MATH 215 – The Real Numbers (RN)

We will assume the existence of a set \mathbb{R} , whose elements are called real numbers, along with a well-defined binary operation + on \mathbb{R} (called addition), a second well-defined binary operation \cdot on \mathbb{R} (called multiplication), and a relation < on \mathbb{R} (called less than), and that the following fourteen statements involving \mathbb{R} , +, \cdot , and < are true:

A1. For all a, b, c in \mathbb{R} , (a + b) + c = a + (b + c).

A2. There exists a unique real number 0 in \mathbb{R} such that a + 0 = 0 + a = a for every real number a.

A3. For every a in \mathbb{R} , there exists a unique real number -a in \mathbb{R} such that a + (-a) = (-a) + a = 0.

A4. For all a, b in \mathbb{R} , a + b = b + a.

M1. For all a, b, c in \mathbb{R} , $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

M2. There exists a unique real number 1 in \mathbb{R} such that $a \cdot 1 = 1 \cdot a = a$ for all a in \mathbb{R} .

M3. For all non-zero a in \mathbb{R} , there exists a unique real number a^{-1} in \mathbb{R} such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$.

M4. For all a, b in \mathbb{R} , $a \cdot b = b \cdot a$.

D1. For all a, b, c in \mathbb{R} , $a \cdot (b+c) = a \cdot b + a \cdot c$.

NT1. $1 \neq 0$.

O1. For all a in \mathbb{R} , exactly one of the following statements is true: 0 < a, a = 0, 0 < -a.

O2. For all a, b in \mathbb{R} , if 0 < a and 0 < b, then 0 < a + b.

O3. For all a, b in \mathbb{R} , if 0 < a and 0 < b, then $0 < a \cdot b$.

C1. A completeness axiom. (to be introduced in a later course)

Remark 1 Our assumption that the operations addition and multiplication are **well-defined** means that the following statements involving equality and operations of addition and multiplication, respectively, are true, even though we haven't stated them as axioms: E1. For all a, b, c, d in \mathbb{R} , if a = b and c = d, then a + c = b + d.

E2. For all a, b, c, d in \mathbb{R} , if a = b and c = d, then $a \cdot c = b \cdot d$.

Notation 2 We will use the common notation ab to denote $a \cdot b$.

Notation 3 We will also use the notation a > b (greater than) to denote b < a (less than).

Proposition 4 For every a in \mathbb{R} , $a \cdot 0 = 0$.

Proposition 5 Let a, b be real numbers. If ab = 0, then a = 0 or b = 0.

Proposition 6 0 has no multiplicative inverse. In other words, there is no real number a such that $a \cdot 0 = 1$.

Proposition 7 For all a, b, c in \mathbb{R} , if a + b = a + c, then b = c.

Proposition 8 For all a, b, c in \mathbb{R} , if $a \neq 0$ and ab = ac, then b = c.

Proposition 9 For every a in \mathbb{R} , -(-a) = a.

Proposition 10 For all real numbers a and b, (-a)b = -(ab).

Proposition 11 For all real numbers a and b, (-a)(-b) = ab.

Proposition 12 (-1)(-1) = (1)(1) = 1.

Proposition 13 0 < 1.

Proposition 14 For all real numbers a and b, if $a \neq 0$ and $b \neq 0$, then $(ab)^{-1} = a^{-1}b^{-1}$.