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1. An algebraic number in R is any number that is the solution to an equation of the form

xn + a1xn−1 + · · · + an = 0,

where the ai are rational numbers. Show that the set of algebraic numbers in R is countable.

2. Prove that there exist non-algebraic real numbers.

3. Suppose that f : R→ R is a function such that for each point x ∈ R there exists a δ > 0 such
that if |y − x| < δ, then f (y) ≥ f (x). Show that f takes on only countably many values.

4. Is the set of all irrational numbers countable? Give a proof of your answer.

5. Show that a countable union of countable sets is countable.

6. If S is a set, its power set P(S ) is the set of all subsets of S . For example, P(∅) = {∅}. Show
that S and P(S ) never have the same cardinality.
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