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1 Closure of a dg-category

1.1 Generalities

1.1.1 dg-categories

By a dg-category we mean a category enriched over the category of complexes of A-modules, where
A = Z or A = Q.

An arrow, or a morphism f : X → Y is a cocycle in Hom0(X,Y ). We say that two arrows f, g are
homotopy equivalent, and write f ∼ g, if the cocycle f − g is exact.

We say that f : X → Y is a homotopy equivalence if there exists g : Y → X such that fg ∼ IdY and
gf ∼ IdX .

We say that an object X is acyclic if 0 ∼ Id in Hom(X,X).

1.1.2 Enriched categories

Let C,D be categories enriched over a SMC M. Denote by C ⊗D a category enriched over M, where
Ob C ⊗ D = Ob C ×ObD and Hom(X1, Y1); (X2, Y2)) = Hom(X1, X2)⊗Hom(Y1, Y2).

1.2 Various completions

We will now introduce several operations, namely: twisting the differentual, adding a kernel of a
projector, adding direct sums and direct products. We will end up with an operation swell so that
swell C is closed under adding all the above listed objects.

1.3 Differential on an object

A differential on an object X of a dg-category C is an element D ∈ Hom1(X,X) satisfying dD+D2 = 0.
Define a dg-category DC whose every object is a pair (X,D), where X ∈ C and D is a differential on
X; we set

Hom((X,DX), (Y,DY )) := (Hom(X,Y ), D′),

where we introduce a new differential D′ on Hom(X,Y ) as follows. Let f ∈ Homn(X,Y ); set:

D′f = df +DY f − (−1)nfDX

We have a natural functor DC ⊗DD → D(C ⊗ D). If C is a SMC, then DC inherits the structure. If
C is enriched over an SMC M, then DC is enriched over DM. Call C D-closed if the obvious functor
C → DC is an equivalence of DG categories. The category DC is always D-closed.
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1.4 Kernels of projectors

Let X be an object of C. A projector is an element P ∈ Hom0(X,X) such that dP = 0 and
P 2 = P . Define a dg-category PC whose every object is a pair (X,PX), where PX is a projector on X.
Set Hom((X,PX), (Y, PY )) to be a sub-complex of Hom(X,Y ) consisting of all elements f satisfying
PY f = f = fPX .

We have a natural map PC ⊗ PD → P (C ⊗ D). If C is a SMC, then PC inherits the structure. If
C is enriched over an SMC M, then PC is enriched over PM. We call a dg-category P -closed if the
obvious inclusion C → PC is an equivalence of categories. If C is D-closed then so is PC. Therefore,
PDC is both P -and D-closed.

1.4.1

Call a category ⊕
∏

-closed if all small direct products and direct sums exist in C. It follows that PDC
is ⊕

∏
-closed if such is C.

The goal of the subseqent subsection is to provide a tool for constructing ⊕
∏

-closed dg-categories.

1.5 Precofilters

Let S be a set. By definition, a pre-cofilter F on S is a collection of subsets on S satisfying:

— if X ∈ F and Y ⊂ X, then Y ∈ F ;

— if X1, X2 ∈ F , then so is X1 ∪X2.

1.5.1

Let P be any family of subsets of S. Let precofilter(P ) be the smallest pre-cofilter containing P . We
have: U ∈ precofilter(P ) iff U is contained in a finite union of subsets from P . We call precofilter(P )
the pre-cofilter generated by P .

1.5.2 Product of precofilters

Let S1, S2 be sets and F1,F2 precofilters. Let F1 × F2 be the pre-cofilter generated by all subsets
U1 × U2 ⊂ S1 × S2, where U1 ∈ F1 and U2 ∈ F2.

Let pi : S1 × S2 → Si be the projections. We see that U ∈ F1 ×F2 iff pi(U) ∈ Fi, i = 1, 2.

1.5.3 Convolution of subsets

Finally, for E ⊂ S1×S2 and F ⊂ S2×S3 we define E ◦F ⊂ S1×S3 to consist of all (s1, s3) ∈ S1×S3,
where there exists s2 ∈ S2 such that (s1, s2) ∈ E and (s2, s3) ∈ F .

If U ⊂ S1, V ⊂ S1 × S2, and W ⊂ S3, we define U ◦ V ⊂ S2 and V ◦W ⊂ S1 in a similar way.
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1.5.4 Properness

As above, let E ⊂ S1 × S2 and F ⊂ S2 × S3. We say that the convolution E ◦ F is proper if for all
(s1, s3) ∈ S1 × S3, the set

{s2 ∈ S2|(s1, s2) ∈ E; (s2, s3) ∈ F}
is finite.

1.5.5 Precofilter hom

Let Fi be a cofilter on Si, i = 1, 2. Define Hom(F1,F2) on S1×S2 to consist of all U ⊂ S1×S2, where

– for every L ∈ F1, L ◦ U ∈ F2 and the convolution L ◦ U is proper.

1.5.6 Dual precofilter

Let F be a pre-cofilter on S. Define a cofilter F∨ on S to consist of all subsets U ⊂ S, where V ∩ U
is finite for every V ∈ F .

We have F∨ = Hom(F , T ), where T is a pre-cofilter on the one-element set consisting of all its subsets.

1.5.7 Cofilters

We have an inclusion F ⊂ (F∨)∨. Call F a cofilter if this inclusion is an equality. Observe that any
pre-cofilter of the form G∨ is a co-filter.

1.5.8 Formula for Hom

Let Fi be pre-cofilters on Si, F2 being a co-filter, we then have

Hom(F1,F2) = (F1 ×F∨2 )∨.

In particular, Hom(F1,F2) is a co-filter.

1.5.9 Product of cofilters

Suppose that both F1 and F2 are cofilters. Then so is F1 ×F2.

Sketch of the proof. Denote by Πk a co-filter on Sk consisting of all its subsets. Let also pk : S1×S2 →
S1 be the projection.

We have (F1 × F2)∨ ⊃ (F1 × Π2)∨. The latter cofilter consists of all subsets Σ ⊂ S1 × S2 satisfying
p1(Σ) ∈ F∨1 and every fiber of the projection p1 : Σ→ S1 must be finite. It follows that (F1×Π2)∨∨ =
F1×Π2. Indeed, if X ⊂ S1×S2 and p1(X) /∈ F1, then there exists a Y ∈ F∨1 such that p1(X)∩Y = Z
is infinite. Therefore, there exists a subset W ⊂ X which is mapped bijectively onto Z via p1. It
follows that W ∈ (F1 ×Π2)∨ and W ∩X is infinite.

Hence, (F1 ×F2)∨∨ ⊂ F1 ×Π2. Similarly, (F1 ×F2)∨∨ ⊂ Π1 ×F2, which implies

(F1 ×F2)∨∨ ⊂ F1 ×Π2 ∩Π1 ×F2 = F1 ×F2.

As F∨∨ ⊃ F for any pre-cofilter F , the statement follows.
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1.5.10 Families of cofilters

Let π : S → T be a map of sets. Fix cofilters F on T and Ft on St := π−1t, t ∈ T . Define a cofilter
Φ :=

∏
t∈T
FFt to consist of all subsets U ⊂ S such that π(U) ∈ F and U ∩ St ∈ Ft for all t ∈ T .

Equivalently: given any H ⊂ S such that H ∩ St ∈ F∨t and π(H) ⊂ F∨, then H ∩ U is finite.

This implies:

(∏
t∈T

F
Ft

)∨
=
∏
t∈T

F∨
F∨t .

1.5.11 Product of A-modules over a cofilter

Let S be a set and let Xs, s ∈ S be a family of A-modules. Let F be a cofilter on S. Set∏
s∈S

F
Xs ⊂

∏
s∈S

Xs

to consist of all families {xs}s∈S where the set {s ∈ S|xs 6= 0} belongs to F . We have natural maps(∏
s∈S

F
Xs

)⊗∏
t∈T

G
Yt →

∏
(s,t)∈S×T

F×G
Xs ⊗ Yt;

∏
(s,t)∈S×T

Hom(F ,G)
Hom(Xs, Yt)→ Hom

∏
s∈S

F
Xs;

∏
t∈T,G

Yt

 .

1.6 Aggrandizement

Let C be a category enriched over the category of A-modules. Let us define a new category agg C
enriched over the same category as follows.

— Objects of agg C are of the form (S,F , {Xs}s∈S), where S is a set, F is a cofilter on S, and Xs ∈ C,
s ∈ S.

— Let Xi := (Si,Fi, {(Xi)s}s∈S), i = 1, 2. Set

Homagg C(X1,X2) :=
∏

(s1,s2)∈S1×S2

Hom(F1,F2)
Hom(Xs1 , Xs2).

We have a natural functor
� : agg(C1)⊗ agg(C2)→ agg(C1 ⊗ C2),

where
(S,F , {Xs}s∈S) � (T,G.{Xt}t∈T ) := (S × T,F × G, {Xs ⊗ Yt}).

This implies that a (symmetric) monoidal structure on C caries over to agg C.
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If C is enriched over a monoidal category M, then agg C is enriched over aggM.

It follows that agg C is ⊕
∏

-closed.

If C is a dg-catregory, then so is agg C.

1.6.1

We have natural functors: K : agg agg C → agg C and Hom : (agg C)op ⊗ aggD → agg(Cop ⊗D).

— K. Let π : S → T be a map of sets, let St := π−1t, t ∈ T . and X : S → C. Let FT be a cofilter on
T and FSt on St. Every object Y of agg agg C is of the form

Y =
∏
t∈T

FT ∏
s∈St

Xs.

Let Φ be a cofilter on S, where U ∈ Φ iff U ∩ St ∈ FSt for all t and π(U) ∈ FT , that is

Φ =
∏
t∈T

FT
FSt .

Set

K(Y ) :=
∏
s∈S

Φ
Xs.

—Hom. Let U =
∏F
s∈S Xs ∈ agg C and V =

∏G
t∈T Ys ∈ aggD. Set

Hom(U, V ) :=
∏

(s,t)∈S×T

Hom(F,G)
(Xs;Yt).

1.7 Swell

For a dg-category C denote swell0 C := PD agg C viewed as a dg-category. The resulting category is
PD ⊕

∏
-closed.

1.7.1 Graded free A-modules

Let grad be a dg-category whose objects are of the form [n], n ∈ Z. Set Hom([n], [m]) = A[m − n]
Introduce a SMC on grad by setting [n]⊗ [m] = [n+m]; define the brading Bnm : [n]⊗ [m]→ [m]⊗ [n]
to be equal (−1)nm.

1.7.2 Definition of swell

Set swell(C) = swell0(C ⊗ grad). The advantage of swell(C) over swell0(C) is the existence of cones
and shifts.
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1.7.3 Properties

There are natural functors

� : swell C ⊗ swellD → swell(C ⊗ D);

Hom : swell Cop ⊗ swellD → swell(Cop ⊗D).

These functors are obtained via extension from agg C, aggD.

Therefore, if C is an SMC, then so is swell C. If D is enriched over a SMC C, then swellD is enriched
over swell C. Furthermore, if C is an SMC, then the tensor product is compatible with the direct
products in the obvious way.

If C is an SMC with an inner hom then so is swell C and that this inner hom is compatible with the
direct sums and direct products in the obvious way.

We have a natural functor swell swell C → swell C.

1.7.4

Let F : C → swellD be a dg-functor. It induces a functor

swellF : swell C → swell swellD → swellD.

1.8 Contraction and Co-contraction of Kernels

1.8.1 Preliminaries

Let Com be a dg-category of complexes of free A-modules. We have an obvious functor Com⊗ C →
swell C.

1.8.2 Contraction

Let h : D ⊗Dop → Com be the hom functor. Define a contraction functor

◦ := ◦D : swell(Cop⊗D)⊗ swell(Dop⊗E)
�→ swell(Cop⊗D⊗Dop⊗E)

h→ swell(Cop⊗Com⊗E)

→ swell swell(Cop ⊗ E)→ swell(Cop ⊗ E).

Define a co-contraction functor:

Hom := HomC : swell(C⊗D)op⊗swell(C⊗E)
Hom→ swell(Cop⊗Dop⊗C⊗E)

h→ swell(Dop⊗Com⊗E)

→ swell swell(Dop ⊗ E)→ swell(Dop ⊗ E).

1.8.3 Associativity

The contraction functor has an obvious associativity property.

13



2 Category GZ

Let pt be the category with one object whose endomorphism group is A. Set GZ := swell(pt).

We have an internal Hom in GZ as well as a tensor functor || from GZ to the category of complexes
of A-modules.

2.1 Explicit description of objects from GZ

Every object in GZ is the following collection of data:

(S, F, g,D, P ),

where S is a set, F is a cofilter on S, g : S → Z is an arbitrary map, and

D ∈ Hom1(

F∏
s∈S

[g(s)];

F∏
s∈S

[g(s)]); D2 = 0;

P ∈ Hom0(
F∏
s∈S

[g(s)];
F∏
s∈S

[g(s)]); P 2 = P ; DP = PD.

2.2 Tensor product

Denote by ⊗ the functor

⊗ : GZ⊗ swell C �→ swell(pt⊗ C) = swell(C)

and likewise for the isomorphic functor ⊗ : swell C ⊗GZ→ swell C.

2.3 Truncation

2.3.1 Categories GZ≤k, GZ≥k etc.

Let grad≤k be the full subcategory of grad consisting of all objects [n], n ≤ k and grad≥k be the full
subcategory consisting of all [n], n ≥ k. Let grad=k be the full sub-category consisting of one object
[k], etc. Let GZ≤k := swell0 grad≤k; GZ≥k := swell0 grad≥k etc.

2.3.2 Stupid truncation

Let X := (S, F, g,D, P ) ∈ GZ, where (S, F, g,D, P ) is as in Sec 2.1.

Let us define an object X≤k, where k ∈ Z.

Set S≤k := {s ∈ S|g(s) ≤ k}. Set

F≤k := {A|A ∈ F ;A ⊂ S≤k}.

14



Set g≤k := g|S≤k .

We have an obvious retraction in GZ:

F≤k∏
s∈S≤k

[g≤k(s)]
I→
F∏
s∈S

[g(s)]
Q→
F≤k∏
s∈S≤k

[g≤k(s)].

Set D≤k := QDI; P≤k := QPI.

Set X≤k := (S≤k, F≤k, g≤k, D≤k, P≤k).

We thus have constructed a functor of categories over sets:

−≤k : GZ→ GZ≤k.

It follows that this functor is the right adjoint to the embedding GZ≤k → GZ.

Likewise one defined a functor −≥k which is the left adjoint to the embedding GZ≥k → GZ.

One has a natural map
δ : X≤k[−1]→ X≥k+1

so that we have an isomorphism in GZ
X ∼= Cone δ.

2.3.3 The object Xk

We set Xk := (X≤k)≥k. The object Xk has zero differential.

2.3.4 Truncation

We say that an object X ∈ GZ admits a truncation if there exists a universal object τ≤kX ∈ GZ≤k
which maps into X. We say that X ∈ GZ stably admits a truncation if every object Y ∈ GZ which
is homotopy equivalent to X, admits a truncation.

Likewise, for X ∈ GZ, we denote by τ≥k(X) the universal object in GZ≥ (if exists) endowed with a
map X → τ≥kX.

2.3.5 Lemma

Lemma 2.1 Let X ∈ GZ≥0 and suppose it admits a truncation. Then τ≤X ∈ GZ=0.

Sketch of the proof Let Y := τ≤0X. Let ι : Y → X be the natural map. Let

C := Cone(Id : Y <0 → Y <0)[−1],

in other words,
C = (Y <0 ⊕ Y <0[−1], D),

Where D = Id : Y <0 → Y <0[−1]. It follows that D ∈ GZ≤0.

We have a natural map c : C → Y , where c|Y <0 = I; c|Y <0[−1] = −dI, where I : Y <0 → Y is the
embedding.

It follows that ιc = 0 which implies that c = 0, hence I = 0 and Y <0 = 0, which implies the statement.
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2.3.6 Lemma

Lemma 2.2 Let X ∈ GZ be homotopy equivalent to an object Y ∈ GZ≥0. Then there exists a direct
sum decomposition X = A⊕B, where A ∈ GZ≥0, B ∈ GZ≤0, and B is acyclic.

