CHAPTER 14
The Van Kampen Theorem

14a. G-Coverings from the Universal Covering

In this section X will denote a connected, locally path-connected, and
semilocally simply connected space, so X has a universal covering,
denoted u: X — X. All spaces will have base points, and all maps will
be assumed to take base points to base points. The base point of X
is denoted x, and the base point of X over x is denoted x. ;

We have seen in §13d that for every G-covering p: Y— X, with Y
connected, and with base point y, there is a surjective homomorphism
of m(X,x) onto G. If H is the kernel of this homomorphism, so
G=m(X,x)/H, Y is the quotient of X by the action of H, with y the
image of . We want to extend this correspondence to G-coverings
that may not be connected. In this case there will only be a homo-
morphism from m,(X, x) to G, which need not be surjective. Here we
will set up this correspondence between G-coverings and homomor-
phisms directly and rather briefly, omitting some verifications. Other
ways to carry this out, with a more general context for these con-
structions, together with more details about the verifications, are de-
scribed §16d and §16e.

Suppose p: 7,(X, x)— G is a homomorphism from the fundamental
group of X to any group G. We will construct from p a G-covering
po: Y,— X, together with a base point y, in ¥, over x. Give G the
discrete_topology, so the Cartesian product X X G is a product of cop-
ies of X, one for each element in G. The group m,;(X, x) acts on the
left on X X G by the rule

[0]-(zxg) = [0]-zxg-p(la]) = [0]-zx g p(la]) ",
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194 14. The Van Kampen Theorem

for [o] € m(X,x), zE€ X g€ G. Here [0] -z is the action of m,(X, x)
on X that was described in §13b, and g- p(la] " is the product in
the group G. Define Y, to be the quotient of X X G by this action of
m(X, x):

Y, = X xG/m(X,x),

and let y, be the image of the point £X e in Y,. Let (z X g) denote
the image in Y, of the point z X g in X X G. Note that, by the above
action of m,(X,x) on X X G, we have, for z in X, g in G, and [o¢] in
1T1(X, .X),

([o]-zX g) = (zx g p([al)).

Define p,: Y,— X by taking (z X g) to u(z).

The group G acts on Y, by the formula A-(z X g) =(z X h- g), for
h and g in G and z in X. (Note that using the right side of G for the
left action of m,(X, x) frees up the left side of G for a left action of
G!) We claim that this is an even action, making p,: Y,—X a G-
covering. To prove this, let N be any open set in X over which the
universal covering u: X— X is trivial. By Lemma 11.18 there is an
isomorphism of u~'(N) with the product covering N X m,(X, x), on
which m,(X, x) acts on the left on the second factor. This gives ho-
meomorphisms

p,'(N) = WX m(X,x)XG/mX,x) = NXG,

the latter homeomorphism by ((u X [0]) X g)—=u X g p([c]). (The map
back takes u X g to {(u X ¢) X g).) These homeomorphisms are com-
patible with the projections to N, and it follows that, over N, the
action of G is even and the covering is a G-covering. Since X is
covered by such open sets N, the same is true for the map p, from
Y, to X.

Conversely, suppose p: Y— X is a G-covering, with a base point y
over x. From this we construct a homomorphism p from m,(X, x) to
G. For each [g] in m(X, x) the element p([0]) in G is determined by
the formula

p([c) -y = y*ao,

where y*a is the endpoint of the lift of the path o that starts at y.
We will need two facts about this operation:

() z*o)*1=z*(0-7) forzE€p~'(x), caloop at x, and T a
path starting at x;

(i) g-(z*y)=(g-z)*y for gEG, zEp '(x), and «y a path
starting at x.
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The first of these facts is immediate from the definition. The second
follows from the fact that if ¥ is lifting of <y starting at z, then the
path t—g-5(f), 0=tr=1, is a lifting of vy that starts at g-z. The
endpoint of this path, which is (g - z) * y by definition, is g - (1), and
since (1) =z *y, (ii) follows.

