
MATH 215 – Final

We will assume the existence of a set Z, whose elements are called integers, along with

a well-defined binary operation + on Z (called addition), a second well-defined binary

operation · on Z (called multiplication), and a relation < on Z (called less than), and

that the following fourteen statements involving Z, +, ·, and < are true:

A1. For all a, b, c in Z, (a + b) + c = a + (b + c).

A2. There exists a unique integer 0 in Z such that a+ 0 = 0 + a = a for every integer a.

A3. For every a in Z, there exists a unique integer −a in Z such that a + (−a) =

(−a) + a = 0.

A4. For all a, b in Z, a + b = b + a.

M1. For all a, b, c in Z, (a · b) · c = a · (b · c).
M2. There exists a unique integer 1 in Z such that a · 1 = 1 · a = a for all a in Z.

M4. For all a, b in Z, a · b = b · a.

D1. For all a, b, c in Z, a · (b + c) = a · b + a · c.
NT1. 1 6= 0.

O1. For all a in Z, exactly one of the following statements is true: 0 < a, a = 0, 0 < −a.

O2. For all a, b in Z, if 0 < a and 0 < b, then 0 < a + b.

O3. For all a, b in Z, if 0 < a and 0 < b, then 0 < a · b.
O4. For all a, b in Z, a < b if and only if 0 < b + (−a).

WOP. If S is a non-empty set of non-negative integers, then S has a least element.

Remark 1 The above axiom is referred to as the Well-Ordering Principle (WOP).

We will assume it is true without proof.



Proposition 2 (20 points) (a) Let a be an integer and n a natural number. State

the division algorithm for a and n.

(b) Let a and b be integers. Define what it means for a to divide b.

(c) Let a, b be integers and let n be a natural number. Define a ≡ bmodn.

(d) Let S be a set of integers. Define what it means for ` ∈ S to be a least element.

Definitions. (a) The division algorithm for a and n produces unique integers q and r

such that a = qn+ r and 0 ≤ r < n. (b) We say that a divides b if there exists an integer

k such that ak = b. (c) We write that a ≡ bmodn (and say that a is congruent to b

modulo n) if n divides a− b. (d) An element ` ∈ S is a least element if for every s ∈ S

we have ` ≤ s.



Prove or disprove the following conjecture.

Conjecture 3 (10 points) Let a, b, c be integers. If a|bc, then a|b and a|c.

Disproof. The conjecture is false. For example, let a = 2, b = 2, and c = 1. Then,

2|2 · 1 = 2, but 2 does not divide 1. QED.



Problem 4 (10 points) Find the greatest common divisor of 139 and 93. Then, find

integers m and n such that gcd(139, 93) = 139m + 93n.

Solution. Let us run the division algorithm a couple of times. We find that 139 =

1 ·93+46, that 93 = 2 ·46+1, and then that 46 = 46 ·1+0. It follows that gcd(139, 93) =

gcd(93, 46) = gcd(46, 1) = 1. Running the equations backwards, we find that 1 =

139 · (−2) + 93 · 3.



Theorem 5 (10 points) Let P (k) denote a statement for every integer k = 0, 1, 2, . . ..

If the following are true:

1. P (0) is true; and

2. The truth of P (`− 1) implies the truth of P (`) for every integer ` = 1, 2, 3, . . .,

then P (k) is true for all integers k = 0, 1, 2, 3 . . ..

Proof. Let F = {n ∈ Z : n ≥ 0 and P (n) is false}. We want to show that F is empty.

Suppose that it is not. In that case, F is non-empty and by definition it contains only non-

negative integers. Therefore, by the well-ordering principle, F contains a least element,

say `. Note that 0 /∈ F by assumption (1). Therefore, ` ≥ 1. This means that `− 1 ≥ 0,

so that P (` − 1) is defined. Since ` − 1 < `, the natural number ` − 1 is not in F since

` is the least element. Therefore, P (` − 1) is true. By assumption (2), this means that

P (`) is true, which contradicts the assumption that ` is in F . QED.



Proposition 6 (10 points) Let a be an integer and n a natural number. Show that

there exists an integer r such that a ≡ r modn and 0 ≤ r < n. Note: you do not need

to prove uniqueness.

Proof. Let S = {a − kn : k ∈ Z and a− kn ≥ 0}. I claim that S is non-empty. If

a ≥ 0, then a = a − 0 · n shows that a ∈ S. If a < 0, then a − a · n = a(1 − n) is in

the set because a < 0 and (1 − n) ≤ 0. Therefore, S is non-empty. By construction, S

contains only non-negative integers. Therefore, S has a least element, say r = a− kn for

some integer k. Then, a− r = kn so a ≡ r modn. Moreover, r ≥ 0 since it is in S. So,

it only remains to show that r < n. Suppose r ≥ n. Then, r − n ≥ n − n = 0. But,

r− n = a− (k + 1)n, so it follows that r− n ∈ S. But, r− n < r, which contradicts the

assumption that r is a least element. Hence, r < n. QED.



Proposition 7 (10 points) Prove that for all k ≥ 1,

1 + 3 + · · ·+ 2k − 1 = k2.

Proof. We prove this by induction. The base case, when k = 1, is simply the statement

that 1 = 12, which is true. Now, suppose that for some k ≥ 1 the equality 1 + 3 +

· · · + 2k − 1 = k2 holds. Adding 2(k + 1) − 1 = 2k + 1 to both sides, we obtain

1 + 3 + · · ·+ 2k − 1 + 2(k + 1)− 1 = k2 + 2k + 1 = (k + 1)2, so the inductive step holds.

By induction, 1 + 3 + · · ·+ 1 + 2k − 1 = k2 for all k ≥ 1. QED.



Proposition 8 (10 points) Prove that n3 + 2n is divisible by 3 for all natural numbers

n.

Proof. We prove this by induction. In the base case, when n = 1, the formula n3 + 2n

reduces to 13 + 2 · 1 = 3, which is divisible by 3. Now, assume that 3 divides n3 + 2n for

some natural number n. We have that

(n + 1)3 + 2(n + 1) = n3 + 3n2 + 3n + 1 + 2n + 2

= (n3 + 2n) + 3(n2 + n + 3).

As 3 divides n3 +2n by hypothesis and also divides 3(n2 +n+3), it follows that 3 divides

(n + 1)3 + 2(n + 1). Therefore, by induction, 3|n3 + 2n for all natural numbers n. QED.