Sketch of the proof

By definition we have maps f : X → Y , g : Y → X, h ∈ Hom−1(X,X), where

IdX = gf + dh+ hd. (1)

Set π := dh|X0 : X0 → X0. We have

π2 = dhdh|X0 = d(hd)|X−1h|X0 . (2)

Let us restrict (1) onto X−1. As Y ∈ GZ≥0, gf = 0. Therefore, hd|X−1 = IdX−1−dh|X−1 . Substitute
this equality into (2):

π2 = d(hd)|X−1h|X0 = dhX0 + ddhh|X0 = π.

Thus π : X0 → X0 is a projector and we can decompose X0 = K ⊕ L where π|K = 0; π|L = Id|L.

We have d|L = dπ|L = 0. Denote DK : K → X0 d→ X>0.

Consider πd : X−1 → X0. We have

πd = dhd|X−1 = d(Id− dh)|X−1 = d|X−1 .

This shows that d|X−1 factorizes through L: d|X−1 : X−1 dL→ L→ X0. Set

DL := X<0 p→ X−1 dL→ L,

where p is the obvious projection.

Set A := (X<0 ⊕ L,DL); B := K ⊕X>0, DK). The restriction of h onto B shows that B is acyclic.
We see that thus chosen A and B satisfy all the conditions.

2.3.7 Lemma on stable truncation

Lemma 2.3 Every object of GZ≥0 admitting a truncation admits it stably.

Sketch of the proof Let Y ∈ GZ≥0 be an object admitting a truncation. Denote H := τ≤0Y . As
follows from Lemma 2.1, H ∈ GZ0. Let i : H → Y be the structure map.

Let X ∈ GZ be an object homotopy equivalent to Y . Let us decompose Y = A ⊕ B according to
Lemma ??. It follows that A is homotopy equivalent to Y . It now sufices to show that A admits a
truncation.

Fix a homotopy equivalence f : A→ Y ; g : Y → A; gf = IdA + dhA + hAd; fg = IdY + dhY + hY d.
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Let us prove that gi : H → A is the universal map from an object from GZ≤0 to A. Let f : U → A,
where U ∈ GZ≤0. It follows that f factors through U0:

U → U0 φ→ A.

It follows that dAφ = 0. We therefore have gfφ = φ + dhAφ + hAdφ = φ. On the other hand, the

map fφ : U0 → Y factors uniquely through H: fφ = iψ : U0 ψ→ H → Y so that φ = gfφ = giψ.
That is φ factors through gi. Let us check the uniqueness of this factorization which is equivalent to
the following statement. Let χ : U0 → H. Then giχ = 0 implies χ = 0. Indeed, we have:

0 = fgiχ = iχ+ hY diχ+ dhY iχ = iχ.

As i is a universal map, iχ = 0 implies χ = 0.

Corollary 2.4 Let X ∈ GZ be an object homotopy equivalent to an object Y from GZ≥0. Then
τ≤0X ∼= τ≤0Y ⊕B, where B ∈ GZ≤0 is an acyclic object.

Proof. Follows directly from the proof of Lemma.

2.3.8 Complexes of free modules

Let A-freemod be the category of complexes of finitely generated A-modules concentrated in the
non-negative degrees. One has an embedding of A-freemod ⊂ GZ≥0 as a full sub-category.

Lemma 2.5 Every object X ∈ A-freemod admits a truncation.

Sketch of the proof Let H := H0(X). We have a short exact sequence of A-modules:

0→ H → X0 → Coker d0 → 0. (3)

The embedding Coker d0 ↪→ X1 implies that Coker d0 is a finitely generated free A-module. Therefore,
the exact sequence (3) splits and we can write X = H ⊕ Y , where Y ∈ A-freemod; H0(Y ) = 0.

For every U ∈ A0, the natural map Hom(U ;Y 0) → Hom(U, Y 1) is an injection. Indeed, it suffices to
check this statement for U =

∏F
s∈S [0], in which case the statement can be checked directly. Therefore,

τ≤0Y = 0, whence τ≤0X = H. This implies the statement.

2.4 The category GZtrunc

Let GZtrunc be the full subcategory of GZ consisting of all objects which are homotopy equivalent
to an object from A-freemod. It follows that GZtrunc is a full symmetric monoidal sub-category of
GZ.
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2.4.1 The category contract

Let contract ⊂ GZ≤0 be the full sub-category whose each object is isomorphic to a direct sum M⊕T ,
where M is a finitely generated free A-module (concentrated in degree 0) and M ∈ GZ≤0 is an acyclic
object. The category contract is a full symmetric monoidal sub-category of GZ≤0.

It follows that every such an object M ⊕T ∈ GZ≥0 admits a truncation τ≥0, where τ≥0(M ⊕T ) = M .

Therefore, we have a sequence of lax symmetric monoidal functors (enriched over sets):

GZtrunc
τ≤0→ contract

τ≥0→ A-freemod0,

where A-freemod0 is the category of finitely generated free A-modules.

The lax structure on τ≤0 follows from the universal property of τ≤0. Indeed, τ≤0A ⊗ τ≤0B ∈ GZ≤0,
therefore, the natural map τ≤0A⊗ τ≤0B → A⊗B factors through τ≤0(A⊗B).

Similarly, we have a natural map τ≥0(A ⊗ B) → τ≥0A ⊗ τ≥0B which is an isomorphism if A,B ∈
contract, so that τ≥0 is a tensor functor.

We have embeddings as full sub-category A-freemod0
I→ contract

J→ GZtrunc. Each of these
embeddings is a tensor functor. By definition, I is left adjoint to τ≤0 and J is right adjoint to τ≥0 so
that we have natural transformations of tensor functors

Iτ≤0 → IdGZtrunc; Idcontract → Jτ≥0.

3 Filtered objects

Let C be a symmetric monoidal category enriched over A-mod. Suppose C is PD
⊕∏

-closed. Finally,
we assume that the tensor product in C commutes with direct sums.

3.1 Category filtC ′

Let filtC′ be a dg category whose each object X is by definition a collection of objects griX ∈ C,
i ∈ Z. We set

HomfiltC′(X,Y ) =
∏
n≤m

HomC(Xn, Xm).

One has a SMC structure on filtC′, where

grn(X ⊗ Y ) =

n⊕
p=0

Xp ⊗ Y n−p.

Let us define a functor || : filtC′ → C, where

|X| =
⊕
n<0

grnX ⊕
∏
n≥0

grnX.

We call |X| the total of X.
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We have a lax tensor structure on |X|, that is we have a natural transformation

|X| ⊗ |Y | → |X ⊗ Y |.

Indeed (we set Xn = grnX; Ym = grmY ):

|X|⊗ |Y | = (
⊕
m≤0

Xm⊗
⊕
n≤0

Ym)
⊕

(
⊕
m≤0

Xm⊗
∏
n≥0

Ym)
⊕

(
∏
m≥0

Xm⊗
⊕
n≤0

Ym)
⊕

(
∏
m≥0

Xm⊗
∏
n≥0

Ym)

→ (
⊕
m,n≤0

Xm ⊗ Yn)⊕
⊕
m<0

∏
n≥0

(Xm ⊗ Yn)⊕
⊕
n<0

∏
m≥0

Xn ⊗ Ym ⊕
∏

n,m≥0

Xn ⊗ Ym

=
⊕
m

∏
n≥m

Xm ⊗ Yn
⊕
n

Next, for every m ∈ Z we have a map∏
n≥m

Xm ⊗ Yn =
∏

n+m≥2m

Xm ⊗ Yn →
∏

n+k≥2m

⊕
k≤m

Xk ⊗ Yn → |X ⊗ Y |.

Likewise we have a map ∏
m>n

Xm ⊗ Yn → |X| ⊗ |Y |,

which finishes the construction.

Let filtC′− ⊂ filtC be the full sub-category of objects X satisfying: there exists an M ∈ Z such that
grmX = 0 for all m > M . The restriction of || onto this sub-category is then a strict tensor functor.

For X ∈ filtC′ define an object F≥kX, where

grlF≥kX = grlX if l ≥ k;

grlF≥kX = 0ifl < k.

Define F≤k in a similar way. We have natural transformations

F≤kX → X → F≥kX. (4)

3.2 The category filtC

Set filtC := DfiltC′; filtC− := DfiltC′− etc. The functors F≥k, F≤k and the natural transformations
(4) carry over to filtC. Let (X,D) ∈ filtC. The component of the differential D which maps Xk−1 to
Xk defines a natural transformation δ : F≤k−1X → F kX[1] so that we have an isomorphism

(X,D) = Cone δ.
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3.3 Filtered homotopy equivalences

For (X,D) ∈ filtC set GrkX := |F≥kF≤kX| ∈ C. We have GrkX = (grk, Dkk), where Dkk : Xk → Xk

is the component of D.

Proposition 3.1 Suppose GrkX are acyclic. Then both X and |X| are acyclic.

Sketch of the proof Set Xn = grnX; Xm = grmX. By definition

D ∈
∏
n≥m

Hom1(Xn, Xm) =
∏
s≥0

Hs

where Hs =
∏
n Hom1(Xn, Xn+s). Thus we can write D =

∑
s≥0Ds, where Ds ∈ Hs. We are given

that the object (X,D0) is acyclic.

We are to solve an equation
Dh+ hD = Id,

where h ∈ Hom−1(X,X). Or, in the components,

dhs +D0hs + hsD0 = us

where u0 = Id and for s > 0, us =
∑

0<i≤sDihs−i + hs−iDi. One can resolve this system recursively
by s, using the acyclicity of (X,D0).

3.3.1 Corollary

Corollary 3.2 Let f : X → Y be an arrow in filtC such that all the induced maps Grkf : GrkX →
GrkY are homotopy equivalences. Then f and |f | : |X| → |Y | are homotopy equivalences.

Set |X| = (
⊕
n≥0

grnX,D) We have thereby a strict symmetric monoidal functor filtC → C.

3.4 Derived Tensor product

Let F : C → swellU and G : Cop → swellV be functors between GZ- categories (that is cateories
enriched over GZ). C may be a non-unital category.

Define an object F ⊗L G ∈ swell(U ⊗ V) as follows.

For N ≥ 0, set

gr−N ⊗L (F,G) :=
⊕

C0,C1,...,CN

F (C0)⊗Hom(C0, C1)⊗ · · ·⊗Hom(CN−1, CN )�G(CN ) ∈ swell(U ⊗V).

We have the standard bar-differential on ⊗L(F,G) which gives rise to an object (⊗L(F,G), D) ∈
filt swell(U ⊗ V). Set F ⊗L G := (⊗L(F,G), D).
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3.4.1 Relative derived tensor product

Let F : D ⊗ C → swellU , G : Cop ⊗ E → swellV. Let d ∈ D; e ∈ E . Let Fd : C → swellU ;
Ge : Cop → swellV be the restrictions. Let us define a functor F ⊗LC G : D⊗E → swell(U ⊗V), where

F ⊗LC G(d, e) := Fd ⊗L Ge.

3.4.2

Let I be a poset. Denote by the same symbol I a non-unital category, where HomI(i, j) = Z if i < j,
and HomI(i, j) = 0 otherwise. Let I be a finite poset and let F : I → swellU ; G : Iop → swellV.
Then we have gr−N ⊗L (F,G) = 0 if N exceeds the number of elements in I.

3.5 Hocolim

Let C be a GZ-category and I be a small category. Let J be the A-span of I. Let const : Jop → GZ
be the constant functor, constop(j) = Z. Let F : I → swell(C) be a functor. Still denote by F its
extension F : J → swell(C).
Set

hocolimI F := F ⊗L const.

3.6 Derived Hom

Let F : C → swellU and G : C → swellV be dg functors between GZ- categories.

Define an object RHomC(F,G) ∈ swell(Uop ⊗ V) as follows. For N ≥ 0, set

grN RHom(F,G) :=
⊕

C0,C1,...,CN

Hom(F (C0)⊗Hom(C0, C1)⊗· · ·⊗Hom(CN−1, CN );G(CN )) ∈ swell(Uop⊗V)

We have the standard bar-differential D on RHom(F,G). Still denote

RHom(F,G) := |RHom(F,G)| ∈ swell(Uop;V).

3.7 Holim

Let C be a GZ-category and I be a small category. Let J be the A-span of I. Let C : J → GZ be
the constant functor, C(j) = Z. Let F : I → swell(C) be a functor. Denote by the same letter the
extension of F onto J . Set

holimI F := RHom(C,F ) ∈ swell C.
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3.7.1 Homotopy stability

Let F,H : C → U ; G : Cop → V.

Proposition 3.3 Supppose F (c) is acyclic for all c ∈ C. Then F ⊗L G, RHom(F,H), and
RHom(H,F ) are acyclic.

The Proposition follows from Prop. 3.1.

Corollary 3.4 If F (i) is acyclic for all i ∈ I, then so are holimF and hocolimF .

3.7.2 Functoriality

Let f : I → J , F : J → C be functors. We have natural maps

f∗ : holim(F )→ holim(Ff); f! : hocolim(Ff)→ hocolim(F ).

Suppose g : J → I is a right (or left) adjoint to f . Then f! and g! are quasi-inverse to each other,
same for f∗ and g∗.

3.8 Filtered limits and colimits

Recall that a poset I is called filtered if for every finite subset S ⊂ I there exists an i ∈ I such that
i ≥ s for all s ∈ S, such an i is called an upper bound of S. A subset J ⊂ I is called co-final if every
finite subset S ⊂ I has an upper bound from J .

Let ι : J → I be the embedding and let F : I → C be a functor. We have a natural map

ι! : hocolimI F ◦ i→ hocolimJ F.

Proposition 3.5 The map ι! is a homotopy equivalence.

Sketch of the proof. Still denote by J, I the A-spans of J, I. 1. Let h : J ⊗ Iop → GZ; h(j, i) =
HomI(i, j). We have a term-wise quasi-isomorphism of functors J → C

F ⊗LI h→ F ◦ ι.

2) We have natural map
h⊗LJ constJ → constI .

This map is a quasi-isomorphism of functors. Indeed, for each i ∈ I, we need to prove that the natural
map

h(i,−)⊗LJ constJ → A (5)

is a homotopy equivalence.

2.1) We have an obvious embedding I : Ab → GZ, where Ab is the category of complexes of free
abelian groups bounded from above.
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The map in (5) can be obtained from a similar map in Ab under I. The corresponding map in Ab is
known to be a homotopy equivalence because it is isomorphic to the natural map

hocolimj∈J ;j≥i A→ A.

2.2) We have a commutative diagram

F ◦ i⊗LJ constJ
i! // F ⊗LI constI

F ⊗LI h⊗LJ constJ

∼

OO
∼

66

which implies that the horizontal arrow is a homotopy equivalence.

3.8.1 Constant functor on a poset with the least element

Proposition 3.6 Let I be a poset with the least element. Then the natural map hocolimI A→ A is a
homotopy equivalence.

Sketch of the proof We have an isomorphism constI(−) = HomI(x,−). Therefore, we have a homotopy
equivalence

HomI(x,−)⊗L constIop
∼→ A(x) = A.

3.8.2 Constant functor on a filtered poset

Proposition 3.7 Let I be a filtered poset. Then the natural map

hocolimi∈I A→ A

is a homopy equivalence.

Sketch of the proof Let x ∈ I and let I≥x ⊂ I consist of all y ∈ I, y ≥ x. The subset I≥x is cofinal.
Consider the through map

hocolimi∈Ix A
∼→ hocolimi∈I A→ A.

It is a homotopy equivalence by the previous subsection. This implies the statement.

3.8.3 Reduction to the colimit over the set of all finite subsets

Let I be a poset. Let P (I) be the poset of all non-empty finite subsets of I ordered with respect to
the inclusion.

Let F : I → C be a functor. Let PF : P (I)→ C be defined by

PF (S) := hocolims∈S F (s)
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Let Q(I) ⊂ P (I) consist of all subsets S possessing the greatest element. Denote by µ(S) the greatest
element of S. We then have a monotone map

µ : Q(I)→ I.

