547 - Spring 2018 - Outline

May 14, 2018

Categories.

- 1. Categories.
- 2. The category \mathcal{T} of topological spaces.
- 3. Comma categories.
- 4. The category \mathcal{T}_* of pointed topological spaces.
- 5. Functors.
- 6. Pushouts and pullbacks.

Homotopy.

- 1. Homotopy equivalence.
- 2. The homotopy categories $Ho(\mathfrak{I})$ and $Ho(\mathfrak{I}_*)$ of topological spaces (resp. pointed topological spaces).
- 3. The fact that $Ho(\mathfrak{T})$ is actually a category.
- 4. Deformation retracts.
- 5. Contractibility of the infinite-dimensional sphere S^{∞} .
- 6. Examples of spaces that do not retract onto subspaces.

Fundamental groups.

- 1. Homotopy of paths.
- 2. The fundamental groups.
- 3. Independence of base point.
- 4. The fundamental group as a functor $\mathcal{T}_* \to \mathbf{Groups}$.
- 5. The fundamental group as a functor $Ho(\mathfrak{I}_*) \to \mathbf{Groups}$.
- 6. $\pi_1 S^1 \cong \mathbb{Z}$.

Covering spaces.

- 1. Definition.
- 2. Uniqueness of lifting paths.
- 3. Categories of (pointed) covering spaces over a base space.
- 4. Existence of the universal cover.
- 5. The Galois theory for covering spaces.
- 6. Classification of regular G-covers (as in Fulton).
- 7. The correspondence between regular G-covers and group homomorphisms $\pi_1(X) \to G$.
- 8. $\pi_1(X/G)$ for X simply connected and G acting freely and discontinuously on X.
- 9. $\pi_1 \mathbb{RP}^n$ for $n \ge 2$.

Van Kampen.

- 1. Coproducts and free products of groups.
- 2. Van Kampen's theorem via the universal property above.
- 3. Applications of Van Kampen's theorem.
- 4. $\pi_1 \mathbb{CP}^2 = 0$.
- 5. $\pi_1 S^n = 0 \text{ for } n > 1.$
- 6. $\pi_n S^1 = 0$ for n > 1.
- 7. π_1 of the orientable Riemann surface of genus g.

Homological algebra.

- 1. Chain complexes.
- 2. Homology.
- 3. Snake lemma. 3x3 lemma. 5-lemma.
- 4. Injective and projective objects.
- 5. Injective and projective resolutions.
- 6. Comparison of resolutions.
- 7. Ext and Tor.
- 8. $\operatorname{Tor}_{*}^{k[\epsilon]/(\epsilon^2)}(k,k)$.
- 9. $\mathrm{Tor}_1^{\mathbb{Z}}(M,N)$ for abelian groups M,N. Same for $\mathrm{Ext}^1_{\mathbb{Z}}(M,N).$

Homology.

- 1. Simplicial sets.
- 2. The singular simplicial set.
- 3. Simplicial abelian groups and their associated chain complexes.
- 4. Chains on a space, possibly with coefficients.
- 5. Relative homology.
- 6. CW homology.
- 7. Excision.
- 8. Reduced homology \widetilde{H}_n .
- 9. If $A \subseteq X$ is a pair where A has an open neighborhood of which it is a deformation retract, then $H_*(X,A) \cong \widetilde{H}_*(X/A)$.
- 10. Universal coefficients.

Cohomology.

- 1. Universal coefficients.
- 2. Cup product.
- 3. Graded commutativity.
- 4. The cohomology ring of closed orientable Riemannian surfaces.

Poincaré duality.

- 1. R-orientability.
- 2. The orientation covering space.
- 3. The top homology groups of closed n-manifolds.
- 4. Cap product.
- 5. Cohomology with compact supports.
- 6. Poincaré duality.
- 7. The cohomology pairing.
- 8. Deduction of cohomology ring structures for spaces like \mathbb{CP}^n from Poincaré duality.