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INTRODUCTION

In this workshop, we will cover the proof of Weibel’s conjecture.

Theorem 1 (Weibel’s conjecture; Kerz-Strunk-Tamme). Suppose that X is a Noetherian scheme

of finite Krull dimension d. Then for i < −d the group Ki(X) vanishes.

The proof of Weibel’s conjecture follows from a “pro-descent” theorem for nonconnective

algebraic K-theory. Recall that an abstract blowup square is a Cartesian square

(1) E

��

// X̃

p
��

Z
i
// X,

where i is a closed immersion, p is a proper map, and the induced map on complements

X̃ \ E → X \ Z is an isomorphism. In particular, blowups are abstract blowup squares. It

is known that K-theory does not take an arbitrary abstract blowup square to a Cartesian

square of spectra. However, if one takes into account the infinitesimal thickenings of E and

Z in X̃ and X Kerz, Strunk, and Tamme obtain the following result, from which they deduce

Theorem 1.

Theorem 2 (Kerz-Strunk-Tamme). For any abstract blowup square as in (1), we have a Cartesian

diagram of pro-spectra

(2) K(X)

��

// “ lim ”K(Zn)

��

K(X̃) // “ lim ”K(En)

where Zn (resp. En) is the nth infinitesimal thickening of Z in X (resp. E in X̃).

Theorems 1 and 2 are the latest installments in a long series of results exploring vanishing

of negative K-theory and cdh-descent (for which, see the references and the introduction

to [12]). The goal of this workshop is to understand that history in the large, the details of

the proof of Theorem 2, and how this implies Theorem 1.
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DAY 1: PRELIMINARIES

Talk 1 (Daniel Carmody): Descent and cd-structures: 1 hour. Following [2, Section 2.1]

define cd-structures and give examples — the Zariski topology, the Nisnevich topology,

and the cdh-topology; explain how they generate a Grothendieck topology. In particular,

define elementary distinguished squares that define Nisnevich topology and the abstract

blow-up squares that define the cdh-topology [19, Definition 12.21]. Define what it means

for a presheaf (of spaces/spectra) on a small category with a cd-structure to be excisive

[2, Definition 3.2.1] and explain Voevodsky’s theorem that, under certain assumptions, this

is equivalent to the presheaf satisfying descent with respect to the topology generated by

the cd-structure [2, Theorem 3.2.5]. Explain that excision gives rise to Mayer-Vietoris-style

long exact sequences. Other relevant references are [26] and [27].

Talk 2 (Gabe Angelini-Knoll): Pro-objects in ∞-categories: 1 hour. Quickly review the

classical definition of pro-objects as formal cofiltered limits [1]. Explain the ∞-categorical

formulation following [18, Section A.8.1] or [4], including the computation of mapping

spaces in pro-categories and the universal property of pro-objects. Explain the notion of weak

equivalences of pro-spaces and pro-spectra following [12, Section 4.1]; a similar discussion

can be found in [13, Section 2]. Discuss the notion of pro-descent and pro-excision following

[17].

Talk 3 (Brian Shin): Negative K-theory: 1.5 hours. Briefly recall the definition and univer-

sal property of connective K-theory of a stable ∞-category following [6, Section 7]. Do the

same for nonconnective K-theory following [6, Section 9]. Construct the Bass model for

nonconnective K-theory of schemes following [25, Section 6] and explain how this relates to

the definition in [6]. Explain why for j > 0, the group K−j(Y) is a quotient of K0(Y×Gj
m)

and the fact that if an element in the latter group comes from K0(Y×Aj), then it vanishes

in K−j(Y). Mention that nonconnective K-theory satisfies localization [25, Section 7] and

therefore K-theory satisfies Zariski (and Nisnevich) descent.

Talk 4 (Harry Smith): Genesis of Weibel’s conjecture: 1.5 hours. Weibel’s conjecture ap-

pears as (the second part of) Question 2.9 in [29]. Introduce the conjecture. Explain the

computations of Bass cited in [29, Proposition 2.8] showing the conjecture is true in di-

mensions ≤ 1 and Weibel’s verification of the conjecture in dimension 2 [30, Theorem

4.4]. Give an overview of some of the previous work on Weibel’s conjecture, starting with

Haesemeyer’s proof that homotopy K-theory satisfies cdh-descent in characteristic zero

given in [9, Theorem 6.4] or [8, Theorem 3.12]. Time permitting, one might also mention

Cisinksi’s proof in [7], using 6-functors and motivic homotopy. Say a few words about

Cortiñas-Haesemeyer-Schlichting-Weibel’s proof [8, Corollary 5.9] that Weibel’s conjecture
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holds in characteristic zero and Kelly’s proof [10, Theorem 3.5] that it holds for K[1/p] in

characteristic p.

