
Rational Homotopy Theory - Lecture 2

BENJAMIN ANTIEAU

This lecture contains brief mentions of four additional applications of rational homotopy
as well as a brief recollection of homotopy theory.

1. Geodesics

Conjecture 1.1. Let M be a closed Riemannian manifold of dimension at least 2. Then,
there are infinitely many closed geodesics on M .

Here a geodesic is closed if it is closed as a 1-manifold, so it’s a loop in M . Two geodesics
are considered distinct if they trace out different subsets of M .

Note that it is a non-trivial theorem, due to Lyusternik and Fet from 1951 that any closed
Riemannian manifold M has at least 1 closed geodesic. When π1(M) 6= 0, any non-zero
homotopy class 0 6= [γ] ∈ π1(M) is represented by a closed geodesic. This is proved by
minimizing the length functional ` : ΛM → R, where ΛM is the space of smooth maps
S1 →M . The functional is given by

`(γ) =

∫
S1

〈γ′, γ′〉ds,

where γ is a differentiable loop in M and the brackets are those of the Riemannian metric.
This functional turns out to behave like a Morse function, even though ΛM is an infinite-
dimensional manifold. Nevertheless, its properties are good enough for the following theorem.

Theorem 1.2 (Gromoll-Meyer [6]). If M is a 1-connected closed Riemannian manifold
having only finitely many closed geodesics, then the Betti numbers βi(ΛM) = dimQ Hi(ΛM,Q)
are bounded: there exists an integer N such that βi(ΛM) ≤ N for all i.

Corollary 1.3. If the Betti numbers of ΛM are not bounded, then M has infinitely many
closed geodesics.

In many cases it is possible to check directly using spectral sequences that the Betti
numbers of ΛM are unbounded. The next theorem does better and uses the computational
power of rational homotopy theory, as we will see later in the course.

Theorem 1.4 (Sullivan, Vigué-Poirrier [7]). If M is a 1-connected CW complex (such as a
1-connected closed manifold), and if H∗(M,Q) requires at least 2 generators as a Q-algebra,
then the Betti numbers βi(ΛM) are unbounded.

Corollary 1.5. If M is a losed Riemannian manifold with π1(M) finite and such that
H∗(M,Q) requires at least 2 generators as a Q-algebra, then there are infinitely many closed
geodesics on M .

Remarkably, the hypothesis on the Q-cohomology of M does not depend on the chosen
Riemannian metric on M ! The main cases where the corollary does not apply are for spheres
Sn and complex projective spaces CPn. At present, the existence of infinitely many closed
geodesics on these spaces is unknown. It is a result of Bangert [2] from 1993 that there are
infinitely many closed geodesics on any Riemannian structure on S2. Interestingly, it had
been known for many years that any such 2-sphere had at least 3 closed geodesics, which
had been a conjecture of Poincaré from 1905.
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2. Local complete intersections

There are two results of interest for the moment. Recall that a map R→ S of commutative
rings is smoothable if it can be factored as R → Q → S where Q is smooth over R and
Q → S is surjective. At the level of affine schemes, this says that SpecS can be realized
as a closed subscheme of the smooth R-scheme SpecQ. A smoothable morphism is a
local complete intersection morphism (lci for short) if for some (and it turns out any)

smoothing R→ Q
h−→ S as above, the following condition is satisfied: for each prime ideal p

of S, the kernel of Qp′ → Pp is generated by a p′-regular sequence, where p′ = h−1(p).
Recall that in a commutative ring Q, given a prime q, a sequence of elements f1, . . . , fc ∈ q

is q-regular if for 2 ≤ i ≤ c, the image of fi in Q/(f1, . . . , fi−1) is not a zero-divisor. Hence,
the standard example of a local complete intersection over a field k, for example, looks locally
like k[x1, . . . , xn]/(f1, . . . , fc) where the fi form a regular sequence.

Local complete intersection morphisms have many nice properties as outlined by the two
theorems below, both proved using methods in rational homotopy theory.

Theorem 2.1 (Avramov-Halperin [1]). If f : R→ S is a smoothable morphism of commu-
tative Q-algebras such that S has finite Tor-dimension over R, then the cotangent complex
Lf is of bounded Tor-amplitude if and only if f is a lci morphism.

The proof goes by using rational homotopy theory to study the ‘fiber’ of f . The next
theorem is about the growth of resolutions. Let R be a noetherian commutative local
k-algebra for some field k containing Q such that R/m ∼= k.

Theorem 2.2 (Félix-Thomas [5]). Suppose that R is a Noetherian graded-commutative
k-algebra where k is a field containing Q, and suppose that R0 = k. Then, the radius of
convergence of

PR(z) =

∞∑
i=0

dimk TorRi (k, k)zi

is

(1) +∞ if and only if R is a polynomial algebra,
(2) 1 if and only if R is a lci,
(3) < 1 if and only if R is not a lci.