We have a natural transformation ε : PF |Q(I) → µ−1F of functors Q(I)→ C. For every S ∈ Q(I), µ
induces a homotopy equivalence in C

PF (µ(S))
∼→ µ−1F (S) = F (µ(S)). (6)

The map µ induces maps

hocolimQ(I) PF → hocolimQ(I) µ
−1F → hocolimI F. (7)

The left arrow is a homotopy equivalence by (6). Let us show that the right arrow is a homotopy
equivalence. It suffices to check it for F (−) = A[HomI(i,−)], i ∈ I. Let Z ⊂ Q(I) consist of all S
with µ(S) ≥ i. The problem reduces to showing that the following map

hocolimZ A→ hocolimI≥i A

induced by µ is a homotopy equivalence which follows from the fact that Z is filtered and I≥i has the
least element so that both the natural map

hocolimI≥i A→ A

and the through map
hocolimZ A→ hocolimI≥i A→ A

is a homotopy equivalence, whence the statement.

Thus, the through map (7) is a homotopy equivalence.

3.8.4 Nilpotent functors

Let I be a filtered poset and F : I → C a functor. Call F nilpotent if for every x ∈ I there exists a
y ∈ I, y ≥ x such that the map F (x)→ F (y) is homotopy equivalent to 0.

Theorem 3.8 Let F be nilpotent. Then hocolimI F is acyclic.

Sketch of the proof

A. According to the previous subsection it suffices to show that hocolimQ(I) PF is acyclic. It follows
that PF : Q(I) → C is nilpotent. Thus, replacing I with Q(I) and F with PF allows us to assume
without loss of generality that for every element x ∈ I the set I≤x := {y|y ≤ x} is finite.

B. Using induction by #I≤x, one can show that there exists a monotone map φ : I → I such that
φ(x) ≥ x for all x and the natural map F (x)→ F (φ(x)) is homotopy equivalent to 0 for all x ∈ I.

C. Let G : I → C be an arbitrary functor. Show that the natural map

hocolimx∈I F (x)→ hocolimx∈I F (φ(x))
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is a homotopy equivalence.

It suffices to prove the statement for F (x) = Hom(i, x), i ∈ I. One can reprlace I with a cofinal subset
I≥i, in which case all the maps F (x)→ F (φ(x)) are isomorphisms, whence the statement.

D. Set Fn : I → C,
Fn(x) = F (φ ◦ φ ◦ · · · ◦ φ︸ ︷︷ ︸

n times

(x)).

We have natural maps
in : Fn → Fn+1, n ≥ 0.

It follows that the induced map

hocolimI F
n → hocolimFn+1

is a homotopy equivalence. Therefore, hocolimI F is homotopy equivalent to

hocolimn hocolimI F
n = hocolimI hocolimn F

n.

It also follows that the induced map Fn(x)→ Fn+1(x) is homotopy equivalent to 0. This implies that
hocolimn F

n(x) is acyclic for every x. Therefore, the natural map

hocolimI hocolimn F
n → hocolimI 0 = 0

is a homotopy equivalence, as we wanted.

3.9 Stability of a functor

Let IC : C → swell C and JC : Cop → swell(Cop) be the embedding functors. Set

∆C := JC ⊗LC IC ∈ swell(Cop ⊗ C).

For every S ∈ swell(C) we have a narural map

S ◦∆C → S.

Call S stable if this map is a homotopy equivalence.

3.9.1 Equivalent definition

The hom-functor Hom : Cop × C → GZ extends naturally to a functor

Hom : Cop ⊗ swell C → GZ.

For S ∈ swell C we thus get a functor hS : Cop → GZ. Let IdC : C → C be the identity functor. Set
R(S) := hS ⊗L IdC ∈ swell(C).
We have a natural map R(S)→ S. S is stable iff this map is a homotopy equivalence.
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3.9.2

Let F : Cop → GZ be a GZ- functor. Set

R(F ) := F ⊗L IdC . (8)

We have S ◦∆C = R(hS) for any S ∈ swell(C).

Proposition 3.9 Every object of the form R(F ) is stable.

Follows from the associativity of ⊗.

3.9.3

Let X ∈ swell(Cop ⊗D) and Y ∈ swell(Dop ⊗ E) be stable, then so is X ◦ Y .

3.9.4

Let F : C → D be a functor. Let X ∈ swell(C) be a stable functor. Then the functor swell(F )X is
stable.

Indeed, we have swell(F )(X ◦∆C) = (X ◦ JC)⊗LC (swell(F )IC). The natural transformation

(swell(F )IC) ◦∆D → swell(F )IC

of functors C → swellD is a term-wise weak equivalence. This implies the statement.

4 Classical categories

4.1 Categories Qε, Q∞

Let ε be a positive real number or ∞. Let Qε be the following category enriched over the category
A-freemod. Set ObQε := R Denote by ea the object of Qε corresponding to a real number a. Set
Hom(ea, eb) = Z if a ≤ b < a+ ε. Set Hom(ea, eb) = 0 otherwise.

We have an SMC structure on Qε via ea ⊗ eb = ea+b. The categories Qε have internal hom. We have
strict tensor functors red : Qε1 → Qε2 , ε1 ≥ ε2.

4.1.1 The category Qω

Let Qω be the union of all Qε, ε ∈ {1, 1/2, 1/4, . . . , 1/2n, . . .}∪{∞}. Let us define hom. Let eε1a ∈ Qε1
and eε2b ∈ Qε2 . Set Hom(eε1a , e

ε2
b ) = 0 if ε1 < ε2. Otherwise, set

Hom(eε1a , e
ε2
b ) = HomQε2

(ea, eb).

We also have an SMC structure on Qω, where

eε1a ⊗ e
ε2
b := e

min(ε1,ε2)
a+b .
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We also have an internal hom
Hom(eε1a ; eε2b ) = 0

if ε1 ≤ ε2. Otherwise,
Hom(eε1a ; eε2b ) = eε2b−a.

4.1.2 The regularized categories R1/2n, Rω

Let R1/2n ⊂ Q1/2n be the full sub-category consisting of all objects of the form em/2n , m ∈ Z. The sub-
category R1/2n is discrete and closed under the tensor product. The embedding I1/2n : R1/2n → Q1/2n

has a right adjoint, to be denoted by pr1/2n , where pr1/2nea = em/2n , where m is the largest integer
satisfying m/2n ≤ a. Let R1/2n := swellR1/2n , the functors I,pr extend to functors I1/2n : R1/2n →
Q1/2n , pr1/2n : Q1/2n → R1/2n .

Let us define a full sub-category of Rω ⊂ Qω consisting of all objects of the form e
1/2n

m/2n , n = 0, 1, 2, . . .,
m ∈ Z. Rω is closed under the tensor product so that the embedding I : Rω → Qω is a tensor functor.

The functor I has a right adjoint, to be denoted by pr, where pr(e
1/2n

a ) = e
1/2n

m/2n , where m is the largest

integer satisfying m/2n ≤ a. We have a lax tensor structure on pr i.e. a natural transformation

pr(X)⊗ pr(Y )→ pr(X ⊗ Y )

satisfying the associativity condition.

Let Rω := swellRω. The functor pr extends to a lax tensor functor pr : Qω → Rω. Via pr, the SMC
Q+
ω is enriched over the category Qω.

4.1.3 A Hopf algebra ` in Rω

Let P be the set of all numbers of the form m/2n, m > 0, n ≥ 0. For a ∈ P let den(a) := 1/2n, where
n is the smallest non-negative integer such that 2na ∈ Z. Let V ∈ Qω be defined by V :=

∏
a∈P

λa,

where λa := e
den(a)
a . Let pa : V → fa be the projection. Let

Da
b,a−b : fa → fb ⊗ fa−b, 0 < a < b

be the natural map.

Let D : V → V ⊗ V be defined as D =
∑

0<a<bD
b,a−b
a pra.

Let

` :=
∞⊕
k=0

(V[−1])⊗k.

We have an obvious Hopf algebra structure on `, where the product is the concatenation and the
co-product is given by requiring that V[−1] is primitive.
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4.1.4 `-modules in Rω: the category Rq

Let Rq be the following category: its objects are of the form f
1/2n

m/2n , m,n ∈ Z, n ≥ 0. and

Hom(f
1/2n

m/2n , f
1/2N

M/2N
) = A whenever n ≤ N and m/2n ≤M/2N ; Hom(f

1/2n

m/2n , f
1/2N

M/2N
) = 0 otherwise.

It is clear that every `-module X in Rω gives rise to an object of swellRq, to be denoted by [X].

Let Rq be the category, enriched over GZ, whose every object is a `-module in Rω and we set

HomRq(X,Y ) := HomswellRq([X], [Y ]).

We have a tensor structure on Rq, where we let X ⊗ Y to be the same as in the category Rω with
the induced `-module structure (coming from the co-product on `). This tensor structure admits an
inner hom, again borrowed from Rω.

4.1.5 Tensor functor Q∞ → Rq

Let Q
1/2n

∞ ⊂ Q∞ be the full sub-category formed by all objects of the form em/2n , m ∈ Z. We have

a right adjoint functor to the embedding pn : Q∞ → Q
1/2n

∞ , where pn(ea) = em/2n and m is the

largest integer such that m/2n ≤ a. We have an embedding in : Q
1/2n

∞ → Rq, in(em/2n) = f
1/2n

m/2n . Let
πn : Q∞ → Rq be induced by inpn. We have a tensor structure on πn.

We have a natural transformation of tensor functors πn → πn+1. Set π(X) = hocolimn πn(X). We
have an induced tensor structure on π. Via π, every category enriched over Q∞ is enriched over Rq.

PART 2. SHEAVES

5 The category of sheaves

We fix a ground SMC C enriched over the category of finite complexes of finitely generated free
A-modules.

Let X be a locally compact topological space. Let OpenX be the category whose objects are open
sub-sets of X and we have a unique arrow U → V iff U ⊂ V . We denote by the same symbol the
A-span of OpenX .

Similarly, denote by precompactX the poset of all open precompact sets in X.

5.1 Pre-sheaves

Denote psh(X,C) := swell(Openop
X ⊗C); psh(X) := swell(Openop

X ).

5.2 Coverings

Let U ∈ OpenX . A covering of U is a subset U ⊂ OpenU satisfying:

— U is closed under finite intersections;

— the union of all elements in U is U .
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5.3 Various gluing conditions

5.3.1 Meyer-Vietoris Condition

Let F : OpenX → swellC be a functor. Say that F satisfies the Meyer-Vietoris conditon if, given a
pair of open subsets U, V of X, the total of the complex

0→ F (U ∩ V )→ F (U)⊕ F (V )→ F (U ∩ V )→ 0 (9)

is homotopy equivalent to 0.

5.3.2 Coverings

Let U be an open subset of X. Let U be a family of open subsets of U whose union is U and which
is closed under finite intersections.

We have an induced poset structure on U as well as an embedding IU : U → OpenX . Call U a finite
covering if U is a finite set.

5.3.3 Finite covering condition

Let F : OpenX → swellC be a functor. Let U be an open subset and U be its covering. We say that
F satisfies the gluing condition with respect to U if the natural map

hocolimU F → F (U)

is a homotopy equivalence. The Myer-Vietoris condition (9) is equivalent to the gluing condition with
respect to the covering {U, V, U ∩V } of the set U ∪V (where some of the sets U, V, U ∩V may concide).

Proposition 5.1 Suppose F satisfies the Meyer-Vietoris condition and F (∅) ∼ 0. Then F satisfies
the gluing condition for any finite covering U .

Sketch of the proof Let U be a covering of U . Say that a subset M ⊂ U generates U if every element
of U is a finite intersection of a finite number of elements from M .

Let us use induction by the number of elements in M . If M consists of one element, the statement is
obvious.

Let now M = {U1, U2, . . . , UN−1}. Let V := U1∪U2∪· · ·∪UN−1. Let V be the covering of V generated
by U1, U2, . . . , UN−1. LetW be the covering of V ∩UN generated by U1∩UN , U2∩UN , . . . , UN−1∩UN .

We have a complex:

0→ hocolimW F → hocolimV F ⊕ F (UN )→ hocolimU F → 0

whose totalization is acyclic for any functor F : OpenX → swellC. We also have a map of complexes

0 // hocolimW F //

��

hocolimV F ⊕ F (UN ) //

��

hocolimU F //

��

0

0 // F (V ∩ UN ) // F (V )⊕ F (UN ) // F (U) // 0
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By the induction assumption all the vertical arrows except the rightmost one are homotopy equiva-
lences. The bottom line is an acyclic complex by Meyer-Vietoris. Hence, the rightmost vertical arrow
is a homotopy equivalence, which prove the induction transition.

5.3.4 Direct limit condition

We say that a functor F : OpenX → swellC satisfies the direct limit condition if given any filtered
poset I and any monotone map U : I → OpenX , the natural map

hocolimi∈I F (Ui)→ F (
⋃
i∈I

Ui)

is a homotopy equivalence.

5.3.5

F : OpenX → swellC satisfies the gluing condition for any covering U iff F (∅) ∼ 0, F satisfies the
Meyer-Vietoris condition and the direct limit condition.

5.4 Definition of a sheaf

Let sh(X,C) ⊂ psh(X,C) be the full sub-category consisting of all objects F satisfying:

— F is stable;

— hF satisfies the gluing condition for all coverings of all open subsets of X.

5.5 sections supported on a compact set

Let K ∈ compactX . Denote

ΓK(F ) := holimU∈OpenX ;K⊂U hF (U).

We have
ΓK(F ) = Hompsh(X)(hocolimU∈OpenX ;K⊂U U ;F ).

5.6 Representability

Let us define an object AK ∈ sh(X), for every K ∈ compactX , with the property that we have a
natural transformation of functors psh(X,C)→ swellC:

Hom(A;−)→ ΓK(−).

which induces a homotopy equivalence

Hom(AK ;F )→ ΓK(F )

whenever F ∈ sh(X,C).
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5.6.1 Finite coverings of K

A finite covering of K is a finite subset U ⊂ OpenX satisfying:

— every element of U is a precompact subset of X;

— the union of all elements in U contains K;

— U is closed under intersection.

Denote by CovK the set of all finite coverings of K.

5.6.2 A pre-sheaf AU

For U ∈ CovK set
AU := holimU∈U AU ∈ psh(X).

denote by ιX : X → AU the natural map.

5.6.3 Cap-product

Denote by ∩ : OpenX ×OpenX → OpenX the following functor: ∩(U, V ) = U ∩ V . This functor
extends naturally to a functor

∩ : psh(X)⊗ psh(X)→ psh(X).

This functor gives a tensor structure on psh(X). The unit of this structure is X.

5.6.4 Definition of A′K .

Let S(K) be the poset of finite subsets of CovX . For I ∈ S(X), set

AI :=
⋂
U∈I

AU

Let I ⊂ J . We then have an induced map kIJ : AI → AJ given by

AI =
⋂
U∈I

AU ∩
⋂
U∈J\I

X →
⋂
U∈J

AU ,

which is induced by the maps ιU : X → AU , U ∈ J\I.

It is clear that kJKkIJ = kIK , I ⊂ J ⊂ K. Therefore, A− : S(K)→ psh(X) is a functor.

Set
A′K := hocolimI∈S(K) AI . (10)
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5.6.5 Lemma

Let U ,V ∈ CovK . Write U ≤ V if for every U ∈ U there exists a V ∈ V such that U ⊂ V .

Lemma 5.2 Suppose U ≤ V. Then the natural map

AU → AU ∩ AV

is a homotopy equivalence in psh(X).

Sketch of the proof The above map reads as

holimU∈U U → holimU∈U holimV ∈V U → holimU∈U holimV ∈V U ∩ V

Therefore, it suffices to show that for every U ∈ U the natural map

U → hocolimV ∈V U ∩ V

is a homotopy equivalence.

Denote by W ⊂ OpenU the sub-set consisting of all subsets of the form U ∩ V . We have a functor
ψ : V → W, ψ(V ) = U ∩ V . Let I :Wop → Openop

X be the embedding.

Let Ψ :Wop × V → GZ be given by Ψ(W,V ) = HomW(W ;ψ(V )). We have

I ◦ ψ = HomW (Ψ; I).

