
Rational Homotopy Theory - Lecture 12

BENJAMIN ANTIEAU

1. Geometric realization of simplicial sets

Let X• be a simplicial set. There is a space |X•| naturally associated to X• called the
geometric realization of X. It is given as follows. First, there is a high-brow way of
defining it. Let

|X| = colim
∆n→X

∆n
top.

This is a Kan extension. Indeed, let Simplex ⊆ sSets be the full subcategory consisting of
the objects ∆n for n ≥ 0. Let | − | : Simplex→ Top be the natural functor that takes ∆n to
∆n

top. (The category sSets/X is called the simplex category of X.) Then,

| − | : sSets→ Top

is the left Kan extension, making the following diagram commute:

Simplex
|−|

//

��

Top

sSets

|−|
::

.

A more down-to-earth description of the geometric realization is as a quotient

|X| =

∐
n≥0

Xn ×∆n
top

 / ∼,

where (s, f(x)) ∼ (f∗(s), x) for any map f : [m]→ [n], any point x ∈ ∆m
top and any simplex

s ∈ Xn.

Exercise 1.1. Recall that a simplex s ∈ Xn is degenerate if s = σi(t) for some t ∈ Xn−1

and some i. Let Xess
n ⊆ Xn be the set of non-degenerate n-simplices. Show that the natural

map ∐
n≥0

Xess
n ×∆n

top

 / ∼′→ |X|

is a weak homotopy equivalence, where ∼′ is the restriction of ∼ to the non-degenerate
simplices.

In any case, we have the following crucial result.

Proposition 1.2. The functors | − | and Sing are left and right adjoint, respectively:

| − | : sSets � Top : Sing.

Moreover, though we won’t prove this, geometric functors canonically through the subcat-
egory of CW complexes and cellular maps.

Definition 1.3. For any m ≥ 0, we let skmX be the subsimplicial complex generated by
the simplices of dimension at most m. Hence, (skmX)n = Xn if n ≤ m, and all simplices in
dimensions more than m are degenerate.
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Example 1.4. Let ∂∆n ⊆ ∆n be skn−1∆n for n ≥ 1. By convention, ∂∆0 is decreed to be
empty. Prove that |∂∆n| has the weak homotopy type of Sn−1. We call ∂∆n the boundary
of the n-simplex.

Example 1.5. Another important class of simplicial sets are the horns. For each n ≥ 1
and each 0 ≤ i ≤ n, we let Λn

i ⊆ ∆n be the largest sub-simplicial set not containing ∂i(ιn),
where ιn ∈ ∆n

n is the non-degenerate cell classifying the identity [n]→ [n]. The geometric
realization |Λn

i | is contractible for all n and i.

2. Simplicial homology

Given a functor F : Sets→ C and a simplicial set X, the composition F ◦X is a simplicial
object in C. Of particular interest is when we consider R[−] : Sets → ModR, the free
R-module functor for a ring R. Applying this to X, we obtain R[X] a simplicial R-module,
which is moreover free in each degree. We let C(R[X]) be the associated chain complex.
Here, Cn(R[X]) = R[Xn], and the boundary map dn : Cn(R[X])→ Cn−1(R[X]) is given as

dn =

n∑
i=0

(−1)i∂i.

This is called the homology of X with coefficients in R, and we’ll write the homology groups
as Hn(X,R).

Lemma 2.1. If X is a topological space, then there is a natural isomorphism C(R[Sing(X)]) ∼=
C(X,R), where C(X,R) is the usual singular chain complex computing R-homology.

3. Model category structure

We equip the category of simplicial sets with a model category structure. Let W be the
class of weak homotopy equivalences, i.e., maps X → Y of simplicial sets such that |X| → |Y |
is a weak homotopy equivalence. Let C be the class of level-wise injections. Finally, let F be
the class of Kan fibrations. A Kan fibration is a map E → B of simplicial sets satisfying
the right lifting property with respect to all inclusions of horns Λn

i ⊆ ∆n. Thus, if E → B is
a fibration, we can always find a dotted lift in the solid diagram

Λn
i

//

��

E

��

∆n //

==

B.

Theorem 3.1. With these classes of morphisms, sSets is a model category.

4. Quillen equivalences

Definition 4.1. Consider a pair of adjoint functors

F : M � N : G

between model categories M and N . The pair is called a Quillen pair, or a a pair of Quillen
functors, if one of the following equivalent conditions is satisfied:

• F preserves cofibrations and acyclic cofibrations;
• G preserves fibrations and acyclic fibrations.

In this case, F is also called a left Quillen functor, and G a right Quillen functor.

Quillen pairs provide a sufficient framework for a pair of adjoint functors on model
categories to descend to a pair of adjoint functors on the homotopy categories.

Proposition 4.2. Suppose that F : M � N : G is a pair of Quillen functors. Then, there
are functors LF : M → Ho(N) and RG : N → Ho(M), each of which takes weak equivalences
to isomorphisms, such that there is an induced adjunction LF : Ho(M) � Ho(N) : RG
between homotopy categories.
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Proof. See [1, Theorem 9.7]. �

Remark 4.3. The familiar functors from homological algebra all arise in this way, so LF is
called the left derived functor of F , while RG is the right derived functor of G. There is a
recipe for computing the value of the derived functors on an arbitrary object X of M and
Y of N . Specifically, LF (X) is weakly equivalent to F (QX) where QX → X is an acyclic
fibration with QX cofibrant in M . Similarly, RG(Y ) is weakly equivalent to G(RY ) where
Y → RY is an acyclic cofibration with RY fibrant in N .

Definition 4.4. A Quillen equivalence is a Quillen pair F : M � N : G such that
LF : Ho(M) � Ho(N) : RG is an inverse equivalence.

Proposition 4.5. In the situation of the previous proposition, if in addition for every
morphism f : A→ G(X) in M , where A is cofibrant and X is fibrant, the conditions that
f and the adjoint F (A) → X are weak equivalences are equivalent, then LF and RG are
inverse equivalences.

Theorem 4.6. Geometric realization and the singular set functor form a Quillen equivalence
pair.
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