We claim now that the p defined above is a homomorphism. This
is a calculation, using (ii) and (i):

(p([a]) - p([tD)) 'y = pUa]D - (p([t]) - y) =p(a]) - (y*7)
= (p([aD)y)*x1=(y*0o)*7
= y*(@-71)=p(a]-[t])y.

Proposition 14.1. The above constructions determine a one-to-one
correspondence between the set of homomorphisms from m(X,x) to
the group G and the set of G-coverings with base point, up to iso-
morphism:

Hom(w,(X, x), G) <> {G-coverings}/isomorphism .

Proof. Given a G-covering p: Y — X with base points, from which we
constructed a homomorphism p, we must now show that the given
covering is isomorphic to the covering p,: Y,— X constructed from p.
To map Y, to Y, we need to map XXGtoY , and show that orbits
by m,(X, x) have the same image. For this we identify the universal
covering X as the space of homotopy classes of paths in X starting
at x. Define a map

XXG—Y, [y]xgg-(y*y) = (€ y)*v.

This is easily checked to be continuous. We must check that an equiv-
alent point ([a] - [y]) X (g- p([oD™H maps to the same point. By (i)
and (ii), this point maps to

g -pa) ™) -(yx(o-v) = (g p(aD ) (y*0o)*7y)

(g pUaD) ™) - (y*o)) *y

g ((y*xa)xa D) *[y]

= (g -(*(o-a My =(g y*[¥],

as required. Since the map takes the same values on equivalent points,
it gives a mapping from the quotient ¥, to Y, which is a mapping of
covering spaces of X. This is easily checked to be a mapping of G-
coverings, from which it follows that it must be an isomorphism.
Conversely, starting with a homomorphism p, we constructed a G-
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covering Y,— X, from which we constructed another homomorphism,
say p. We must verify that p = p. Now for [g] in 7,(X, x),

p([a])-(fXe) = (FXe)xa = (F*0 Xe)
= ([g] - xXe) = (xXe-p(a]) = &Xp(al)
= p([o]) - (XX e).

This shows that p([a]) = p([a]), which concludes the proof. O]

Exercise 14.2. If p: Y— X is the G-covering corresponding to a ho-
momorphism p: 7,(X,x)— G, and X' is a subspace of X that also has
a universal covering, with x in X’, show that the restriction p~'(X") > X’
of this covering to X' is the G-covering corresponding to the com-
posite homomorphism peix, where ix: m (X', x)— m,(X, x) is induced
by the inclusion / of X’ in X.

Exercise 14.3. Show that, if base points are ignored, two G-coverings
Y, and Y, are isomorphic G-coverings if and only if the homomor-
phisms p and p' are conjugate, i.c., there is some g in G such that

p'([e]) = g-p(lal)-g”"  forall [g]Em(X,x).

14b. Patching Coverings Together

Suppose X is a union of two open sets U and V. A covering of X
restricts to coverings of U and V, which are isomorphic over UN V.
Conversely, suppose we have coverings p,: Y,— U and p,: Y,—V,
and we have an isomorphism of coverings

d:p, UNV)=p, (UNV)

of U N V. Then one may patch (or “glue,” or “clutch”) these together
to get a covering p: Y— X, together with isomorphisms of coverings

e Y, =p '(U), ¢xY,>p (V)

of U and of V, so that, over UNV, 3 =¢; ' °@,.

One can construct Y as the quotient space of the disjoint union
Y,LlY,, by the equivalence relation that identifies a point y, in
p,”'(UNV) with the point 3(y,) in p, (UN V). (See Appendix A3.)
Since ¥ is compatible with maps to X, one gets a mapping p from Y
to X. Since the map from Y, to Y is a homeomorphism onto its image
p~'U, which is open in Y, and similarly Y, maps homeomorphically
onto p~'V, one sees that the restriction of p to the inverse image of
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U is isomorphic to Y;— U, and the restriction over V is isomorphic
to Y,— V. From this it follows in particular that p is a covering map.

If each of Y,— U and Y,— V is a G-covering, for a fixed group
G, and ¥ is an isomorphism of G-coverings, then Y — X gets a unique
structure of a G-covering in such a way that the maps from Y, and
Y, commute with the action of G.

