
MATH 215 – Midterm

We will assume the existence of a set Z, whose elements are called integers, along with

a well-defined binary operation + on Z (called addition), a second well-defined binary

operation · on Z (called multiplication), and a relation < on Z (called less than), and

that the following fourteen statements involving Z, +, ·, and < are true:

A1. For all a, b, c in Z, (a + b) + c = a + (b + c).

A2. There exists a unique integer 0 in Z such that a+ 0 = 0 + a = a for every integer a.

A3. For every a in Z, there exists a unique integer −a in Z such that a + (−a) =

(−a) + a = 0.

A4. For all a, b in Z, a + b = b + a.

M1. For all a, b, c in Z, (a · b) · c = a · (b · c).
M2. There exists a unique integer 1 in Z such that a · 1 = 1 · a = a for all a in Z.

M4. For all a, b in Z, a · b = b · a.

D1. For all a, b, c in Z, a · (b + c) = a · b + a · c.
NT1. 1 6= 0.

O1. For all a in Z, exactly one of the following statements is true: 0 < a, a = 0, 0 < −a.

O2. For all a, b in Z, if 0 < a and 0 < b, then 0 < a + b.

O3. For all a, b in Z, if 0 < a and 0 < b, then 0 < a · b.
O4. For all a, b in Z, a < b if and only if 0 < b + (−a).

Notation 1. We will use the common notation ab to denote a · b.

Notation 2. We will also use the notation a > b (greater than) to denote b < a (less

than).

We will also assume Propositions 3 through 9. You do not need to prove these!

Proposition 3. For every a in Z, a · 0 = 0.

Proposition 4. Let a, b be integers. If ab = 0, then a = 0 or b = 0.

Proposition 5. 0 has no multiplicative inverse. In other words, there is no integer a

such that a · 0 = 1.

Proposition 6. For all a, b, c in Z, if a + b = a + c, then b = c.

Proposition 7. For every a in Z, −(−a) = a.

Proposition 8. For all integers a and b, (−a)b = −(ab).

Proposition 9. For all integer a and b, (−a)(−b) = ab.

The exam is to prove Propositions 10, 11, and 12 on the following pages. You MAY use

Propositions 1 through 9 in your proofs.



Proposition 10. For all a, b in Z, (−a) + (−b) = −(a + b).

Proof. By A3, (a + (−a)) + (b + (−b)) = 0 = (a + b) + (−(a + b)). Thus, (a + b) +

(−(a+ b)) = (a+ b) + ((−a) + (−b)) using A1 and A4. By Proposition 6, it follows that

−(a + b) = (−a) + (−b), as desired.

Proposition 11. For all a in Z, 0 < a if and only if −a < 0.

Proof. By O4, −a < 0 if and only 0 < 0+(−(−a)) = −(−a) = a, where the first equality

is by A2 and the second is by Proposition 7.

Proposition 12. For all a, b, c in Z, if a < b, then a + c < b + c.

Proof. If a < b, then, by O4, 0 < b + (−a) = b + (−a) + 0 = (b + (−a)) + (c + (−c)) =

(b + c) + ((−a) + (−c)) = (b + c) + (−(a + c)), where the first equality follows from A2,

the second follows from A3, the third follows from A1 and A4, and the fourth follows

from Proposition 10. Therefore, a + c < b + c, again by O4.

Proposition 13. For all a, b, c in Z, if a < b and 0 < c, then ac < bc.

Proof. If a < b, then 0 < b+(−a) by O4. Hence, since 0 < c, O3 says that 0 < (b+(−a))c.

But, (b + (−a))c = bc + (−a)c = bc + (−(ac)), where the first equality is by D1 and the

second is by Proposition 8. So, 0 < bc + (−(ac)), and hence ac < bc by O4.