Whence a homotopy equivalence

holimV ∈V U ∩ V = RHomVop(A; HomW (Ψ; I))
∼→ RHomWop(AV ⊗LV Ψ; I).

The natural map AV ⊗LV Ψ→ AW is a homotopy equivalence, because for every W ∈ W we have

AV ⊗LV Ψ(W ) = hocolimV ∈V ;V ∩U⊃W
∼→ A,

and there exists the least element in V containing W . Thus, we have a homotopy equivalence

I(U)
∼→ RHomWop(AW ; I)

∼→ RHomWop(AV ⊗LV Ψ; I)

because U ∈ W is the greatest element.

Corollary 5.3 Let S ∈ S(K) and let V ∈ S satisfy V ≤ U for all U ∈ S. Then the natural map

AV → AS

is a homotopy equivalence.

Lemma 5.4 Let I ∈ CovX . The two maps i1 : AI = AI ∩X → AI ∩AI and i2 : AI = X∩AI → AI ∩AI
are homotopy equivalent.

Sketch of the proof We have a map

m : AI ∩ AI = holim(U1,U1)∈I×I U1 ∩ U2 → holim(U,U)∈I×I U ∩ U = AI .

We have mi1 = mi2 = Id. As i1, i2 are homotopy equivalences, so is m. As mi1 = mi2, the statement
follows.
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5.6.6 Proof that A′K belongs to sh(X).

Let us check the conditions from Sec 5.4.

A. Stability is stable under direct limits, so we are to check the stability of AU , which is a finite
complex of objects of the form U , U ∈ U , which implies the statement.

B. Direct limit condition. Let A ∈ OpenX and let A be a family of open subsets of A which forms a
filtered poset. We will show that the natural map

hocolimB∈A A′K(B)→ A′K(A)

is a homotopy equivalence. Equivalently, we are to prove:

hocolimI∈S(K) Cone((hocolimB∈A AI(B))→ AI(A))

is acyclic. To this end we will show that for every I ∈ S(K) there exists a J ∈ S(K), J ≥ I, such that
the map

Cone((hocolimB∈A AI(B))→ AI(A))→ Cone((hocolimB∈A AJ(B))→ AJ(A)) (11)

is homotopy equivalent to 0.

B1. Let I = {U1,U2, . . . ,Un}. Let us construct a covering V ∈ CovK with the following properties:

— there exist poset maps φk : V → Uk such that every V ∈ V satisfies (V ) ⊂ φk(V ) for all k.

Let U =
⋃
k Uk. One can choose an open subset U ′ ⊂ U for every U ∈ U such that U ′ ⊂ U . Let V

consist of all finite intersections of the sets U ′. For every V ∈ V, let Sk(V ) = {U ∈ Uk|V ⊂ U ′}. Set
φk(V ) :=

⋂
U∈Sk(V ) U .

B2. Set I :=
∏
k Uk. Set φ :=

∏
k φk : V → I. For i = (U1, U2, . . . , Un) ∈ I, set Ui := U1∩U2∩· · ·∩Un.

B3. Set J = I ∪ {V}.
It follows that V ≤ Uk, k = 1, 2, . . . , n.

Therefore, the natural map
AV → AJ = AV ∩ AI

is a homotopy equivalence.

The maps φk induce a map
π : AI → AV ∩ AV ∩ · · · ∩ AV

m→ AV .

We have a diagram

AV
∼
j
// AV ∩ AI

AI
i1 //

i2
//

π

OO

AI ∩ AI

∼ σ

OO

Here i1, i2 are as in Lemma 5.4 so that i1 ∼ i2 and both i1 and i2 are homotopy equivalences. We have
jπ = σi1. Therefore jπ ∼ σi2, where σi2 is the natural map AI → AJ . Therefore, one can replace in
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(11) the natural map AI → AJ by the map jπ. As j is a homotopy equivalence, we can replace jπ
with π, so that the problem now reduces to showing that the map

Cone((hocolimB∈A AI(B))→ AI(A))→ Cone((hocolimB∈A AV(B))→ AV(A))

is homotopy equivalent to 0. This map factorizes as

Cone((hocolimB∈A holimi∈I Hom(Ui, B))→ holimi∈I Hom(Ui, A))

→ Cone((hocolimB∈A holimV ∈V Hom(Uφ(V ), B))→ holimV ∈V Hom(Uφ(V ), A))

G→ Cone((hocolimB∈A holimV ∈V Hom(V,B))→ holimV ∈V Hom(V,A))

Let us show that the arrow G is homotopy equivalent to 0.

We have a homotopy equivalence

Cone((hocolimB∈A holimV ∈V Hom(Uφ(V ), B))→ holimV ∈V Hom(Uφ(V ), A))

→ Cone(hocolimB∈A holimV ∈V Hom(Uφ(V ), B)→ hocolimB∈A holimV ∈V Hom(Uφ(V ), A))

= hocolimB∈A holimV ∈V(Hom(Uφ(V ), B)→ Hom(Uφ(V ), A)).

Similarly, we have a homotopy equivalence

Cone(hocolimB∈A holimV ∈V Hom(V,B)→ holimV ∈V Hom(V,A))
∼→ hocolimB∈A holimV ∈V Cone(Hom(V,B)→ Hom(V,A)).

The arrow G is then homotopy equivalent to the arrow

G1 : hocolimB∈A holimV ∈V Cone(Hom(Uφ(V ), B)→ Hom(Uφ(V ), A))

→ hocolimB∈A holimV ∈V Cone(Hom(V,B)→ Hom(V,A))

induced by the embedding V ⊂ Uφ(V ).

Let VA ⊂ V consist of all those V ∈ V satisfying Uφ(V ) ⊂ A. It follows that V ⊂ A for all V ∈ VA.

Hence, there exists B0 ∈ A such that V ⊂ B0 for all V ∈ VA because all V are compact.

Let δA : Vop → GZ be defined by δA(U) = A if U ∈ VA and δA(U) = 0 otherwise. We have a natural
transformation δA → AVop .

The map G1 factorizes as follows:

hocolimB∈A holimV ∈V Cone(Hom(Uφ(V ), B)→ Hom(Uφ(V ), A))

= hocolimB∈A holimV ∈V δA(V )⊗ Cone(Hom(Uφ(V ), B)→ Hom(Uφ(V ), A))

→ hocolimB∈A holimV ∈V δA(V )⊗ Cone(Hom(V,B)→ Hom(V,A))

→ hocolimB∈A holimV ∈V Cone(Hom(V,B)→ Hom(V,A)).

It therefore suffices to show that the object

hocolimB∈A holimV ∈V δA(V )⊗ Cone(Hom(V,B)→ Hom(V,A))
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is acyclic.

The set of all B ∈ A, where B ⊃ B0 , is cofinal in A. Therefore, the above written object is homotopy
equivalent to

hocolimB∈A,B⊃B0 holimV ∈V δA(V )⊗ Cone(Hom(V,B)→ Hom(V,A))

But the map Hom(V,B) → Hom(V,A) is an isomorphism whenever B ∈ A, B ⊃ B0, V ∈ VA. This
implies the statement.

C. Finite covering condition. Let A ∈ OpenX and let T be a finite covering of A. Show that the map

hocolimB∈T A′K(B)→ A′K(A) (12)

is a homotopy equivalence.

C1) Choose a finite subset S ⊂ A such that X,Y ∈ T , X ∩ S = Y ∩ S implies X = Y . Consider the
set X consisting of all open sets U ∈ OpenX such that U ⊂ A and S ⊂ U . The poset X is closed
under union, hence, it is filtered.

C2) For each U ∈ X , we have a natural map

hocolimB∈T A′K(B ∩ U)→ hocolimB∈T A′K(B).

As follows from B), the natural map

hocolimU∈X hocolimB∈T A′K(B ∩ U)→ hocolimB∈T A′K(B)

is a homotopy equivalemce.

We have a commutative diagram

hocolimU∈X hocolimB∈T A′K(B ∩ U)
∼ //

��

hocolimB∈T A′K(B)

��
hocolimU∈X A′K(U)

∼ // A′K(A)

It therefore suffices to show that the left vertical arrow is a homotopy equivalence, which follows from

hocolimB∈T A′K(B ∩ U)→ A′K(U)

being a homotopy equivalence.

Observe that the open sets B ∩ U form an open covering of U , to be denoted by TU . It also follows
that if B1, B2 ∈ T and B1 ∩ U = B2 ∩ U implies B1 = B2. Therefore, the rule B 7→ B ∩ U is an
isomorphism of posets T → TU and we have an isomorphism

hocolimB∈T A′K(B ∩ U) = hocolimB′∈TU A′K(B′).

C3) Call a subset V ∈ OpenX small if V ∩ U is contained in some element of TU . Every point x ∈ X
has a small neighborhood Ux. Indeed, if x /∈ A, then choose Ux so that it does not intersect U ; if
x ∈ A, then there exists a B ∈ T such that x ∈ B and we can choose Ux so that Ux ⊂ B.
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Call a covering U ∈ CovK small if so is every element of U . As the intersection of small sets is small,
such coverings exist.

Let Σ ⊂ S(K) be a subset, where {U1,U2, . . . ,Un} ∈ Σ iff at least one of Ui is small. The subset Σ is
cofinal, therefore, the map

hocolimI∈Σ AI → A′K

is a homotopy equivalence. The proplem now reduces to showing that the natural map

hocolimB∈T AI(B ∩ U)→ AI(U)

is a homotopy equivalence for every I ∈ Σ.

It follows that every AI is a finite complex whose every term is of the form

Z := W ∩A1 ∩A2 ∩An

where W is a small open set. Therefore, AI is a finite comlex whose every term is of the form Z, where
Z is small.

It therefore suffices to show that the map

hocolimB∈TU Hom(Z,B)→ Hom(Z,U) (13)

is a homotopy equivalence.

If Z is not contained in U , both sides are 0. If Z ⊂ U , then let R ⊂ TU consist of all those B containing
Z. R is non-empty because Z is small. R has the least element (the intersection of all its elements).

The map (13) is isomorphic to the natural map

hocolimB∈R A→ A

which is a homotopy equivalence as R has the least element.

5.6.7 Lemma

Lemma 5.5 Let U ∈ OpenX be a neighborhood of K. Then the natural map A′K = X ∩A′K → U ∩A′K
is a homotopy equivalence.

Sketch of the proof Let δ := ConeX → U . We are to show that δ ∩ A′K ∼ 0.

Choose V ∈ OpenX , K ⊂ V ; V ⊂ U .

Let [V ] ∈ CovK be the covering consisting of a unique element V . It follows that δ ∩ AV ∼ 0. Let
SV ⊂ S(K) consist of all subsets containing [V ]. Then it follows that

δ ◦ hocolimI∈SV AI ∼ 0.

As SV ⊂ S(K) is cofinal, the natural map

hocolimI∈SV AI → hocolimI∈S(K) AI = A′K

is a homotopy equivalence, hence δ ∩ A′K ∼ 0.
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5.6.8 Fundamental system of coverings

A subset T ⊂ CovK is called the fundamental system of coverings of K if for every V ∈ CovK there
exists U ∈ T such that U ≤ V. Let S(T) ⊂ S(K) consist of all finite subsets of T. We have a natural
map

hocolimI∈S(T) AI → hocolimI∈S(K) AI = A′K .

Proposition 5.6 This map is a homotopy equivalence.

Sketch of the proof Define a subset Σ ⊂ S(K) to consist of all I ∈ S(K) such that for every U ∈ I
there exists a V ∈ I ∩T such that V ≤ U . Observe that Σ is a cofinal subset of S(K) so that we have
a homotopy equivalence

hocolimI∈Σ AI
∼→ hocolimI∈S(K) AI = A′K .

The problem reduces to showing that the natural map

hocolimI∈S(T) AI → hocolimI∈Σ AI (14)

is a homotopy equivalence.

For I ∈ S(K) denote r(I) := I ∩T ∈ S(T). We have a natural map

Ar(I) → AI

which is a homotopy equivalence for all I ∈ Σ.

Let i : S(T) ⊂ Σ be the embedding of posets. Let h : S(T)op × Σ → GZ be defined by h(x, y) =
HomΣ(i(x); y) We have HomΣ(i(x); y) = HomS(T)(x; r(y)).

We therefore have a commutative diagram

A− ⊗LS(T) HomS(T)(−;x)

∼
��

∼ // A− ⊗LΣ HomΣ(i(−); y)

��
Ar(y)

∼ // Ay

This diagram proves that the natural map

A− ⊗LS(T) HomΣ(i(−); y)→ Ay.

is a homotopy equivalence

In order to prove that (14) is a homotopy equivalence, it now remains to show that the natural map

hocolimy∈S(T) HomΣ(i(x); i(y))→ hocolimz∈Σ HomΣ(i(x); z)

is a homotopy equivalence for every x ∈ S(T), which is obvious because we have an isomorphism
HomS(T)(x, y)→ HomΣ(i(x), i(y)).
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5.6.9 Definition of AK

Let K be the poset of all neighborhoods of K. Set

AK := hocolimU∈K U ∩ A′K .

We have a natural map A′K → AK which is a homotopy equivalence by Sec 5.6.7.

5.6.10 Represenatability

The map X → A′K induces a map
hocolimU∈K U → AK

Let F ∈ sh(X). We have an induced map

Hom(AK ;F )→ Hom(hocolimU∈K U ;F ) = ΓK(F ).

Theorem 5.7 The above map is a homotopy equivalence.

Sketch of the proof. Let us rewrite the map:

Hom(hocolim(U,I)∈K×S(K) U ∩ AI ;F )→ Hom(hocolimU∈K U ;F ).

For U ∈ CovK , let |U| be the union of all elements in U . For I = {U1,U2, . . . ,Un} ∈ S(K), set

|I| = |U1| ∩ |U2| ∩ · · · ∩ |Un|.

The above map factors as:

Hom(hocolim(U,I)∈K×S(K) U ∩ AI ;F )
∼→ Hom(hocolimI∈S(K);U∈K,U⊂|I| U ∩ AI ;F )

u→ Hom(hocolimU∈K U ;F )

The first arrow in this sequence is a homotopy equivalence because the subset {(U, I) ∈ K×S(K)|U ⊂
|I|} ⊂ K × S(K) is cofinal. Therefore, the problem reduces to showing that the second arrow u is a
homotopy equivalence. Let us rewrite u as

holimU∈K holimI∈S(K)U Hom(U ∩ AI ;F )→ holimU∈KHom(U,F ).

It suffices to show that for every U ∈ K, the map

hocolimI∈S(K)U Hom(U ∩ AI ;F )→ hocolimI∈S(K)U Hom(U,F )→ Hom(U,F )

is a homotopy equivalence. The right arrow is a homotopy equivalence because the poset S(K)U is
filtered. Let us show that the left arrow is a homotopy equivalence, which reduces to showing that for
every I ∈ S(K)U , the map

Hom(U ∩ AI ;F )→ Hom(U,F )

is a homotopy equivalence.
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Let I = {U1,U2, . . . ,Un}. Let I := U1 × U2 × · · · × Un. For i = (U1, U2, . . . , Un) ∈ I, denote
Vi := U1 ∩ U2 ∩ · · · ∩ Un. We have

Hom(U ∩ AI ;F ) = hocolimi∈I F (Vi ∩ U).

It now follows that the natural map

hocolimi∈I F (Vi ∩ U)→ F (|I| ∩ U) = F (U)

is a homotopy equivalence by the finite covering gluing property of F . This finishes the proof.

5.6.11 The objects AK generate sh(X)

For U ∈ precompactX denote RU := AU , R : precompactop
X → sh(X).

We have natural transformations

AU
ι← hocolimV⊃U V

r→ U. (15)

For U ∈ precompactX set
CU := hocolimV⊃U V ∈ psh(X),

C : precompactop
X → psh(X). Let also I : precompactop

X → psh(X) be given by I(U) = U . so
that ι : R → I. We can now rewrite (15) as a diagram of natural transformations of functors
precompactX → psh(X):

R← C→ I.