Occasionally the following generalization is useful. Suppose we have
a collection X, of open sets, o € &, whose union is X, and a collec-
tion p,: Y,— X, of covering maps. Suppose, for each a and B, we
have an isomorphism

Vpal P KaNXp) = pp ' (Xa N Xp)
of coverings of X, N X,. Assume these are compatible, i.e.,

(1) 9,, is the identity on Y,; and
(2) ¥,0 =V 5°9p, on p, ' (X.NXzNX,) for all a, B, yE A.

Then one can patch these coverings together to obtain a covering
p: Y—X. One has isomorphisms ¢,: Y,— p~'(X,) of coverings of X,
such that ¥g, = @z~ °@, 0n p,~ (X, N Xp). In addition, the space Y is
the union of the open sets ¢ (Y,,).

One constructs Y as the quotient space Ll,cy4Y,/R of the disjoint
union of the Y, by the equivalence relation determined by the 9p,’s.
The assertions about Y and the ¢, are general facts about patching
spaces together, as proved in Appendix A3. The map p is determined
by the equations p°¢, =p, on Y,. Since ¢, is a homeomorphism of
Y, onto p~'(X,), it follows that p is a covering map.

If each p,: Y,— X, is a G-covering, with fixed G, and each 6, is
an isomorphism of G-coverings, then there is a unique action of G
on Y so that each ¢, commutes with the action of G, i.e.,
©a(g " Vo) = & ®u(ya) for g in G and y, in Y,. This gives the patched
covering p: Y— X the structure of a G-covering, so that each ¢, is
an isomorphism of G-coverings.

14c. The Van Kampen Theorem

The Van Kampen theorem describes the fundamental group of a union
of two spaces in terms of the fundamental group of each and of their
intersection, under suitable hypotheses. Let X be a space that is a
union of two open subspaces U and V. Assume that each of the spaces
U, V and their intersection U NV is path-connected, and let x be a
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point in the intersection. Assume also that all these spaces X, U, V,
and U NV have universal covering spaces; this is the case, for ex-
ample, if X is locally simply connected. We have a commutative dia-
gram of homomorphisms of fundamental groups:

7, (U,x)

N

rUNV, x) (X, x) .

TV, x)

The maps are induced by the inclusions of subspaces, and commu-
tativity means that j, oi, = j,°i,.

We will describe how (X, x) is determined by the other groups
(and the above maps between them). The description will not be di-
rect, but will be by a universal property. Note that any homomor-
phism A from m,(X, x) to a group G determines a pair of homomor-
phisms h, = hej, from (U, x) to G and h,= hoj, from m(V,x) to
G; the two homomorphisms 4,°i, and A,°i, from m,(UNV,x) to G
determined by these are the same. The Van Kampen theorem says
that w,(X, x) is the “universal” group with this property.

T,(U.x)
T(UNV, %) X x-S
N % K,
TV, x)

Theorem 14.4 (Seifert—van Kampen). For any homomorphisms
h: m(U,x)—>G and h,:®(V,x)—G,
such that h,°i, = h,°i,, there is a unique homomorphism
h: m(X,x) = G,
such that hoj, = h, and hoj, = h,.

Exercise 14.5. Show that m,(X, x), together with the homomorphisms
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J, and j,, is determined up to canonical isomorphism by the universal
property.

Exercise 14.6. Use the universal property to show that m,(X, x) is
generated by the images of (U, x) and m,(V, x). Can you prove this
assertion directly?

A version of the Van Kampen theorem was found first by Seifert,
and the theorem is also known as the Seifert—Van Kampen theorem.
The version given here, via universal properties, was given by Fox,
see Crowell and Fox (1963). The usual proof of the Van Kampen
theorem (without the hypotheses that the spaces all have universal
coverings) is rather technical, and for it we refer to Crowell and Fox
(1963) or Massey (1991). Here we will give a quick proof, due to
Grothendieck (see Godbillon (1971)), using the correspondence be-
tween homomorphisms from fundamental groups to a group G and
G-coverings. The assumptions assure that each of the spaces X, U,
V, and UNV has a universal covering space, and that homomor-
phisms from their fundamental groups to a group G correspond to
G-coverings.