DAY 2: HOMOTOPY K-THEORY, EXCISION AND BEGINNINGS OF THE PROOF

Talk 5 (Yifei Zhao): The case of homotopy K-theory: 1.5 hours. Explain in detail the proof

of Weibel’s conjecture for homotopy K-theory due to Kerz and Strunk [11]. First, define

homotopy K-theory following [28]. Then state, without proof, the two main ingredients

needed for the proof: first is the fact that homotopy K-theory satisfies cdh-descent [7] and

the second a theorem of Raynaud and Gruson [20, Theorem 5.22] on “platification par

éclatement”. Proceed to give the proof [11, Theorem 1] in full. Explain why this gives

Weibel’s conjecture after appropriate inversion of primes [11, Corollary 2].

Talk 6 (Tasos Moulinos): Suslin–Wodzicki excision after Tamme: 1.5 hours. This is a talk

on Tamme’s proof [23] of Suslin–Wodzicki excision [22], [21]. The goal is to give a proof of

[23, Theorem 21] in full detail. Define the lax pullbacks of ∞-categories following [23, Section

1] Define Milnor squares and give examples. Prove [23, Theorem 11] in detail. Explain

the notion of Tor-unitality after Tamme [23, Definition 12] and then prove the main result

[23, Theorem 16] and explain how one obtains Suslin–Wodzicki excision for any localizing

invariant [23, Section 3].

Talk 7 (Benjamin Antieau): K-Theory of Derived Schemes: 1 hour. Give an overview

of derived algebraic geometry in the context of simplicial commutative rings following

[12, Section 2.1]; a useful additional reference is [14]. Define the ∞-category of perfect

complexes (see [12, Section 2.1] or [5] for more details) of derived schemes so that one can

take algebraic K-theory of a derived scheme. Explain that the connective K-theory of affine

derived schemes can be computed via the plus construction [12, Proposition 2.15]. Prove

the nilinvariance result [12, Theorem 2.16]: the K-theory of an affine derived scheme is

equivalent to the K-theory of its underlying scheme, upon taking 1-truncation.

Talk 8 (Elden Elmanto): Derived Blowups: 1.5 hours. Define derived blowups and prove

the descent theorem [12, Theorem 3.7] for them. First, as motivation, explain Thomason’s

classical result on descent for blowups along regularly immersed centers [24]; the main result

of [12, Section 3] is analogous to this. Explain the notions of derived blowups, semi-derived

and derived exceptional divisors, using the diagram [12, (3.3)] as a guide. Prove that derived

blowups are independent of all auxiliary choices [12, Lemma 3.6]. Prove [12, Theorem 3.7]

in detail. Explain how to deduce the projective bundle formula [12, Theorem 3.16] and Bass’

fundamental theorem [12, Theorem 3.17].
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DAY 3: CONCLUDING THE PROOF

Talk 9 (Joel Stapleton): Pro-excision for simplicial rings: 1.5 hours. Give some motivation

for pro-excision from Grothendieck’s theorem on formal functions [12, Introduction] or

defining K-theory with compact supports following [15, Section 4.1]. Explain why K-theory

cannot, in general, take abstract blowup squares to Cartesian squares. State clearly the

pro-excision result [12, Theorem 4.11] and explain how to deduce [12, Corollary 4.13] which

we will need in the proof of the main theorem. Explain how [12, Corollary 4.13] proves a

pro-equivalence between relative K-theory of derived and underived schemes. Proceed to

prove [12, Theorem 4.11].

Talk 10 (Jeremiah Heller): Proof of Theorem 2, part 1: 1.5 hours. State clearly [12, Theorem

A] and proceed with the proof. The first step is to prove [12, Theorem A] for the case that

X̃ → X is a finite morphism. This is [12, Proposition 5.2]. Next, we reduce from the case of

arbitrary abstract blowup squares to the case that of a classical blowup. This relies on some

ideas that were already discussed in Talk 5, namely, “platification par éclatement.” Prove

[12, Claim 5.3] in detail.

Talk 11 (Aron Heleodoro): Proof of Theorem 2, part 2: 1 hour. Explain how to reduce to

the case of derived blowups, this is [12, Lemma 5.5] after the efforts of Talk 9. Explain the

appearance of the tower of derived blowups [12, Section 5.4] and conclude the proof of

[12, Theorem A].

Talk 12 (Marc Hoyois): Proof of Theorem 1: 1.5 hours. Prove Weibel’s conjecture [12,

Theorem B] — this follows the outline for the case of homotopy K-theory and references

to material covered in Talk 5 should be made. Prove that homotopy K-theory satisfies cdh-

descent (this is [12, Theorem C]) — this reproves Cisinski’s theorem [7]. Mention, without

proof, that the cdh-sheafification of K-theory is in fact homotopy K-theory [12, Theorem

6.3].
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