Rational Homotopy Theory - Lecture 12

BENJAMIN ANTIEAU

1. Geometric realization of simplicial sets

Let X_{\bullet} be a simplicial set. There is a space $|X_{\bullet}|$ naturally associated to X_{\bullet} called the **geometric realization** of X. It is given as follows. First, there is a high-brow way of defining it. Let

$$|X| = \operatorname*{colim}_{\Delta^n \to X} \Delta^n_{\mathrm{top}}.$$

This is a Kan extension. Indeed, let Simplex \subseteq sSets be the full subcategory consisting of the objects Δ^n for $n \ge 0$. Let |-|: Simplex \to Top be the natural functor that takes Δ^n to Δ^n_{top} . (The category sSets_{/X} is called the **simplex category** of X.) Then,

$$|-|: sSets \to Top$$

is the left Kan extension, making the following diagram commute:

$$\begin{array}{c}
\text{Simplex} \xrightarrow{|-|} \text{Top} \\
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\
\text{sSets}
\end{array}$$

A more down-to-earth description of the geometric realization is as a quotient

$$|X| = \left(\prod_{n \ge 0} X_n \times \Delta_{\text{top}}^n\right) / \sim,$$

where $(s, f(x)) \sim (f^*(s), x)$ for any map $f : [m] \to [n]$, any point $x \in \Delta_{\text{top}}^m$ and any simplex $s \in X_n$.

Exercise 1.1. Recall that a simplex $s \in X_n$ is **degenerate** if $s = \sigma_i(t)$ for some $t \in X_{n-1}$ and some i. Let $X_n^{\text{ess}} \subseteq X_n$ be the set of non-degenerate n-simplices. Show that the natural map

$$\left(\prod_{n\geq 0} X_n^{\rm ess} \times \Delta_{\rm top}^n\right) / \sim' \to |X|$$

is a weak homotopy equivalence, where \sim' is the restriction of \sim to the non-degenerate simplices.

In any case, we have the following crucial result.

Proposition 1.2. The functors |-| and Sing are left and right adjoint, respectively:

$$|-|: sSets \rightleftharpoons Top: Sing.$$

Moreover, though we won't prove this, geometric functors canonically through the subcategory of CW complexes and cellular maps.

Definition 1.3. For any $m \geq 0$, we let $\operatorname{sk}_m X$ be the subsimplicial complex generated by the simplices of dimension at most m. Hence, $(\operatorname{sk}_m X)_n = X_n$ if $n \leq m$, and all simplices in dimensions more than m are degenerate.

Date: 18 February 2016.

1

Example 1.4. Let $\partial \Delta^n \subseteq \Delta^n$ be $\operatorname{sk}_{n-1}\Delta^n$ for $n \geq 1$. By convention, $\partial \Delta^0$ is decreed to be empty. Prove that $|\partial \Delta^n|$ has the weak homotopy type of S^{n-1} . We call $\partial \Delta^n$ the **boundary** of the n-simplex.

Example 1.5. Another important class of simplicial sets are the **horns**. For each $n \ge 1$ and each $0 \le i \le n$, we let $\Lambda_i^n \subseteq \Delta^n$ be the largest sub-simplicial set not containing $\partial_i(\iota_n)$, where $\iota_n \in \Delta_n^n$ is the non-degenerate cell classifying the identity $[n] \to [n]$. The geometric realization $|\Lambda_i^n|$ is contractible for all n and i.

2. Simplicial homology

Given a functor $F: \operatorname{Sets} \to C$ and a simplicial set X, the composition $F \circ X$ is a simplicial object in C. Of particular interest is when we consider $R[-]: \operatorname{Sets} \to \operatorname{Mod}_R$, the free R-module functor for a ring R. Applying this to X, we obtain R[X] a simplicial R-module, which is moreover free in each degree. We let $\operatorname{C}(R[X])$ be the associated chain complex. Here, $\operatorname{C}_n(R[X]) = R[X_n]$, and the boundary map $d_n: \operatorname{C}_n(R[X]) \to \operatorname{C}_{n-1}(R[X])$ is given as

$$d_n = \sum_{i=0}^n (-1)^i \partial_i.$$

This is called the homology of X with coefficients in R, and we'll write the homology groups as $H_n(X, R)$.

