547 - Spring 2018 - HW3

February 5, 2018

- **1.** Prove that if $E \xrightarrow{p} B$ and $F \xrightarrow{q} B$ are covering spaces, then so is $E \coprod F \xrightarrow{p \coprod q} B$.
- **2.** Show that if $E \xrightarrow{p} B$ is a covering space and $X \to B$ is a map with X connected and locally path connected, then $E \times_B X \to X$ is a covering space.
- **3.** Let G be a discrete group acting freely and continuously on a topological space X. Assume that X is locally path connected. Prove that $X \to X/G$ is a covering space. What are the fibers?
- **4.** Suppose that G is a discrete group acting freely on a simply connected space X. Compute $\pi_1(X/G)$.
- **5.** Suppose that G and H are non-zero groups. Find the center of G*H.
- **6.** Let X be the complement of finitely many points in \mathbb{R}^n for $n \geq 3$. Compute $\pi_1(X)$.
- 7. Let X be the complement of finitely many points in \mathbb{R}^2 . Compute $\pi_1(X)$.
- **8.** Let X be a path-connected space and consider a map $S^n \xrightarrow{f} X$ where $n \ge 2$. Compute $\pi_1(C_f)$.
- **9.** Prove that $\pi_1(\mathbb{R}^2 \mathbb{Q}^2)$ is uncountable.
- 10. Do Hatcher, Exercise 1.2.7.