Let F ∈ psh(X,C). Denote

R(F ) := F ⊗LprecompactX
R ∈ sh(X,C).

We then have an induced diagram

F ⊗LprecompactX
R← F ⊗LprecompactX

C→ F ⊗precompactX I → F. (16)

Theorem 5.8 Let F ∈ sh(X,C). Then every arrow in (16) is a homotopy equivalence.

Sketch of the proof

Let us show that the arrow

F ⊗LprecompactX
C→ F ⊗LprecompactX

R (17)

is a homotopy equivalence.

Indeed, Let G ∈ sh(X), and consider the induced map

Hom(F ⊗LprecompactX
R;G)→ Hom(F ⊗LprecompactX

C;G). (18)

Denote G′, G′′ : precompactop
X → swellC, where G′(U) = Hom(CU ;G); G′′(U) = Hom(RU ;G). We

have a natural transformation G′′ → G′ induced by the natural transformation C → R. Then the
map (18) is homotopy equivalent to

RHom(F,G′)→ RHom(F,G′′). (19)
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The Representability theorem implies that G′(U) → G′′(U) is a homotopy equivalence for all U ,
therefore, (19) is a homotopy equivalence. Hence so is (18) and (17).

Let us switch to the remaining arrows in (16). Let U ∈ OpenX and consider the induced sequence:

F ⊗LprecompactX
C(U)→ F ⊗LprecompactX

I(U)→ F (U). (20)

Rewrite:

hocolimV ∈precompactX |V⊂U
F (V )→ hocolimV ∈precompactX ;V⊂U F (V )→ F (U)

both arrows are homotopy equivalences by the covering axiom for F .

As F is a stable object, it follows that both arrows in (20) are homotopy equivalences. This proves
the theorem.

5.6.12 Meyer-Vietoris property of AK

Let K,L ⊂ X be compact subsets. We then have a complex

MV (K,L) := [0→ AK∪L → AK ⊕ AL → AK∩L → 0]

Proposition 5.9 This complex is acyclic

Sketch of the proof A. It suffices to prove that Hom(MV (K,L), G) ∼ 0 for any G ∈ sh(X). As follows
from the Representability theorem, the complex Hom(MV (K,L), G) is homotopy equivalent to the
complex

0→ ΓK∩LG→ ΓK(G)⊕ ΓL(G)→ Γ(K ∪ L)→ 0.

B. Let us show that the natural map

f : hocolimU⊃K;V⊃L U ∩ V → hocolimW⊃K∩LW

is a homotopy equivalence in psh(X).

Let A ∈ Openop
X . Consider

Hom(A,Cone f) = Cone(hocolimU⊃K;V⊃L;U∩V⊂A A→ hocolimW⊃K∩L;W⊂A A.

Both colimits are filtered, therefore, Hom(A,Cone f) ∼ 0, whence Hom(Cone f ; Cone f) ∼ 0 as we
wanted.

C. Similarly, one checks that the natural map

hocolimU⊃K;V⊃L U ∪ V → hocolimW⊃K∪LW

is a homotopy equivalence in psh(X,C).

D. The natural map
hocolimU⊃K;V⊃L U → hocolimU⊃K Ui

is a homotopy equivalence because the set {V ∈ OpenX |V ⊃ L} is filtered.
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E. B,C,D imply that the natural maps

ΓK∩LG→ holimU⊃K;V⊃LG(U ∩ V );

ΓK∪LG→ holimU⊃K;V⊃LG(U ∪ V );

ΓKG→ holimU⊃K;V⊃LG(U);

ΓLG→ holimU⊃K;V⊃LG(V )

are homotopy equivalences.

Hence, Hom(MV (K,L);G) is homotopy equivalent to

holimU⊃K;V⊃L[0→ G(U ∩ V )→ G(U)⊕G(V )→ G(U ∪ V )→ 0]

which is acyclic because G satisfies Meyer-Vietoris.

5.7 Triangulations

We assume that X is a manifold with corners.

Fix a triangulation T of X. Denote by the same symbol T the poset of simplices of T . Let Tn be the
n-th baricentric subdivision of T .

Let us identify each x ∈ Tn with the corresponding compact subset of X. Denote by Starn(x) ∈
precompactX the star of x, which is by definition the interior of the union of all closed simplices of Tn
containing x.

5.7.1 Theorem on Hom(Ax; Ay)

Theorem 5.10 Let x, y ∈ T . If x ⊂ y, then the natural map A → Hom(Ay; Ax) is a homotopy
equivalence. Otherwise, Hom(Ay; Ax) ∼ 0.

Sketch of the proof

Denote by Un(y) the union of all Starn(z) where z ⊂ y, z ∈ Tn. The open sets Un(y) form a
fundamental system of neighborhoods of y. Therefore we have a homotopy equivalence

Hom(Ay; Ax)
∼→ holimn Ax(Un(y))

∼→ holimn A′x(Un(y)).

In the case x ⊂ y, the map A → Hom(Ay; Ax) gives rise to a map A → holimn A′x(Un(y)). This map
coincides with the map determined by the natural maps ιn : A→ A′x(Un(y)) coming from the inclusion
x ⊂ Un(y).

Let Un ∈ covx be the covering formed by the stars of all simplices of Tn contained in x. Let E ⊂ covx
consist of all Un. E is a fundamental system of coverings of x.

Consider AUN (Un(y)), N > n. In the case x ⊂ y, we have UN ⊂ Un(y), whence an isomorphism

AUN (Un(y)) = holimUN A,
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in which case we have a homotopy equivalence A→ holimUN A = AUN (Un(y)). Likewise all the maps

A
∼→ AUNk (Un(y))

∼→ A{UN1
,UN2

,...UNk}
(Un(y)).

are homotopy equivalences, this proves that A→ Hom(Ay; Ax) is a homotopy equivalence.

Suppose that x is not contained in y.

In this case we have

Cone(holimu∈UN |u∩(x\Un(y)) 6=∅ A→ holimu∈UN A)
∼→ AUN (Un(y)).

Let us show that the LHS is acyclic, which would imply the statement.

Indeed, holimu∈UN |u∩(x\Un(y))6=∅ A computes Chech cohomology of⋃
u∈UN |u∩(x\Un(y)) 6=∅

u

with respect to the covering by the elements of UN , which is contractible.

Likewise, holimu∈UN A computes Chech cohomology of Un(x), which is contracible as well.

5.8 Constructible subsets

Let T be a triangulation of X, call a closed subset K ⊂ X T -constructible if it is a finite union of closed
simplices from T . A locally closed subset Z ⊂ X is called T -constructible if it can be represented as
a difference of two T -constructible subsets of X.

Let Z1, Z2 be T -constructible locally closed subsets of X. Denote dZ1 := Z1\Z1.

Theorem 5.11 1) Hom(AZ1 ,AZ2) is homotopy equivalence to a finite complex of finitely generated
free A-modules concentrared in the positive degrees, in particular it admits a truncation.

2) We have a homotopy equivalence τ≤0Hom(AZ1 ,AZ2) → H, where H is a finitely generated free
A-module of locally constant A-valued functions on Z2\dZ1 supported on Z2 ∩ Z1.

5.8.1 Generalization

Let X ⊂ X ′ be an open embedding and T a triangulation of X ′. A locally closed subset Z1 ⊂ X is
called T -constructible if it is such as a subset of X ′. The above theorem still holds true in sh(X).

5.9 Base of topology

Let B ⊂ OpenX be a poset which is a base of the topology on X. Let us define a full sub-category
sh(B, C) ⊂ swell(Bop ⊗ C) satisfying the same axioms as in Sec. 5.4 when all the open sets involved
are in B.

We have a functor
IB : sh(B, C)→ swell(Bop ⊗ C)→ psh(X,C).
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Theorem 5.12 The functor IB establishes a quasi-equivalence sh(B, C)→ sh(X,C).

Sketch of the proof

1) Let us show that the functor IB takes values in sh(X,C). Let F ∈ sh(B, C). The stability of IB(F )
follows from Sec. 3.9.4. Let us check the covering axiom. Let U be an open subset of X and let U be
an open covering of U . Let us inscribe a B-covering V into U so that V ≤ U .

We have

hocolimA∈U F (A)
∼← hocolim(A,B)∈U×V,B⊂A F (B)

∼→ hocolimB∈V F (B)
∼→ F (U),

which implies the covering axiom.

2) It follows readily that IB is a fully faithful functor. Therefore, it now remains to show that IB is
essentially surjective. Indeed, for every compact K ⊂ X let covB(K) ⊂ covK consist of all coverings
U whose every element in in B. It follows that covB(K) ⊂ covK . is a fundamental system of coverings.
Let SB(K) ⊂ S(K) consist of all subsets of covB(K).

Let
ABK := hocolimI∈SB(K) AI .

We have a homotopy equivalence ABK → A′K .

Therefore, we have a homotopy equivalence

F (U)⊗precompactX AB
U

∼→ F (U)⊗precompactX AU
∼→ F

in sh(X,C). Finally,
F (U)⊗precompactX AB

U
∈ sh(B, C).

5.9.1 Product

In particular, let Z = X × Y Let B be the base consisting of all open sets of the form U × V , where
U ∈ OpenX , V ∈ OpenY . Denote sh(X|Y,C) := sh(B, C).

5.9.2 Lemma

Lemma 5.13 Let K ⊂ X, L ⊂ Y be compact subsets. We have a zig-zag homotopy equivalence
between AK � AL and AK×L.

Sketch of the proof Both objects homotopically represent the same functor.

5.10 Convolution of kernels

Let ∆ : Openop
X ×Openop

X → GZ be given by ∆(U, V ) = Z if U ∩ V 6= ∅ and ∆(U, V ) = 0 otherwise.

Let us define the convolution functor as follows:

◦Y : psh(X|Y,C)⊗ psh(Y |Z,C)→ psh(X|Y |Y |Z,C)
∆→ psh(X|Z,C).
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One checks that this functor induces a functor

◦Y : sh(X|Y,C)⊗ sh(Y |Z,C)→ sh(X,Z).

This way we get a non-unital 2-category kernels whose 0-objects are locally compact spaces and
kernels(X,Y ) = sh(X,Y ).

5.11 Definition of AC, where C is a locally closed subset

5.11.1 One point compactification

Let X = X ∪∞ be the one point compactification of X. The topology on X is defined as follows: a
subset U ⊂ X not containing ∞ is open iff it is an open subset of X. A subset U ⊂ X containing ∞
is open iff X\U is compact. The space X is compact and Hausdorff as long as X is locally compact.

5.11.2 Restriction of a sheaf onto an open subset

Let U ⊂ X be an open subset Let |U : Openop
X → Openop

U , where V |U = V if V ⊂ U and V |U = 0
otherwise. This functor extends to a functor |U : psh(X,C) → psh(U,C). It follows easily that this
functor transforms sheaves into sheaves so that we have a functor

|U : sh(X,C)→ sh(U,C).

5.11.3 Definition of AC , C is closed

Let C ⊂ X be a closed subset. Let C ⊂ X be the closure of C in X. C = C if C is compact and
C = C ∪∞ otherwise. The set C is compact.

Set
A′′C := AC |X .

If C is compact, we have an isomorphism A′′C = AC , therefore, we denote A′′C by AC .

5.11.4 AC , general case.

If C ⊂ X is a locally closed subset, then let dC := C\C ⊂ X and set

AC := Cone AX → AdC .

Let L ⊂ K be closed subsets of X. Let C = K\L We have C ⊂ K; dC ⊂ L, dC = K ∩L. Whence an
induced map

Cone(AK → AL)→ Cone(AC → AdC)

which is a homotopy equivalence. Indeed, let K ′, L′, C ′ be the closures of K,L,C in X. Let dC ′ =
C ′\C. By definition, we have

AK = AK′ |X ; AL = AL′ |X ; AC = AC′ |X ; AdC′ = AdC |X .
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Therefore, it suffices to show that the natural map

Cone(AK′ → AL′)→ Cone(AC′ → AdC′)

is a homotopy equivalence.

We have dC ′ = C ′ ∩ L′ and K ′ = L′ ∪ C ′, whence the statement.

5.12 Convolution with AC

5.12.1 Convolution with U ∈ psh(X,Z)

For H : OpenX → swellC and K ∈ compactX , set

H(K) := Cone(H(X\K)→ H(X)).

The rule K 7→ H(K) determines a functor compactop
X → swellC.

Consider the following complex of functors Openop
X ×Openop

X → GZ:

0→ h→ AOpenop
X ×Openop

X
→ δ → 0,

where h(U, V ) = A if V ⊂ X\U , h(U, V ) = 0 otherwise. This complex is termwise acyclic. Let
F ∈ psh(X,C) and U ∈ precompactX . We have the following acyclic complex in swellC:

0→ h([U ], F )→ AOpenop
X ×Openop

X
([U ], F )→ 0.

This complex is isomorphic to

0→ F (X\U)→ F (X)→ U ◦ F → 0.

This can be reinterpreted as a term-wise homotopy equivalence of functors precompactop
X → swellC:

F (U)
∼→ U ◦ F.

5.12.2 Convolution with AK

Theorem 5.14 We have a term-wise zig-zag homotopy equivalence of functors sh(X,C) ×
compactop

X → swellC: (F,K) 7→ F (K) and (F,K) 7→ AK ◦ F .

Sketch of the proof A. According to Sec. 5.6.10, we have a map hocolimU∈precompactX |K⊂U U → AK in
psh(X). Consider the induced map

hocolimU∈precompactX |K⊂U U ◦ F → AK ◦ F.

Using the argument similar to those from Sec. 5.6.10, one can show that this map is a homotopy
equivalence whenever F ∈ sh(X,C).

Next, we have homotopy equivalences

F (K)
∼← hocolimU∈precompactX |K⊂U U ◦ F (U)

∼→ hocolimU∈precompactX |K⊂U U ◦ F.

This finishes the proof.

Corollary 5.15 Let F ∈ sh(X,C). We have a zig-zag homotopy equivalence of functors sh(X,C) :
OpenX → swellC between (F,U) 7→ F (U) and (F,U) 7→ AU ◦ F .
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5.13 Direct image

Let f : X → Y be a continuous map of locally compact topological spaces. We then have a functor
f−1 : OpenY → OpenX . Let F :∈ sh(X,C). Set f!F ∈ sh(X,C) to be defined by

f!F = F (f−1U)⊗LU∈OpenX
U ∈ psh(Y,C).

It follows that we have a term-wise homotopy equivalence

hf!F (U)
∼→ hF (f−1U).

It now follows easily that hf!F satisfies all the sheaf axioms so that f!F ∈ sh(Y,C).

Theorem 5.16 1) There exists a kernel Kf ∈ sh(Y |X) and a zig-zag term-wise homotopy equivalence
of functots sh(X)→ sh(Y ) between f! and F 7→ Kf ◦X F .

2) One can choose Kf = AΓf , where Γf ⊂ Y ×X is the graph of f .

Sketch of the proof 1) The functor f! is homotopy equivalent to Rf!. We have to

Rf!F = hf!F (U)⊗LU∈precompactY
AU

∼→ F (f−1U)⊗LU∈precompactY
AU .

According to Corollary 5.15 the latter functor is term-wise homotopy equivalent to

F 7→ AU ⊗
L
U∈precompactX Af−1U ◦ F

∼← hocolim(T,U)∈compactopX ×precompactX |T⊃U AT ⊗ (Af−1U ◦ F )

∼=
(

hocolim{(T,U)∈compactopX ×precompactX |T⊃U} AT � Af−1U

)
◦ F

Thus, we can set

Kf := hocolim{(T,U)∈compactopX ×precompactY |T⊃U} AT � Af−1U . (21)

2) If X is compact, the statement follows from the fact that Kf represents the functor ΓΓf . The general

case reduces to this one via passage to the compatifications: let Y ,X be the one point compactification
and let X ′ be the closure of Γf in Y ×X. The projection onto Y determines a map f ′ : X ′ → Y . We
also have an open embedding i : X = Γf ↪→ X ′ such that f ′i = f .

5.13.1 Convolution with the constant sheaf on the diagonal

Corollary 5.17 We have a zig-zag homotopy equivalence of the endofunctors on sh(X,C): Id and
F 7→ A∆X

◦ F , where ∆X ⊂ X ×X is the diagonal.