In particular, the homomorphisms #, and A, determine G-coverings
Y,— U and Y,— V, together with base points y, and y, over x. The
fact that A, i, is equal to h,°i, means that the restrictions of these
coverings to U NV are isomorphic G-coverings, and since UNYV is
connected, there is a unique isomorphism between these G-coverings
that maps the base point y, to the base point y,. (The uniqueness is
a special case of Exercise 11.24.) By the construction of the preceding
section, these two coverings patch together, using this isomorphism
over the intersection. This gives a G-covering Y— X that restricts to
the two given G-coverings (and has the same base point). This
G-covering corresponds to a homomorphism 4 from m,(X,x) to G,
and the fact that the restricted coverings agree means precisely that
hej,=h, and hej,= h,. ]

Corollary 14.7. If U and V are simply connected, then X is simply
connected.

Note the important hypothesis in all these theorems, that all spaces,
including the intersection U NV, are connected. It does not apply to

the annulus, written as a union of two sets homeomorphic to disks!

Exercise 14.8. If V is simply connected, show that j,: (U, x)— m(X, x)
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is surjective, with kernel the smallest normal subgroup of (X, x) that
contains the image of i;: m(UNV, x)— (U, x).

Corollary 14.9. If UNV is simply connected, then, for any G,
Hom(w,(X, x), G) = Hom(mw,(U, x), G) X Hom(m,(V,x), G).
This means that m,(X, x) is the free product of w, (U, x) and w,(V, x).

Exercise 14.10. If U NV is simply connected, show that the inclusion
mappings j, and j, are one-to-one.

The following is a useful generalization of Van Kampen’s theorem,
which can be used to compute the fundamental group of an increasing
union of spaces, each of whose fundamental groups in known. The
proof is identical to that of the preceding theorem, using the general
patching construction of the preceding section.

Suppose a space X is a union of a family of open subspaces X,,
a € 4, with the property that the intersection of any two of these
subspaces is in the family. Assume that X and each X, is path-con-
nected and has a universal covering, and that the intersection of all
the X, contains a point x. When X is contained in X, let i, be the
map from ,(X;, x) to 7,(X,, x) determined by the inclusion, and let
J. be the map from m(X,, x) to m,(X, x) determined by inclusion.

Theorem 14.11. With these hypotheses, m(X, x) is the direct limit of
the groups m(X,, x). That is, for any group G, and any collection of
homomorphisms h, from m(X,,x) to G such that hg = h,° iz when-
ever X3 C X, there is a unique homomorphism h from m(X,x) to G
such that h, = hej, for all . O

The preceding theorem is recovered by taking the family to consist
of U, V,and UNV.

Although this version of Van Kampen’s theorem is stated with each
subspace X, open in X, it can often be applied to subspaces that are
not open. For example, if each X, is contained in an open set U, of
which it is a deformation retract, with U, C U, whenever X, C X,
and the hypotheses of Theorem 14.11 apply to these U,, then m,(X, x)
is the direct limit of the groups m;(X,, x). This follows from the fact
that each m,(X,, x) = m,(U,, x) is an isomorphism. Without some such
hypotheses, however, the theorem is false. For example, if A and B
are copies of a cone over a clamshell (see Exercise 13.19), joined
together at the one point where all the circles are tangent, then the
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spaces A and B are simply connected, and A N B is a point, but A U B
is not simply connected. (In fact, A U B is an example of a space that
is not simply connected but which has no nontrivial connected cov-
erings.)

Exercise 14.12. Show if a space X is a union of a family of open
subspaces X, such that the intersection of any two sets in the family
is also in the family, then H,X is the direct limit of the groups H,X,.