Lemma 2.1. If X is a topological space, then there is a natural isomorphism $C(R[Sing(X)]) \cong C(X,R)$, where C(X,R) is the usual singular chain complex computing R-homology.

3. Model category structure

We equip the category of simplicial sets with a model category structure. Let W be the class of weak homotopy equivalences, i.e., maps $X \to Y$ of simplicial sets such that $|X| \to |Y|$ is a weak homotopy equivalence. Let C be the class of level-wise injections. Finally, let F be the class of Kan fibrations. A **Kan fibration** is a map $E \to B$ of simplicial sets satisfying the right lifting property with respect to all inclusions of horns $\Lambda_i^n \subseteq \Delta^n$. Thus, if $E \to B$ is a fibration, we can always find a dotted lift in the solid diagram

Theorem 3.1. With these classes of morphisms, sSets is a model category.

4. Quillen equivalences

Definition 4.1. Consider a pair of adjoint functors

$$F:M\rightleftarrows N:G$$

between model categories M and N. The pair is called a **Quillen pair**, or a pair of Quillen functors, if one of the following equivalent conditions is satisfied:

- F preserves cofibrations and acyclic cofibrations;
- G preserves fibrations and acyclic fibrations.

In this case, F is also called a **left Quillen functor**, and G a **right Quillen functor**.

Quillen pairs provide a sufficient framework for a pair of adjoint functors on model categories to descend to a pair of adjoint functors on the homotopy categories.

Proposition 4.2. Suppose that $F: M \rightleftharpoons N: G$ is a pair of Quillen functors. Then, there are functors $\mathbf{L}F: M \to \operatorname{Ho}(N)$ and $\mathbf{R}G: N \to \operatorname{Ho}(M)$, each of which takes weak equivalences to isomorphisms, such that there is an induced adjunction $\mathbf{L}F: \operatorname{Ho}(M) \rightleftharpoons \operatorname{Ho}(N): \mathbf{R}G$ between homotopy categories.

Proof. See [1, Theorem 9.7].

Remark 4.3. The familiar functors from homological algebra all arise in this way, so $\mathbf{L}F$ is called the left derived functor of F, while $\mathbf{R}G$ is the right derived functor of G. There is a recipe for computing the value of the derived functors on an arbitrary object X of M and Y of N. Specifically, $\mathbf{L}F(X)$ is weakly equivalent to F(QX) where $QX \to X$ is an acyclic fibration with QX cofibrant in M. Similarly, $\mathbf{R}G(Y)$ is weakly equivalent to G(RY) where $Y \to RY$ is an acyclic cofibration with RY fibrant in N.

Definition 4.4. A **Quillen equivalence** is a Quillen pair $F: M \rightleftharpoons N: G$ such that $\mathbf{L}F: \mathrm{Ho}(M) \rightleftarrows \mathrm{Ho}(N): \mathbf{R}G$ is an inverse equivalence.

Proposition 4.5. In the situation of the previous proposition, if in addition for every morphism $f: A \to G(X)$ in M, where A is cofibrant and X is fibrant, the conditions that f and the adjoint $F(A) \to X$ are weak equivalences are equivalent, then $\mathbf{L}F$ and $\mathbf{R}G$ are inverse equivalences.

Theorem 4.6. Geometric realization and the singular set functor form a Quillen equivalence pair.

References

- [1] W. G. Dwyer and J. Spaliński, *Homotopy theories and model categories*, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73–126.
- [2] P. G. Goerss and J. F. Jardine, Simplicial homotopy theory, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999.
- [3] P. Goerss and K. Schemmerhorn, *Model categories and simplicial methods*, Interactions between homotopy theory and algebra, Contemp. Math., vol. 436, Amer. Math. Soc., Providence, RI, 2007, pp. 3–49.
- [4] D. G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967.
- [5] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994.