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1. [Ros80, Exercise 28.2].

2. [Ros80, Exercise 28.3.a].

3. [Ros80, Exercise 28.8]. Let f (x) = x2 when x is rational and f (x) = 0 when x is irrational.
Show that f is continuous and differentiable at x = 0, but not continuous (and, hence, not
differentiable) anywhere else.

4. [Ros80, Exercise 28.15].

5. Show that if f is differentiable on [a, b] and if f ′(x) > 0 on [a, b], then f is strictly increasing.

6. Show that if f is differentiable at x then f is continuous at x.

7. Show that | cos x − cos y| ≤ |x − y| for all x, y ∈ R.

8. Let [a, b] be an interval, and c ∈ (a, b). Suppose that f and g are two continuous functions on
[a, b] such that f is differentiable at c and g is not. Consider the question of whether or not
the product f g is differentiable at c. This is an open-ended problem. You might need to find
counterexamples or prove something.
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