14d. Applications: Graphs and Free Groups

One simple application of the Van Kampen theorem is a result we
looked at earlier: the n-sphere S is simply connected if n= 2. To see
this now, write the sphere as a union of two hemispheres each homeo-
morphic to n-dimensional disks, with the intersection homeomorphic
to "', It follows from Corollary 14.7 that the fundamental group of
S" is trivial. (The assumption n =2 is used to confirm that S"' is
connected.)
Consider next a figure 8:

>
This is the union X of two circles U and V meeting at a point x. Let
v, and vy, be loops, one around each circle. The fundamental group
of each circle is infinite cyclic, generated by the classes of these loops.
It follows that to give a homomorphism from (X, x) to a group G
is the same as specifying arbitrary elements g, and g, in G: there is
a unique homomorphism from (X, x) to G mapping [v,] to g, and

[v.] to g,. This means that m,(X, x) is the free group on the generators
[v:] and [v.].

Exercise 14.13. Let a =[v,] and b = [y,]. Show that every element
in m,(X, x) has a unique expression in the form

ac-p™-am- ... -b",

where the m; are integers, all nonzero except perhaps the first and
last. The identity element is e = a°p’.

The free group on two generators a and b can be constructed di-
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rectly (and algebraically) as the set of all words of this form, with
products defined by juxtaposition of words, canceling to get a legit-
imate word. It is straightforward (if a little awkward) to show by hand
that this forms a group, and to see that it satisfies the above universal
property. With the use of the Van Kampen theorem, we can avoid
this, by constructing the free group as the fundamental group of this
figure 8 space.

The free group F, on n generators a,, . . . , a, is defined similarly:
it is generated by these elements, and, for any group G and any ele-
ments g;, . . . , &, in G, there is a unique homomorphism from F,
to G taking a; to g; for 1 =i <n. Again, it can be constructed purely
algebraically using words in these letters, or as a fundamental group:

Exercise 14.14. Verify that the fundamental group of the space ob-
tained by joining # circles at a point is the free group on n generators.
Use this to show that the fundamental group of the complement of n
points in the plane is free on n generators.

Exercise 14.15. Let X be a connected finite graph. (a) Show that, for
any edge between two distinct vertices, X is homotopy equivalent to
the graph obtained by removing the edge and identifying its two end-
points. (b) Show that X is homotopy equivalent to the graph obtained
by joining # circles at a point, where, if the graph has v vertices and
e edges, n=e— v+ 1. (c) Show that »n is the “connectivity” of the
graph, i.e., the largest number of edges one can remove from the
graph (leaving the vertices), so that what is left remains connected.

One can use this result to give a simple proof of a rather surprising
fact about free groups.

Proposition 14.16. If G is a free group on n generators, and H is a
subgroup of G that has finite index d in G, then H is a free group,
with dn— d + 1 generators.

Proof. Take G to be the fundamental group of a connected graph X
that has v vertices and e edges, with n=¢ — v + 1. For simplicity we
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assume each edge of X connects two distinct vertices. The subgroup
H corresponds to a connected covering p: Y — X with d sheets, with
the fundamental group of Y isomorphic to H. It is not hard to verify
that Y is a connected graph. In fact, the d points over each of the
vertices of X can be taken as vertices of Y, and (since a covering is
trivial over an interval), the d components of the inverse image of
each edge are edges of Y. Since Y is a graph, its fundamental group
is free, with

de—dv+1 =de—v+1)—d+1 =dn—d+1

generators. ]

If U is the plane domain that is the complement of two points, then
U has the figure 8 as a deformation retract. So U has the same fun-
damental group. In particular, this is not an abelian group. For ex-
ample, the path y, -y, 'y, ' is not homotopic to a constant path
(although all integrals of all closed 1-forms over this path are trivial).

Problem 14.17. Use the Van Kampen theorem to compute the fun-
damental groups of the complement of n points (or small disks) in:
(1) a two-sphere; (2) a torus; and (3) a projective plane.

Problem 14.18. Describe the fundamental group of R*\Z, where Z
is the set Z of all integers, or the set Z* of lattice points, or any infinite
discrete set.

Problem 14.19. Show that a free group on two generators contains
a subgroup that is not finitely generated, in fact, a subgroup that is
a free group on an infinite number of variables.

Problem 14.20. Use the Van Kampen theorem to compute the fun-
damental groups of: (1) the sphere with g handles; (2) the complement
of n points in the sphere with g handles; and (3) the sphere with h
crosscaps.