3. The elliptic-hyperbolic dichotomy

Definition 3.1. A simply connected n-dimensional finite CW complex is elliptic if πk(X)Q =
0 for k ≥ 2n. A finite CW complex is hyperbolic if the ranks of the vector spaces πk(X)Q
grow exponentially.

Theorem 3.2. A simply connected finite CW complex is either elliptic or hyperbolic.

A reference for this theorem is the book of Félix-Halperin-Thomas [4].

4. A brief recollection of homotopy theory

Two maps f, g : X → Y are homotopic (or sometimes homotopy equivalent) if there
is another map h : X × I1 → Y such that h|X×{0} = f and h|X×{1} = g. In this case, h is a
homotopy from f to g, and we write f ' g if f and g are homotopic. It is easy to check
that homotopy is an equivalence relation on the set of maps from X to Y , and we write
[X,Y ] for the set of homotopy classes of maps from X to Y .

Two spaces X and Y are homotopy equivalent if there exist maps f : X � Y : g
such that g ◦ f ' 1X and f ◦ g ' 1Y . In this case we write simply X ' Y . A space X is
contractible if X ' ∗.

There are pointed versions of these notions, where each ht = h|X×{t} is required to be
a pointed map. The set of homotopy classes of pointed maps from (X,x) to (Y, y) will be
denoted by [(X,x), (Y, y)]∗, or [X,Y ]∗ when the basepoints are implicit.
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If (X,x) is a pointed space, the homotopy groups are πn(X,x) = [(Sn, s), (X,x)]∗, where
for concreteness we let Sn = {(x0, . . . , xn) ∈ Rn+1|

∑
x2i = 1}, and s = (1, 0, . . . , 0). Here

are some basic facts about these objects.

(1) The set π0(X,x) is viewd as a pointed set. It is the pointed set of path-components
of X, pointed by the component containing x.

(2) The set πn(X,x) is naturally a group for n ≥ 1, and it is abelian if n ≥ 2.
(3) The set πn(X,x) does not depend on x if X is path-connected.
(4) The homotopy groups are functorial in pointed spaces and take pointed homotopy

equivalences to isomorphisms.

Example 4.1. (1) πk(Sn) = 0 for 0 ≤ k < n.
(2) πn(Sn) ∼= Z for n ≥ 1.
(3) The groups πk(Sn) when k > n are notoriously difficult to compute.

A map f : X → Y is a weak homotopy equivalence if for all x ∈ X the induced map
πn(f) : πn(X,x)→ πn(Y, f(x)) is a bijection for all n ≥ 0.

Exercise 4.2. Show that every homotopy equivalence is a weak homotopy equivalence.

It is not the case that the converse is true. For example, there exist non-contractible spaces
whose homotopy groups vanish identically. These are pathologies and won’t be important in
this course.

The topological spaces that interest us the most are those that are homotopy equivalent
to CW complexes, and hence can be thought of as being built out simple cells. This process
is akin to choosing a projective resolution of a module and makes computations much easier.

Let A be a topological space, and let f : Sn−1 → A be a map. The pushout X = A∪f Dn,
or X = A ∪Sn−2 Dn, is said to be obtained by attaching a cell (Dn → X) to A via the
attaching map f . Note that the pushout is obtained as the quotient of A

∐
Dn by the

equivalence relation x ∼ f(x) when x ∈ Sn−1 ⊆ Dn and f(x) ∈ A.

Example 4.3. If A = ∗ and f : Sn−1 → ∗, the pushout is Sn. A different approach is
to start with Sn−1 and attach two cells Dn

+ and Dn
− to Sn−1, both via the identity map

Sn−1 → Sn−1. The result is Sn where each new cell is a hemisphere.

Exercise 4.4. Find an attaching map S3 → S2 such that the pushout is homeomorphic to
CP2.

The next definition is one of the most important.

Definition 4.5. A CW structure on a space X consists of a sequence X0 ⊆ X1 ⊆ X2 ⊆
· · · ⊆ X of closed subspaces such that

(i) X0 is a set of closed points of X,
(ii) Xn is obtained from Xn−1 by attaching cells Dn

α along a set of attaching maps
{φα : Sn−1 → Xn−1}α∈A, and

(iii) the induced map ∪nXn → X is a homeomorphism.

In particular, the topology on X is the topology where a set U ⊆ X is open if and only if
U ∩Xn is open for all n ≥ 0. The subspace Xn is called the n-skeleton of X, although it
should be noted that this is not a homotopy invariant notion, as the example above shows.
Rather, it depends on the choice of cell structure.

In practice, all spaces of interest that seem to come up either themselves admit CW
structures or are homotopy equivalent (not just weakly homotopy equivalent) to spaces that
do.
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