
Rational Homotopy Theory - Lecture 6

BENJAMIN ANTIEAU

1. Minimal models

Theorem 1.1. Let A be a coconnected k-cdga. There exists a minimal k-cdga M and a
quasi-isomorphism M → A.

Proof. We let M(0) = k, which maps canonically to A. We will construct M(n, q) inductively,
for n ≥ 1 and q ≥ 0. We set M(1, 0) = M(0) = k. Suppose that we have constructed

f = f(n, q) : M(n, q) → A, which induces isomorphisms Hm(M(n, q))
'→ Hm(A) for

0 ≤ m < n and an injection Hn(M(n, q))→ Hn(A). Choose cocycles gi ∈ An whose images
in Hn(A) map to a basis for the cokernel of Hn(M(n, q))→ Hn(A). Let hj ∈M(n, q)n+1 be
cocycles whose images in Hn+1(M(n, q)) generate the kernel of Hn+1(M(n, q))→ Hn+1(A).
Finally, let cj ∈ An satisfy d(cj) = f(hj).

Let M(n, q + 1) = M(n, q)⊗k Λn(xi)⊗d Λn(yj), where d(yj) = hj . There is an obvious
map f(n, q + 1)→M(n, q + 1) given by sending xi to gi and yj to cj . It is easy to see that
Hm(M(n, q)) ∼= Hm(M, q+1) for 0 ≤ m < n, while Hn(M(n, q))→ Hn(M(n, q+1))→ Hn(A)
are injections.

Let M(n) = ∪q≥0M(n, q). There is a natural map f(n) : M(n)→ A from commutativity,
and clearly the induced map Hm(M(n))→ Hm(A) is an isomorphism for 0 ≤ m ≤ n and an
injection for m = n+ 1. Specifically, we have that

Hn+1(M(n)) = colim
q

Hn+1(M(n, q))→ Hn+1(A).

Any element x ∈ Hn+1(M(n)) is in the image of x′ ∈ Hn+1(M(n, q)) for some q. If x (and
hence x′) maps to zero in Hn+1(A), x′ maps to zero in Hn+1(M(n, q + 1)).

Finally, let M = ∪n≥0M(n). The natural map f : M → A is a quasi-isomorphism by
construction. �

We will call M a minimal model for A. That is, a minimal model for a connected
k-cdga is a minimal k-cdga M together with a fixed quasi-isomorphism f : M → A. The
theorem proves that every connected k-cdga has a minimal model.

Remark 1.2. Note how the process would be much easier if H1(M) = 0.

Exercise 1.3. I don’t see an easy way to prove the following, and we will prove it later using
the homotopy theory of k-cdgas. However, you might want to give it a try. Let f : M → N
be a quasi-isomorphism of minimal k-cdgas. Prove that f is an isomorphism.

Exercise 1.4. Show that a minimal model for AdR(Sn) has d = 0 if and only if n ≥ 1 is
odd.

To get a sense for why the proof is a little subtle, we considered the problem of running
the proof to find a k-cdga for the graded-commutative ring

A = (Λ1(x)⊗k Λ3(y)) /(xy),

viewed as a cdga with d = 0. The first step is M(1, 0) = k, and the next is M(1, 1) = Λ1(s)
with M(1, 1)→ A given by sending s to x. This is already surjective on degree 1 cohomology,
and it is injective on degree 2 cohomology. So, M(1, q) = M(1, 1) for q ≥ 1. Additionally,
M(2, q) = M(1, 1) for all q ≥ 0, and hence M(3, 0) = M(1, 1).
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The next step is to adjoint a class t that will map to y. So, set M(3, 1) = Λ1(s)⊗k Λ3(t) =
M(1, 1) ⊗k Λ3(t), where d(t) = 0. The map M(3, 1) → A sends t to y. This has the
property that it is an isomorphism up to degree 3 cohomology. However, the map on degree
4 cohomology is not injective, as the class represented by st maps to zero in A.

So, we set M(3, 2) = M(3, 1)⊗d Λ3(u), where d(u) = st, and let M(3, 2)→ A be defined
by sending u to 0. This algebra solves the problem of the non-injectivity on H4 owing to
st, but it creates a new problem: both su and tu represent cohomology classes (in H4 and
H6, respectively) that now go to 0 in A. So, we must let M(3, 3) = M(3, 2)⊗d Λ3(v), where
d(v) = su. This solves the su problem but creates an sv problem.

Exercise 1.5. Show that the M(3, q) 6= M(3, q + 1) for any q.

So, we see that the method of the proof is required and might involve infinitely given
steps in any given degree.

Exercise 1.6. Consider the orientable manifold S1 × S3. What is its R-cohomology ring?
Is is possible to find another manifold M with a map to S1 × S3 such that H∗(M,R) is
isomorphic to A = (Λ1(x)⊗k Λ3(y)) /(xy)? If so, give an example. If not, say why not, and
give an example of a CW complex with this property if possible.

2. Indecoposables and generators of a minimal cdga

Lemma 2.1. Let M be a minimal k-cdga. Then, as a graded-commutative k-algebra, M is
isomorphic to the free algebra on π∗M ∼= Q∗M .

Proof. Pick representatives xi in M of a homogeneous basis for Q∗M . There is an induced
map from the graded-commutative algebra F generated freely by the xi to M . It is surjective
by the definition of Q∗M . However, it is injective because M is free as a graded-commutative
algebra and Q∗F → Q∗M is an isomorphism. �
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