Set f = IdX in the above theorem.

5.14 The inverse image functor

Let f : X → Y be a continuous map of locally compact topological spaces. Let F ∈ sh(Y ). Set
f−1 : sh(Y,C)→ sh(X,C): f−1F = F ◦ AΓf , where GF ⊂ Y ×X is the graph of f .

We have a zig-zag homotopy equivalence of bifunctors sh(Y,C)× sh(X,C)→ swellC,

(F,G) 7→ f−1F ◦G and F ◦ f!G.
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5.14.1

Theorem 5.18 We have a zig-zag term-wise homotopy equivalence of functors OpenY → sh(X):
U 7→ f−1AU and U 7→ Af−1U .

Sketch of the proof We have a zig-zag homotopy equivalence of functors OpenY → GZ: V 7→
(f−1AU )(V ) and V 7→ (f−1AU ) ◦ AV ; which is zig-zag homotopy equivalent to

V 7→ AU ◦ (f!AV ); V 7→ f!AV (U); V 7→ AV (f−1U);

V 7→ AV ◦ Af−1U ; V 7→ Af−1U (V ).

5.14.2 Inverse image under closed embedding

Let i : X → Y be a closed embedding.

Proposition 5.19 We have a homotopy equivalence of functors compactop
X × sh(Y ) → swellC:

(K,F ) 7→ (i−1F )(K) and (K,F ) 7→ F (i(K)).

Sketch of the proof Assume for simplicity X ⊂ Y . Use the notation ≈ for ’zig-zag pointwise homotopy
equivalent’. The functor (K,F ) 7→ i−1F (K) is zig-zag pointwise homotopy equivalent to

(F,K) 7→ i−1F ◦ AK ≈ F ◦ i!AK ≈ F (U)⊗LU∈OpenY
i!AK(U)

≈ (F,K) 7→ F (T )⊗LT∈compactY
HomcompactY (U ;T )⊗LU∈precompactX

i!AK(U)
∼→ (F,K) 7→ F (T )⊗LT∈compactY

AK(i−1intT )

≈ (F,K) 7→ F (T )⊗LT∈compactX
Hom(V, i−1intT )⊗LV ∈precompactY

AK(V )
∼→ (F,K) 7→ F (V )⊗LOpenX

AK(V )

Set R(U) := Cone(F (X ∩ U) → F (X)), R : OpenX → swellC. It is easy to see that R satisfies the
gluing properties for all coverings. Hence, we have

F (V )⊗LOpenX
AK(V ) ≈ R(V )⊗LOpenX

AK(V ) ≈ R(K) ≈ F (K).

This proves the statement.

5.14.3 Direct image under closed embedding of AK

As above, let i : X → Y be a closed embedding.

Corollary 5.20 We have a zig-zag pointwise homotopy equivalence of functors compactop
X → sh(Y ):

K 7→ Ai(K) and K 7→ i!AK .

Sketch of the proof We have

i!AK(L) ≈ AK ◦ i−1AL ≈ i−1AL(K) ≈ AL(i(K)) ≈ AL ◦ Ai(K) ≈ Ai(K)(L).
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5.15 Convolutions of constant sheaves on simplices

Fix a triangulation T of Rn. Let A be a star of a simplex from T .

5.15.1 Lemma

Lemma 5.21 1) We have a homotopy equivalence

ARn [n](A)
∼→ A.

Sketch of the proof Follows from a standard computation.

5.15.2 Corollary

Corollary 5.22 We have a zig-zag homotopy equivalence of functors T op → GZ:

u 7→ ARn [n](Star(u)) and u 7→ A.

Sketch of the proof As follows from the previous Lemma, ARn(Star(u)) admits a trunctation and the
natural transformation of functors T op → GZ:

τ≤0ARn [n](Star(u))→ ARn [n](Star(u))

is a termwise homotopy equivalence.

Finally, we have a natural transformation of functors T op → GZ:

τ≤0ARn [n](Star(−))→ AT op

which is a homotopy equivalence as well.

5.16 Dualization of convolution

In this section we assume that C has internal hom. Consider a functor

sh(X,C)op ⊗ sh(X|Y,C)op ⊗ sh(Y,C)→ swellC;

(F,K,G) 7→ HomC(F ◦X K;G).

Theorem 5.23 There exists a functor sh(X|Y,C)op ⊗ sh(Y,C) → sh(X,C), (K,G) 7→ K !G, and a
zig-zag pointwise homotopy equivalence of functors

(F,K,G) 7→ HomC(F ◦X K;G) and (F,K,G) 7→ Hom(F ;K !G).
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Sketch of the proof. A. We have a homotopy equivalence

hF (U)⊗LU∈precompactX
U
∼→ F.

We have an induced homotopy equivalence

Hom(F ◦K,G)
∼→ Hom(hF (U)⊗LU∈precompactX

U ◦K;G).

Denote Λ : OpenX → swellC, Λ(U) := Hom(U ◦K;G). We can now continue

Hom(hF (U)⊗LU∈precompactX
U ◦K;G) ∼= RHomprecompactX (hF ; Λ).

B. Let us also introduce a functor Z : compactX → swellC. For P ∈ compactX , let δP : Openop
X →

GZ, δP (U) = A if P ∩ U 6= ∅ and δP (U) = 0 otherwise. Set δYP : Openop
X ×Openop

Y → psh(Y ),
δYP (U, V ) = δP (U)⊗ V . Set

Z(P ) := Hompsh(Y )(δ
Y
P (K);G).

We have a natural isomorphism Λ(U) = Z(U) for every U ∈ precompactX .

C. It follows that Z satisfies Meyer-Vietoris. For every P,Q ∈ compactX , we have

[0→ Z(P ∩Q)→ Z(P )⊕ Z(Q)→ Z(P ∪Q)→ 0] ∼ 0,

where [] denote the totalization of a complex. Indeed, denote δP,Q : Openop
X → GZ,

δP,Q := [0→ δP∪Q → δP ⊕ δQ → δP∩Q → 0].

Observe that δP,Q(U) = 0 whenever U ∩ (P ∪Q) ⊂ P or U ∩ (P ∪Q) ⊂ Q. Denote by BX the set of
all pre-compact subsets of X with this property. They form a base of topology on X. Hence, there
is an object in psh(BX ×OpenY , C) which is homotopy equivalent to K. It follows that δP,Q ◦K ∼ 0
which proves the statement.

D. Define a functor M : OpenX → swellC, where Set M(U) := hocolimP∈compactX |K⊂U Z(K). We

have a natural transformation M → Λ because Λ(U) = Z(U).

Let us show that the induced map RHom(hF ;M)→ RHom(hF ; Λ) is a homotopy equivalence. Equiv-
alently RHom(hF ; Cone(M → Λ)) is acyclic. Let r : precompactop

X × precompactX → GZ be

given by r(U, V ) = A if (U) ⊂ V ; r(U, V ) = 0 otherwise. as F ∈ sh(X,C), the natural map
hF ⊗LprecompactX

r → hF is a termwise homotopy equivalence. Therefore, it suffices to show that

RHom(hF ⊗LprecompactX
r; Cone(M → Λ)

is acyclic. Equivalently:

holimV ∈precompactX |U⊂V
Cone(M(V )→ Λ(V )) ∼ 0.

As the holim is filtered, it suffices to show that for every V ∈ precompactX , V ⊃ U there exists a
W ∈ precompactX , W ⊃ U , W ⊂ V , such that the induced map

Cone(M(W )→ Λ(W ))→ Cone(M(V )→ Λ(V ))
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is homotopy equivalent to 0. To this end, it suffices to choose W so that W ⊂ V .

F. Set K !G := M(U) ⊗LprecompactX
U and show that K !G ∈ sh(X,C). The stability axiom is obvi-

ous. Let us check the remaining properties. We have a term-wise homotopy equivalence of functors
precompactX → swellC: hK!G → M . Therefore, it suffices to show that M satisfies the direct limit
gluing property, Meyer-Vietoris, and M(∅) ∼ 0. The direct limit gluing property and M(∅) ∼ 0 is
obvious. Let us check Meyer-Vietoris.

F1. Let U, V ∈ precompactX . Let compactU be the poset of compact subsets of U and similar for
compactV . Let us prove that the natural map

hocolimK∈compactU ;L∈compactV F (K ∪ L)→ hocolimM∈compactU∪V F (M)

is a homotopy equivalence for every F : compactX → swellC. Indeed, it suffices to check this
statement for F (M) = Hom(N,M), N ∈ compactU∪V , in which case the statement reduces to

hocolimK∈compactU ;L∈compactV ;N⊂K∪L A→ hocolimM∈compactU∪V ;N⊂M A.

As both colimits are filtered, the statement follows.

F2. Similarly, we can prove that the natural map

hocolimK∈compactU ;L∈compactV F (K ∩ L)→ hocolimM∈compactU∩V F (M)

is a homotopy equivalence.

F3. The natural map

hocolimK∈compactU ;L∈compactV F (K)→ hocolimK∈compactU F (K)

is a homotopy equivalence because the set compactV is filtered.

F4 For A ∈ precompactX , set

F ′(A) := hocolimK∈compactX |K⊂U F (K).

The natural map

hocolimK∈compactU ;L∈compactV [0→ F (K ∩ L)→ F (K)⊕ F (L)→ F (K ∪ L)→ 0]

→ [0→ F ′(U ∩ V )→ F ′(U)⊕ F ′(V )→ F ′(U ∪ V )→ 0]. (22)

is a homotopy equivalence.

F5. It now remains to apply F4 to F = Z, where Z is as in C. Then F ′ = M and the LHS of (22) is
acyclic.

5.16.1 Projection along Rn

Let Z ∈ sh(Rn ×X|X), Z = ARn×∆X
so that Z is the graph of the projection p : Rn ×X → X.

Proposition 5.24 We have a zig-zag homotopy equivalence of functors sh(X)→ sh(Rn×X) between
G 7→ G� ARn [n] and G 7→ Z !G.
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Sketch of the proof.

Choose a triangulation T of Rn. Let B be the base of topology on Rn formed by stars of all simplices
of all baricentric sub-divisions of T .

According to Sec 5.9, it suffices to construct a zig-zag homotopy equivalence between the following
functors B ×OpenX × sh(X,C)→ swellC:

(A,U,G) 7→ Z !G(A× U) and (A,U,G) 7→ ARn [n](A)⊗G(U).

According to Sec 5.9.2 and 5.15 we have homotopy equivalences

ARn � A∆X

∼→ AZ ;

AU ← (U ◦∆X)→ (A ◦ ARn)⊗ (U ◦ A∆X
)
∼→ (A× U) ◦ Z;

These equivalences induce a zig-zag pointwise homotopy equivalence between Λ(A × U) and
Hom(AU ;G), hence ΓUG. Here Λ is as in the previous subsection.

Therefore Z !G(A,U) is zig-zag homotopy equivalent to

hocolimU ′|U ′⊂U ΓU ′G.

We have a natural transformation G(U ′)→ ΓU ′G, which induces a map

hocolimU ′|U ′⊂U G(U ′) hocolimU ′|U ′⊂U ΓU ′G

Let us show that this transformation is a homotopy equivalence. Indeed, set

C(U ′) := ConeG(U ′)→ ΓU ′G.

The problem now reduces to showing that

hocolimU ′|U ′⊂U C(U ′) ∼ 0.

As the colimit is over a filtered poset, the statement follows from: let U ′ ⊂ U ′′, then the induced map
C(U ′)→ C(U ′′) is homotopy equivalent to 0, which is immediate.

We also have a homotopy equivalence hocolimU ′|U ′⊂U G(U ′) → G(U), which establishes a zig-zag

homotopy equivalence between Z !G(A,U) and G(U).

As follows from Sec 5.15, we have a zig-zag homotopy equivalence between

ARn [n](A) and A,

which finishes the proof.
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5.16.2 Inverse image under closed embedding

Let i : X → Y be a closed embedding. Let W ∈ sh(Y |X); W = AΓi .

Theorem 5.25 We have a zig-zag pointwise homotopy equivalence of functors sh(X)→ sh(Y ) G 7→
W !G and G 7→ i!G.

Sketch of the proof Let F ∈ sh(Y ). We have F ◦Y W ≈ i−1F.

Therefore, we have

Z(L) ≈ RHomX(i−1AL;G) ≈ RHomX(Ai−1L;G) ≈ holimU∈precompactX |U⊃i−1LG(U)

Next,
M(U) = hocolimV ∈precompactY |V⊂U

holimW∈precompactX |V ∩X⊂W
G(U).

We have natural maps

G(U ∩X)← hocolimV ∈precompactY |V⊂U
G(V ∩X)→M(U)

both of which are homotopy equivalences, whence the statement.

5.16.3 Direct images under proper map

Let p : X → Y be a map. Let Γp ⊂ X×Y be the graph of p and Γtp ⊂ Y ×X be the transposed graph
of p.

We then set p! : sh(X,C)→ sh(Y,C); p!F = F ◦X AΓp ; p
−1 : sh(Y,C)→ sh(X,C): p−1G = G ◦Y AΓtp

.

We have AΓp ◦Y AΓtp
≈ AX×YX . Let ∆X ⊂ X ×X be the diagonal. As ∆X ⊂ X ×Y X, we have a map

AX×YX → A∆X
, whence a zig-zag map

p−1p!F → F,

we then have an induced zig-zag map
p!F → p∗F.

Theorem 5.26 Assume p is proper on the support of F . Then the above map is a homotopy equiva-
lence.

Sketch of the proof The statement reduces to the case p is proper. Next, one reduces the statement to
showing that the through map

Hom(AK ; p!F )→ Hom(p−1AK ; p−1p!F )→ Hom(p−1AK ;F )

is a homotopy equivalence for any compact set K ⊂ Y . As p is proper, p−1K is compact and the
above map is homotopy equivalent to

hocolimU∈precompactY ;K⊂U p!F (U)→ hocolimV ∈precompactX ;p−1K⊂V F (V )

which can be rewritten as

hocolimU∈precompactY ;K⊂U F (p−1U)→ hocolimV ∈precompactX ;p−1K⊂V F (V ).

As p is proper, the open subsets of the form p−1U , U ⊃ K form a base of neighborhoods of f−1K.
Therefore, the above map is a homotopy equivalence by the cofinality argument.
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6 Quantum/Semi-classical sheaves

6.0.4 Definition of shε(X,C)

Let ε ∈ R>0 ∪ {∞}. We will use the SMC Qε as in Sec. 4.

Let shε(X,C) ⊂ swell(Xop ⊗ Qε ⊗ C) be the full sub-category satisfying the following conditions
below.

A. Stability. Every object F ∈ shε(X,C) must be stable. Recall the meaning of this condition. Let
hF : OpenX ⊗Q

op
ε → swellC be defined by hF (U, a) = Hom((U, a);F ). Then the natural map

hF (U, a)⊗L(U,a)∈OpenX ×Q
op
ε

(U, a)→ F

is a homotopy equivalence,

B. Sheaf condition ’along X’. F must belong to sh(X,C ⊗Qε) ⊂ swell(Openop
X ⊗C ⊗Q

op
ε ).

C. Direct limit condition for Qε. For every U ∈ OpenX and every a ∈ R, the natural map

hocolimb|b>a hF ((U, b))→ hF (U, a) (23)

must be a homotopy equivalence.

D. Completeness condition. For every U ∈ OpenX there must be:

hocolimb∈Rop F ((U, b)) ∼ 0.

6.0.5 The category shω(X,C)

We set
pshω(X,C) := swell(Openop

X ⊗C ⊗Qω).

Let us define a full sub-category shω(X,C) of objects satisfying the conditions A,B from the previous
subsection and the condition C for any ε > 0: the natural

hocolimb|b>a hF ((U, fεb ))→ hF (U, fεa) (24)

must be a homotopy equivalence.

The category shω(X,C) is enriched over Qω hence Rω.

6.0.6 A fully faithful embedding of sh∞(X,C) into sh(X × R, C)

Let int ⊂ OpenR be a subset consisting of all open intervals (both finite and infinite). The subsets
from int form a base of topology on R. Therefore, we have a quasi-equivalence of categories

sh(X × int, C)→ sh(X × R, C).

