Rational Homotopy Theory - Lecture 6

BENJAMIN ANTIEAU

1. Minimal models

Theorem 1.1. Let A be a coconnected k-cdga. There exists a minimal k-cdga M and a quasi-isomorphism $M \to A$.

Proof. We let M(0) = k, which maps canonically to A. We will construct M(n,q) inductively, for $n \ge 1$ and $q \ge 0$. We set M(1,0) = M(0) = k. Suppose that we have constructed $f = f(n,q) : M(n,q) \to A$, which induces isomorphisms $\operatorname{H}^m(M(n,q)) \stackrel{\sim}{\to} \operatorname{H}^m(A)$ for $0 \le m < n$ and an injection $\operatorname{H}^n(M(n,q)) \to \operatorname{H}^n(A)$. Choose cocycles $g_i \in A^n$ whose images in $\operatorname{H}^n(A)$ map to a basis for the cokernel of $\operatorname{H}^n(M(n,q)) \to \operatorname{H}^n(A)$. Let $h_j \in M(n,q)^{n+1}$ be cocycles whose images in $\operatorname{H}^{n+1}(M(n,q))$ generate the kernel of $\operatorname{H}^{n+1}(M(n,q)) \to \operatorname{H}^{n+1}(A)$. Finally, let $c_j \in A^n$ satisfy $d(c_j) = f(h_j)$.

Let $M(n, q+1) = M(n, q) \otimes_k \Lambda_n(x_i) \otimes_d \Lambda_n(y_j)$, where $d(y_j) = h_j$. There is an obvious map $f(n, q+1) \to M(n, q+1)$ given by sending x_i to g_i and y_j to c_j . It is easy to see that $H^m(M(n, q)) \cong H^m(M, q+1)$ for $0 \le m < n$, while $H^n(M(n, q)) \to H^n(M(n, q+1)) \to H^n(A)$ are injections.

Let $M(n) = \bigcup_{q \geq 0} M(n,q)$. There is a natural map $f(n): M(n) \to A$ from commutativity, and clearly the induced map $H^m(M(n)) \to H^m(A)$ is an isomorphism for $0 \leq m \leq n$ and an injection for m = n + 1. Specifically, we have that

$$\mathrm{H}^{n+1}(M(n))=\operatorname*{colim}_{q}\mathrm{H}^{n+1}(M(n,q))\rightarrow\mathrm{H}^{n+1}(A).$$

Any element $x \in H^{n+1}(M(n))$ is in the image of $x' \in H^{n+1}(M(n,q))$ for some q. If x (and hence x') maps to zero in $H^{n+1}(A)$, x' maps to zero in $H^{n+1}(M(n,q+1))$.

Finally, let $M = \bigcup_{n \geq 0} M(n)$. The natural map $f: M \to A$ is a quasi-isomorphism by construction.

We will call M a **minimal model** for A. That is, a minimal model for a connected k-cdga is a minimal k-cdga M together with a fixed quasi-isomorphism $f: M \to A$. The theorem proves that every connected k-cdga has a minimal model.

Remark 1.2. Note how the process would be much easier if $H^1(M) = 0$.

Exercise 1.3. I don't see an easy way to prove the following, and we will prove it later using the homotopy theory of k-cdgas. However, you might want to give it a try. Let $f: M \to N$ be a quasi-isomorphism of *minimal* k-cdgas. Prove that f is an isomorphism.

Exercise 1.4. Show that a minimal model for $A_{dR}(S^n)$ has d=0 if and only if $n \ge 1$ is odd.

To get a sense for why the proof is a little subtle, we considered the problem of running the proof to find a k-cdga for the graded-commutative ring

$$A = (\Lambda_1(x) \otimes_k \Lambda_3(y)) / (xy),$$

viewed as a cdga with d=0. The first step is M(1,0)=k, and the next is $M(1,1)=\Lambda_1(s)$ with $M(1,1)\to A$ given by sending s to x. This is already surjective on degree 1 cohomology, and it is injective on degree 2 cohomology. So, M(1,q)=M(1,1) for $q\geq 1$. Additionally, M(2,q)=M(1,1) for all $q\geq 0$, and hence M(3,0)=M(1,1).

Date: 28 January 2016.

The next step is to adjoint a class t that will map to y. So, set $M(3,1) = \Lambda_1(s) \otimes_k \Lambda_3(t) = M(1,1) \otimes_k \Lambda_3(t)$, where d(t) = 0. The map $M(3,1) \to A$ sends t to y. This has the property that it is an isomorphism up to degree 3 cohomology. However, the map on degree 4 cohomology is not injective, as the class represented by st maps to zero in A.

So, we set $M(3,2) = M(3,1) \otimes_d \Lambda_3(u)$, where d(u) = st, and let $M(3,2) \to A$ be defined by sending u to 0. This algebra solves the problem of the non-injectivity on H^4 owing to st, but it creates a new problem: both su and tu represent cohomology classes (in H^4 and H^6 , respectively) that now go to 0 in A. So, we must let $M(3,3) = M(3,2) \otimes_d \Lambda_3(v)$, where d(v) = su. This solves the su problem but creates an sv problem.

Exercise 1.5. Show that the $M(3,q) \neq M(3,q+1)$ for any q.

So, we see that the method of the proof is required and might involve infinitely given steps in any given degree.

Exercise 1.6. Consider the orientable manifold $S^1 \times S^3$. What is its \mathbb{R} -cohomology ring? Is is possible to find another manifold M with a map to $S^1 \times S^3$ such that $H^*(M, \mathbb{R})$ is isomorphic to $A = (\Lambda_1(x) \otimes_k \Lambda_3(y))/(xy)$? If so, give an example. If not, say why not, and give an example of a CW complex with this property if possible.

2. Indecoposables and generators of a minimal CDGA

Lemma 2.1. Let M be a minimal k-cdga. Then, as a graded-commutative k-algebra, M is isomorphic to the free algebra on $\pi^*M \cong \mathbb{Q}^*M$.

Proof. Pick representatives x_i in M of a homogeneous basis for Q^*M . There is an induced map from the graded-commutative algebra F generated freely by the x_i to M. It is surjective by the definition of Q^*M . However, it is injective because M is free as a graded-commutative algebra and $Q^*F \to Q^*M$ is an isomorphism.

References

- L. Avramov and S. Halperin, On the nonvanishing of cotangent cohomology, Comment. Math. Helv. 62 (1987), no. 2, 169–184.
- [2] V. Bangert, On the existence of closed geodesics on two-spheres, Internat. J. Math. 4 (1993), no. 1, 1–10.
- [3] A. K. Bousfield and V. K. A. M. Gugenheim, On PL de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976), no. 179, ix+94.
- [4] P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245–274.
- [5] Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001.
- [6] Y. Félix and J.-C. Thomas, The radius of convergence of Poincaré series of loop spaces, Invent. Math. 68 (1982), no. 2, 257–274.
- [7] D. Gromoll and W. Meyer, Periodic geodesics on compact riemannian manifolds, J. Differential Geometry 3 (1969), 493–510.
- [8] D. Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295.
- [9] M. Vigué-Poirrier and D. Sullivan, The homology theory of the closed geodesic problem, J. Differential Geometry 11 (1976), no. 4, 633-644.
- [10] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994.