y dx+x dy
x2+y2

is not exact, and it is trivial to see that it is closed.
Now, suppose that S dx + T dy is any closed differential on D, and let∫

|z|=1

P dx +Q dy = C.

Consider the differential form

ω = P dx +Q dy − C

2π

−y dx + x dy

x2 + y2
.

Then, by construction, we know that ω is closed and∫
|z|=1

ω = 0.

It follows that
∫
γ
ω = 0 for any closed path γ in D, and this shows that

ω = dh for some function h, as desired.
Remark: to make this argument truly precise, one needs to argue that

any closed path in D can be deformed into travelling around the circle |z| = 1
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some integral number n of times. Positive numbers correspond to taking the
path counter-clockwise, and negative numbers correspond to going clockwise.
Similarly, in the next domain, every path can be deformed to some multiple m
of loops around 0 and n loops around i taken in various orders. For instance,
go around 0 clockwise 10 times, then go around i counterclockwise 4 times,
then go around 0 counterclockwise 5 times. So, in the next part, to test for
exactness of a differential form ω, it suffices to check that∫

|z|=.5
ω = 0 =

∫
|z−i|=.5

ω.

What are our 2 differential forms? Let the two differential forms be

P0 dx +Q0 dy =
−y dx + x dy

x2 + y2

P1 dx +Q1 dy =
−(y − 1) dx + x dy

x2 + (y − 1)2
.

Then, it is easy to check that both are closed, and neither is exact. We
have ∫

|z|=.5

−y dx + x dy

x2 + y2
= 2π =

∫
|z−i|=.5

−(y − 1) dx + x dy

x2 + (y − 1)2
,∫

|z−i|=.5

−y dx + x dy

x2 + y2
= 0 =

∫
|z|=.5

−(y − 1) dx + x dy

x2 + (y − 1)2

Let S dx + T dy be an arbitrary closed differential form, and define numbers
C and D by ∫

|z|=.5
S dx + T dy = C,∫

|z−i|=.5
S dx + T dy = D.

Let

ω = S dx + T dy − C

2π

−y dx + x dy

x2 + y2
− D

2π

−(y − 1) dx + x dy

x2 + (y − 1)2
.

Then, by construction, ∫
|z|=.5

ω = 0 =

∫
|z−i|=.5

ω.

Thus, as remarked above,
∫
γ
ω = 0 for any closed path γ in D. Thus, ω = dh

for some function h.