Let π : int→ Qop
∞ , π(a, b) = a if a 6= −∞; π(−∞, b) = 0. We then have an induced functor

π : psh(X × int, C)→ swell(Openop
X ⊗Q∞ ⊗ C)
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One checks that π induces a map

π : sh(X × int, C)→ sh∞(X,C).

We have a homotopy equivalence

p(F ) := F ((U, u))⊗L(U,u)∈OpenX ×int (U, π(u))→ π(F ).

Let us now define a functor s : sh∞(X,C)→ sh(X × int, C).

s(F ) = F (U, π(u))⊗(U,u)∈OpenX ×int (U, u).

So that we have a homotopy equivalence

s(F )(V, v)
∼→ F (V, π(v)), (V, v) ∈ OpenX ×int. (25)

We have natural transformations

ps(F )
∼→ F (V, π(v))⊗(V,v)∈OpenX ×int (V, π(V ))→ F ; (26)

sp(V ) = F ((U, u))⊗L(U,u)∈OpenX ×int Hom((U, π(u); (V, π(v))⊗(V,v)∈OpenX ×int ⊗(V, v)

← F ((U, u))⊗L(U,u)∈OpenX ×int Hom((U, u); (V, v))⊗(V,v)∈OpenX ×int ⊗(V, v)
∼→ F. (27)

Let shq(X,C) ⊂ sh(X × int, C) be the full sub-category consisting of all objects F satisfying
F (−∞, a) ∼ 0.

Theorem 6.1 1) The functor s takes values in shq(X,C).

2) The natural transformation (26) is a termwise homotopy equivalence.

3) The natural transformation (27) induces a homotopy equivalence for all F ∈ shq(X).

The functors p and s, therefore, establish a quasi-equivalence between sh∞(X,C) and shq(X,C).

Sketch of the proof. 1) Follows from (25).

2)

ps(F )(U, a)
∼→ F (V, π(v))⊗(V,v)∈OpenX ×int HomOpenX ×Q

op
∞ ((V, π(v)); (U, a))

∼← F (W, b)⊗OpenX ×Q
op
∞ HomOpenX ×Q

op
∞ ((W, b); (V, π(v)))⊗L(V,v)∈OpenX ×int Hom((V, π(v)); (U, a)).

We have a homotopy equivalence

HomOpenX ×Q
op
∞ ((W, b); (V, π(v)))⊗L(V,v)∈OpenX ×int HomOpenX ×Q

op
∞ ((V, π(v)); (U, a))

= HomOpenX ×Q
op
∞ ((W, b); (V, π(v)))⊗L(V,v)∈OpenX ×int HomOpenX ×int((V, v); (U, (a,∞))

∼→ HomOpenX ×Q
op
∞ ((W, b); (U, a)).
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So that we have an induced homotopy equivalence

F (W, b)⊗OpenX ×Q
op
∞ HomOpenX ×Q

op
∞ ((W, b); (V, π(v)))⊗L(V,v)∈OpenX ×int Hom((V, π(v)); (U, a))

∼→ F (W, b)⊗OpenX ×Q
op
∞ HomOpenX ×Q

op
∞ ((W, b), (U, a))

∼→ F (U, a)

which proves the statement.

3) We have

sp(F )(U, u)
∼→ F (V, v)⊗LOpenX ×int HomOpenX ×Q

op
∞ ((V ;π(v)); (U, π(u)))

= F (V, v)⊗LOpenX ×int HomOpenX ×int((V ; v); (U, (π(u),∞)))
∼→ F ((U, (π(u),∞))).

The induced map
F (U, u)→ sp(U, u)→ F ((u, (π(u),∞)))

coincides with the natural map induced by the embedding u ⊂ (π(u),∞), whence the statement.

Below we will use the notation shq(X) instead of sh∞(X).

6.0.7 Objects in shq(X)

Let F : Qop
∞ → sh(X,C) be a functor. Say that F satisfies the direct limit condition if 1) The natural

map hocolimd∈Qop
∞ |d>c F (d)→ F (c) is a homotopy equivalence;

2) hocolimd∈Qop
∞ F (d) ∼ 0.

Denote
R(F ) := F (u)⊗Lu∈Qop

∞
u ∈ swell(Openop

X ⊗Q∞ ⊗ C).

It follows that R(F ) ∈ shq(X,C). The stability follows from the fact that R(F ) is a bounded from
above complex consisting of objects of the form F (u)⊗ v, (u, v) ∈ Qop

∞ ⊗Q∞, which are stable. Next,
we have

hR(F )(U, c) = F (d)(U)⊗Ld∈Qop
∞

HomQ∞(c, d)
∼→ F (c)(U),

which implies the statement.

6.0.8 Object A[K,f ]

Let K ⊂ X be a compact subset and let f : K → R ∪ ∞ be a lower -continuous function. That is
f−1(a,∞) ∈ OpenX for all a ∈ R. Let

Kf≤c := {x ∈ K|f(x) ≤ c}.

Set F[K,f ](c) = AKf≤c so that F[K,f ] : Qop
∞ → sh(X,A). One checks that F[K,f ] satisfies the direct limit

property so that RF[K,f ] ∈ shq(X).

Proposition 6.2 We have

s(RF[K,f ]) ≈ A(x,t)|t≥f(x)[1] ∈ shq(X).
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Sketch of the proof

We have
s(RF[K,f ])(U, u) ≈ (RF[K,f ])(U, π(u)) ≈ F[K,f ](π(u))(U).

We have a zig-zag homotopy equivalence

sR(F[K,f ]) ≈ F[K,f ](π(u))(U)⊗L(U,u)∈OpenX ×int AU � Au
∼→ F (π(u))⊗u∈int Au.

Let π : int→ Rop; σ : int→ R be given by π((a, b)) = a; σ((a, b)) = b.

We have a homotopy equivalence

Cone(A(σ(u),∞) ⊕ A(−∞,π(u)) → AR)
∼→ Au.

Let us consider

F (π(u))⊗Lu∈int AR = F (π(u))⊗Lu∈∫ Homint(u,R)⊗ AR

∼→ F (π(R)) � AR ∼ 0.

F (π(u))⊗Lu∈int A(σ(u),∞)
∼← F (π(u))⊗u∈int HomQ∞(σ(u), v)⊗v∈Q∞ A(v,∞)

= F (π(u))⊗u∈int Homint(u, (−∞, σ(v)))⊗v∈Q∞ A(v,∞)
∼→ F (π(−∞, σ(v)))⊗v∈Q∞ A(v,∞) ∼ 0,

because F (π(−∞, σ(v))) = F ((−∞,∞)) ∼ 0.

We now have a homotopy equivalence

F (π(u))⊗Lu∈int (A(σ(u),∞) ⊕ A(−∞,π(u) → AR)
∼→ F (π))⊗Lu∈int A(σ(u),∞)[1]

Finally, we have

F (π(u))⊗Lu∈int A(−∞,π(u))
∼← F (π(u))⊗u∈int HomQ∞(v;π(u))⊗LQop

∞
A(−∞,v)

= F (π(u))⊗u∈int Homint((u,∞); (v∞))⊗Lv∈Q∞ A(−∞,v)
∼→ F (π(v,∞))⊗Lv∈Q∞ A(−∞,v)

= F (v)⊗Lv∈Qop
∞

A(−∞,v)
∼← hocolim(v,w)∈int F (v) � A(−∞,w) = hocolim(v,w)∈int A{(x,t)|f(x)≤v;t<w}
∼← Cone hocolim(v,w)∈int A(x,t)|f(x)>v;t<w → hocolim(v,w)∈int AK×(−∞,w))

The open sets {(x, t)|f(x) > v; t < w} ⊂ K×R form an open covering of the set {(x, t)|t < f(x)}. The
open sets K × (−∞, w) form an open covering of K × R. Therefore, we have a homotopy equivalence

Cone(hocolim(v,w)∈int A(x,t)|f(x)>v;t<w → hocolim(v,w)∈int AK×(−∞,w))
∼→ Cone(A(x,t)|t<f(x) → AK×R)

∼→ A(x,t)|t≥f(x).

This proves the statement.
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6.0.9 Definition of A[K,f ]

We have

RF[K,f ]
= Ax|f(x)≤c ⊗LQop

∞
c
∼← hocolim{L∈compactX | f |K\L>c}⊗

L
c∈Qop

∞
c
∼→ AK\U ⊗LU∈precompactK

f(U)

where we set
f(U) := inf

x∈U∩K
f(x).

In the case U ∩K = ∅ we let f(U) to be the zero-object of swellQ∞.

Let C ⊂ X be a locally closed sub-set and let f : C → R be a lower-continuous function. Set

A[C,f ] := AC\U ⊗LU∈precompactX
f(U).

We have
s(A[C,f ]) ≈ sR(F[C,f ]) ≈ A(x,t)|x∈C,t≥f(x).

6.0.10 Functoriality of A[K,f ]

Let C1, C2 be closed subsets of X, If C1 ⊂ C2, f1 is a lower continuous function on C1, f2 on C2 and
f2|C1 ≤ f1, we have a natural map A[C2,f2] → A[C1,f1] coming from the inequality f2(U) ≤ f1(U) for
any U ∈ precompactX .

6.0.11 The functors redε1ε2

Let ε1 ≥ ε2, ε1, ε2 ∈ R∪{∞}. The functors redε1ε2 : Qε1 → Qε2 induce functors redε1ε2 : shε1(X,C)→
shε2(X)

6.0.12 Reduction of A[K,f ]

In the notation of Sec. 6.0.10 suppose g|K + ε ≤ f . Then the natural map

red∞εA[M,g] → red∞εA[K,f ]

equals 0 because such are all the maps g(M\L)→ f(K\L) in Qε.

6.0.13 The functor � : shε(X,C)⊗ shε(Y,C)→ shε(X|Y,C)

We have a natural functor

⊗ : pshε(X,C)⊗ pshε(Y,C)→ pshε(X|Y,C).

which descends onto the corresponding categories of sheaves.

57



6.0.14 Convolution

Let F ∈ pshε(X|Y,C), G ∈ pshε(Y |Z,C). Let g : OpenY ×OpenY → GZ; g(U, V ) = A if U ∩ V 6= ∅
and g(U, V ) = ∅ otherwise. We get an induced functor g : pshε(X|Y |Y |Z,C) → pshε(X|Z,C). We
then get an object F �G ∈ pshε(X|Y |Y |Z,C). Set

F ∗Y G := g(F �G) ∈ pshε(X|Z,C).

Let F •Y G ∈ pshε(X|Z) be given by

F •Y G = (F ∗Y G)|0,

where |0 : pshε(B, C)→ psh(B) is given by (U, a)|0 = HomQε(0, a)⊗U. In particular, if F,G ∈ shε(X),
then F •G ∈ swellC.

All the above functors descend onto the corresponding categories of sheaves.

6.0.15 Convolution with the constant sheaf on a graph

Let X ⊂ Y . Let F : X → R be an upper continuous functions. Let C ⊂ X be a closed subset and
f : C → R a lower continuous function. Let Γ ⊂ X × Y be the graph of the embedding X ⊂ Y . Let
F ′ = F ◦ ι−1. Let ι : X → Γ be the identification.

Proposition 6.3 We have a natural zig-zag homotopy equivalence

A[C,f ] ∗X AΓ,F ′ ≈ A[X,F ′+f ] ∈ sh∞(Y ).

Sketch of the proof We have

A[C,f ] ∗X AΓ,F ′
∼← AC\U ∗X AΓ\(V×W ) ⊗L(U,V,W )∈precompactX×X×Y

(f(U ∩ C) + F (V ×W ∩ Γ))

= AC\U ∗X AΓ\ι(V ∩W ) ⊗L(U,V,W )∈precompactX×X×Y
(f(U ∩ C) + F (ι(V ∩W )))

≈ AC\(U∪(V ∩W )) ⊗L(U,V,W )∈precompactX×X×Y
(f(U) + F (ι(V ∩W )))

∼← hocolimA∈precompactX AC\(U∪A) ⊗L(U,V,W )∈precompactX×X×Y
(f(U) + F (ι(V ∩W )))

≈ AC\(U∪A) ⊗LA∈precompactX
Hom(A, V ∩W )⊗L(U,V,W )∈precompactX×X×Y

(f(U ∩ C) + F (ι(V ∩W )))

≈ AC\(U∪A)⊗LA∈precompactX ,U∈precompactX
hocolim{V×W∈precompactopX×Y |A⊂V ∩W}

(f(U∩C)+F (ι(V ∩W )))

∼→ AC\(U∪A) ⊗LA∈precompactX ,U∈precompactX (f(U ∩ C) + F (A)).

The last arrow is a homotopy equivalence because the poset

{V ×W ∈ precompactop
X×Y |A ⊂ V ∩W}

is filtered.
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Let us continue:

AC\(U∪A) ⊗L(A,U)∈precompactX×X
(f(U) + F (A))

≈ AC\B ⊗LB∈precompactX
Hom(B,U ∪A)⊗L(A,U)∈precompactX×X

(f(U ∩ C) + F (A))

(28)

We have a homotopy equivalence (we assume (A,U) ∈ precompactop
X×X):

Cone(hocolim(A,U)|B\(A∪U) 6=∅ f(U ∩ C) + F (A))→ hocolim(A,U) f(U ∩ C) + F (A))

→ Hom(B,U ∪A)⊗L(A,U) (f(U ∩ C) + F (A)).

As
hocolim(A,U) f(U ∩ C) + F (A) ∼ f(∅) + F (∅) = 0,

we have

Hom(B,U ∪A)⊗L(A,U) (f(U ∩ C) + F (A)) ≈ hocolim(A,U)|B\(A∪U) 6=∅ f(U ∩ C) + F (A))[1].

Next, we have an acycilic complex

hocolim(A,U)|B\(A∪U) 6=∅ f(U ∩ C) + F (A)

→ (hocolim(A,U)|B\A 6=∅ f(U ∩ C) + F (A))⊕ hocolim(A,U)|B\U 6=∅ f(U ∩ C) + F (A)

→ hocolim(A,U)|B\(A∩U)6=∅ f(U ∩ C) + F (A).

As f(∅) = F (∅) is the 0 object of Q∞, the middle term in this complex is acyclic. Therefore,

Hom(B,U∪A)⊗L(A,U)(f(U∩C)+F (A)) ≈ hocolim(A,U)|B\(A∩U)6=∅ f(U∩C)+F (A)
∼→ (f(B∩C)+F (B)).

so that we can continue (28):

AC\B ⊗LB∈precompactX
Hom(B,U ∪A)⊗L(A,U)∈precompactX×X

(f(U ∩ C) + F (A))

≈ AC\B ⊗LB∈precompactX
f(B ∩ C) + F (B)

∼← AC\B ⊗LB∈precompactX
Hom(c, f(B ∩ C) + F (B))⊗Lc∈Qop

∞
c

≈ (hocolim{B∈precompactX |f(B∩C)+F (B)≥c}Cone(AB ⊗ AC → Ac))⊗Lc∈Qop
∞
c.

Let
Sc := {B ∈ precompactX |f(B ∩ C) + F (B) ≥ c}.

The set Sc is closed under finite intersections; the union of all elements of Sc equals

Uf+F>c = X\C ∪ {x ∈ C|f(x) + F (x) > c}.

We therefore have a homotopy equivalence

hocolim{B∈precompactX |f(B∩C)+F (B)≥c}Cone(AB ⊗ AC → AC))⊗Lc∈Qop
∞
c

∼→ Cone(AUf+F>c
⊗ AC → AC)⊗Lc∈Qop

∞
c
∼→ A{x∈C|f(x)+F (x)≤c} ⊗c∈Qop

∞ c ≈ A[C,f+F ].
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Corollary 6.4 1) We have a zig-zag homotopy equivalences

A∆X ,f ∗X A∆X ;g ≈ A∆X ,f+g;

Id ≈ A∆X ,f ∗X A∆X ,−f .

6.0.16 Universal property of A[X,f ]

Let X be compact.

Theorem 6.5 We have a zig-zag homotopy equivalence of functors shq(X) → GZ: F 7→
Hom(A[X,f ];F ),

F 7→ Cone(holimC→∞ AX,−f−C → holimδ↓0 F •X A[X,δ−f ])[−1],

and
F 7→ Cone(holimC→∞ AX,−C → holimδ↓0 F •X A[X,δ−f ])[−1]

1) The third functor is zig-zag homotopy equivalent to the second one by the cofinality argument.
Below we construct a zig-zag homotopy equivalence of the first two functors.

2) By virtue of Corollary 6.4 2, the endofunctor F 7→ F ∗X A∆X ;f on shε(X) is a homotopy equivalence,
therefore, the statement reduces to the case f = 0.

3) We have

A[X,0](c) ≈ Cone hocolimδ↓0 AX ⊗Hom(c,−δ)→ hocolimC→∞ AX ⊗Hom(c, C).

Which implies

Hom(A[X,0];F ) ≈ holimδ↓0,C→∞Hom(AX ; Cone(F (C)→ F (−δ))[−1])

holimδ↓0,C→∞Cone(F (X,C)→ F (X,−δ))[−1] ≈ holimδ↓0,C→∞ F •X Cone(A[X,−C] → A[X,δ])[−1].

7 Singular support

7.1 Lenses

Let X be a smooth manifold. Let Ω ⊂ T ∗X × R be an open subset. Call Ω fiberwise convex if every
fiber of Ω under the map Ω→ T ∗X × R→ X is convex. Fix a fiberwise convex Ω.
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7.1.1

Let K ⊂ X be a compact set. A lense ` supported on K ⊂ X is a collection of the following data:

— a pair of lower continuous functions fk := fk
` , k = 0, 1, defined on K such that f1 + ε ≥ f0 ≥ f1

for all x ∈ K.

An Ω-lense with support K is a lense ` with support K ′ ⊂ K additionally satisfying:

there exists a neighborhood U of K ′ such that the functions f0, f1 can be extended to smooth functions
U satisfying:

a) for each x ∈ K ′, the point (x,−dfk
x , f

k(x)) is in Ω, k = 0, 1.

b) f0 and f1 coincide outside of K ′.

7.1.2 The sheaf A`

Given a lense `, let us define an object A` ∈ shε(X) as follows.

A. Let a, b ∈ R, 0 ≤ b− a ≤ ε. Let hab : Qop
ε → A, χab(x) = A if x ∈ (a, b] and χab(x) = 0 otherwise.

A1. Let δab ∈ Qε) be represented by the following complex

· · · → (a− 2ε)→ (b− 2ε)→ (a− ε)→ (b− ε)→ a→ b→ 0.

We have a termwise homotopy equivalence hδab → χab.

A2. Set
A` := AL ⊗L∈compactK δf0(K\L);f1(K\L).

We then can represent A` by a complex in shε(X)

· · · → A[K,f0−2ε] → A[K,f1−2ε] → A[K,f0−ε] → A[K, f1 − ε]→ A[K,f0] → A[K,f1] → 0,

where we denote, by abuse of notation red∞,εA[K,f ] by A[K,f ]. The composition of every two successive
arrows in this complex is 0 via Sec (6.0.12).

7.1.3 Sections of A`

We have

A`(U, a) = AL(U)⊗L∈compactK δf0(K\L);f1(K\L(a)

AL(U)⊗L∈compactK χf0(K\L);f1(K\L(a)
∼← AL(U)⊗L∈compactX Cone HomQ∞(a, f0(K\L))→ HomQ∞(a, f1(K\L))

∼→ Cone AKf0≤a
(U)→ AKf1≤a

(U)

≈ Cone(AKf0>a
(U)→ AKf1>a

(U))[1].
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7.1.4 Fitlered colimits of A`

Let `1, `2 be lenses supported on K. Write `1 ≤ `2 if fk
`1
≤ fk

`2
, k = 0, 1. wherever the two functions

are defined. This gives a partial order to the set of lenses supported on K.

Whenever `1 ≤ `2 we have an induced map A`1 → A`2 . Let I be a filtrant poset and let `i, i ∈ I be
a monotone I-family of lenses supported on K. set fk

`I
(x) := supi∈I f

k
`i

; k = 0, 1. We see that `I is a
lense supported on K. We also have a homotopy equivalence

hocolimi∈I A`i → A`I .

Call a lense ` a generalized Ω-lense supported on K if ` = `I and all `i are Ω-lenses supported on K.

7.1.5 Maximum of a pair of lenses

Let `1, `2 be Ω-lenses supported on K. Let λ := sup(`1, `2) be defined by fk
λ = sup(fk

`1
, fk
`2

). Then λ
is a generalized Ω-lense supported on K. Sketch of the proof:

1) we have a monotone sequence of smooth non-decreasing functions φn(x), where

— φn(x) = 0 if x ≤ 0;

— φn(x) = 1 if x ≥ 1/n.

Let Φn(x) =
x∫
0

φn(x). In particular

0 ≤ Φn(x) ≤ max(0, x); 0 ≤ φn(x) ≤ 1. (29)

2) Set fk
n (x) := fk

`1
(x) + Φn(fk

`2
(x)− fk

`1
(x)).

We have dfk
n (X) = dfk

`1
(x) + φn(fk

`2
(x)− fk

`1
(x))(dfk

`2
(x)− dfk

`1
(x)). As follows from (29) and from the

fiberwise convexity of Ω, each fk
n is an Ω-lense with support K. Since fk

n (x) ↑ max(fk
`1

(x), fk
`2

(x)), the
statement follows.

7.1.6 Infinite suprema of lenses

Let `s = {fk
s }, s ∈ S be generalized Ω-lenses with support K. Let fk(x) := sup

s∈S
fk
s (x) Then ` = {fk}

is also a generalized lense with support K. Indeed, we first consider the case of finite S. This reduces
to a two-element set S, which follows from the previous subsection.

If S is infinite, pass to the filtrant poset P of finite subsets of S. To each finite I ⊂ S, associate
fk
I := maxi∈I f

k
i . Let `I be the lense supported on K determined by the functions fk

I . The lenses `I
satisfy all the conditions from Sec.7.1.4.
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7.2 Localization of Ω

Let Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωn be a finite cover by fiberwise convex subsets. Let {fk} be an Ω-lense
supported on a compact K. One then has smooth functions f0 = g0 ≤ g1 ≤ · · · ≤ gN = f1 such that
(gi, gi+1) are Ωni-lenses supported on K.

This follows from the following 2 particular cases.

Case 1. Let K ⊂
n⋃
i=1

Ui be an open cover and let Ωi = p−1Ui ∩ Ω, where π : T ∗X × R → X is the

projection.

Case 2. π(Ωi) ⊃ K for all i.

Proof for Case 1. 1)Choose a partition of unit, i.e. smooth functions ρi supported on Ui such that
0 ≤ ρi ≤ 1 and

∑
i ρi(x) = 1 for all x ∈ K. Let E ⊂ Ω be a compact fiberwise convex subset which

conains all the points (x,−dfk(x), fk(x)), x ∈ K.

2)There exist a positive integer K > 0 such that

— for every i and for every function ψ(x) such that (x,−dψ(x), ψ(x)) ∈ E) for all x ∈ K, we have:
(x,−dTiψ(x), Tiψ(x)) ∈ Ω for all x ∈ K, where

Tiψ(x) = ψ(x) +
(ρ1(x) + ρ2(x) + · · ·+ ρi(x))(f1(x)− f0(x))

K
.

3) Consider the sequence of functions f0(x), T1f
0(x), . . . , Tnf

0(x). It follows that (Tif
0(x), Ti+1f

0(x))
is an Ωi-variation. Next,

Tnf
0(x) = f0 +

(f1 − f0)

K
∈ E.

We therefore can continue our sequence by adding

T1(f0 +
f1 − f0

K
), T2(f0 +

f1 − f0

K
, . . . , Tn(f0 +

f1 − f0

K
) = f0 +

2(f1 − f0)

K
.

By repeating this process K times we prove the statement.

Case 2 It suffices to choose φk : (1−k/K)f0 +k/Kf1, where K is large enough and k = 0, 1, 2, . . . ,K.

7.2.1 Convolution A[K,f ] ? A`

Let X,Y be smooth manifolds. Let ι : X → Y be a closed embedding. Let f be a smooth function
on X. Let Γ be a graph of ι. Let f be a lower continuous function on X. Denote by κ : Γ → X the
identification. Let ` = {fk} be a lense on Y . Let

Tf ` := {fk ◦ ι+ f},

so that Tf ` is a lense on X.

Proposition 7.1 We have
A[X,f ] ∗Y A` ≈ ATf `.

Sketch of the proof Follows from Sec. 6.0.15.
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7.3 Definition of Singular Support

7.3.1 Ω-stable objects

Denote by a : T ∗X × R → T ∗X × R the following reflection map a(x, ω, t) = (x,−ω,−t). Let
F ∈ pshε(X). Call F Ω-stable if F • R` ∼ 0 for every Ωa-lense `.

7.3.2 Definition of Singular Support

Let F ∈ shε(X). Define an open subset U ⊂ T ∗X as the union of all open fiberwise open subsets
Ω ⊂ T ∗X × R such that F is Ω-stable. Observe that F is Ω-stable iff Ω ⊂ U . Indeed, if Ω ⊂ U , then

Ω ⊂
⋃
a∈A

Ωa,

where F is Ωa stable for all a ∈ A. Let ` be an Ω-lense, then there exists a pre-compact firerwise
convex subset Ω′ ⊂ Ω such that ` is an Ω′-lense. One then can select a finite subset B ⊂ A such that
Ω ⊂

⋃
b∈B Ωb. The statement now follows from Sec. 7.2.

Denote SS(F ) := T ∗X × R\U so that F is Ω-stable iff Ω ∩ SS(F ) = ∅.

7.4 Properties of Singular support

7.4.1 Dual definition

Proposition 7.2 Let F ∈ sh(X,C). Then F is non-singular on an open subset Ω ⊂ T ∗X × R iff
Hom(A`, F ) ∼ 0 for any Ω-lense ` supported on a compact K ⊂ X.

Sketch of the proof Let ` = {fk} be a lense. Let `∨δ := {−fk − δ}. As follows from Theorem 6.5, we
have a zig-zag homotopy equivalence

Hom(A`;F ) ≈ holimδ↓0 F •X A`∨δ ,

The statement now follows.

7.4.2 Convolution with a graph

Let f : X → R be a smooth function. Let Tf : T ∗X × R → T ∗X × R be given by Tf (x, ω, t) =
(x, ω − dfx; t+ fx). If ` is an Ω-lense supported on K, then Tf ` is a TfΩ-lense supported on K.

Let ∆X ⊂ X ×X be the diagonal. Let f∆ : ∆ = X
f→ R.

Proposition 7.3 Let F ∈ shε(X) and let SS(F ) ⊂ C. We have

SS(F ∗X A[∆X ,f∆]) ⊂ TfC.
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Sketch of the proof. Let Ω ⊂ T ∗X × R be an open fiberwise convex subset such that Ω ∩ (TfC)a = ∅.
Let ` be an Ω-lense. We have

(F ∗X A[∆X ,f∆]) • A` = F • (A[∆X ,f∆] ∗X A`)
(1)
≈ F • ATf `

(2)∼ 0,

where (1) follows from Sec 7.2.1 and (2) follows from Tf ` being a TfΩ lense, where

TfΩ ∩ Ca = TfΩ ∩ Tf (TfC)a = Tf (Ω ∩ (TfC)a) = ∅.

7.4.3 Variation of lenses

Proposition 7.4 Let M be a smooth manifold and let Fk be smooth functions on X×M such that for
every m ∈M , {Fk(m,−)} is an Ω-lense supported on a compact K. Let ` := {Fk}. Let F ∈ shε(X)
and SS(F ) ∩ Ωa = ∅. Then A` •X F ∼ 0 as an object of sh(M).

Sketch of the proof. 1) It suffices to show that A` •X F (U) ∼ 0, where U ⊂ M is an arbitrary
pre-compact subset.

2) There exists a δ > 0 such that for every m ∈M and every δ′ ∈ [0, δ), {Fk(x,m)− δ′} is an Ω-lense
supported on K.

3) Let V ⊂ U be an open subset. Set

fk(x)V := sup
v∈V

fk(x, v), x ∈ X.

As follows from Sec. 7.1.5, {fk
V } is an Ω-lense supported on K, and so is `V,δ′ := {fk

V − δ′} for all
δ′ ∈ [0, δ).

4) Call V δ′-small if f(x)− f(y) > −δ′ for all x, y ∈ V . We then have fk
V − δ′ ≤ f on X × V .

5) For an open δ′-small subset V ∈ U , set

FV,δ′ := A`V,δ′ � AV ∈ shε(X ×M).

Let P be the poset whose each element is a pair (V, δ′), where V is δ′ small. The order is defined by
(V1, δ

′
1) ≤ (V2, δ

′
2) if V1 ⊂ V2 and δ′1 ≥ δ′2. Then F : P → shε(X ×M). We have a natural map

hocolimP F → A`.

7) Let us show that this map induces a homotopy equivalence

hocolim(V,δ′)∈P FV,δ′(W × U, a)→ A`(W × U, a)

for all a ∈ Qop
ε and all W ∈ OpenK .

Using (7.1.3), the problem reduces to showing that the natural map

hocolim(V,δ′)∈P A{x∈K|∃v∈V :fk(x,v)−δ′>a}×V (W × U)→ A{(x,v)∈K×U |fk(x,v)>a}(W × U) (30)

is a homotopy equivalence.
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Fix a value of k. For p = (V, δ′) ∈ P , denote

Wk
p := {x ∈ K|∃v ∈ V : fk(x, v)− δ′ > a} × V ∈ OpenK×U

and
Wk := {(x, v) ∈ K × U |fk(x, v) > a}.

The natural zig-zag homotopy equivalences AA(B) ≈ AA ◦ AB ≈ AB(A) show that the arrow in (30) is
zig-zag homotopy equivalent to

hocolimp∈P AW×U (Wk
p )→ AW×U (Wk). (31)

Observe that the set {Wk
p }p∈P is closed under finite intersection:

Wk
V1,δ1 ∩W

k
V2,δ2 = Wk

V1∩V2;max(δ1,δ2).

Therefore, {Wk
p }p∈P is an open covering of ⋃

p∈P
Wk
p = Wk

so that the map in (31) is a homotopy equivalence by the gluing property for the sheaf AW×U .

7.5 Singular support of F �G

Let F ∈ shε(X) and G ∈ shε(Y ). Suppose SS(F ) ⊂ A and SS(G) ⊂ B. Consider the following subset
of T ∗(X × Y )× R

C0(F,G) = {(x, ω, y, η, t1 + t2)|(x, ω, t1) ∈ A; (y, η, t2) ∈ B}.

Let C(F,G) be the closure of C0(F,G).

Claim 7.5 We have SS(F �G) ⊂ C(F,G).

Sketch of the proof.

0) For a ∈ R. Define functors

cutt<a, R>a, cut≥a, R≤a : Qε → Qε

as follows. Set:

— cutt<aeb = eb if b ≤ a− ε;
—cutt<aeb = Cone eb → ea[-1] if a− ε < b ≤ a;

— cutt<aeb = 0 if b > a;

—cutt≥aeb = 0 if b ≤ a− ε;
—cutt≥aeb = ea if a− ε < b ≤ a;

—cutt≥aeb = eb if b > a.
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— R>aeb = eb if b > a;

— R>aeb = 0 if b ≤ a;

—R≤aeb = 0 if b > a;

—R≤aeb = eb if b ≤ a.

These functors extend to functors shε(X)→ shε(X). One has

cut≥aA[K,f ] ≈ A[K;max(a,f)]; R≤aA[K,f ] = AK′;f ,

where K ′ = {x ∈ K|f(x) ≤ a}.
We have natural transformations cutt<a → Id→ cutt≥a; R>a → Id→ R≤a. whose compositions are
0. The complexes

0→ cutt<aF → F → cutt≥aF → 0; 0→ R>aF → F → R≤aF → 0

are acyclic for every F ∈ pshε(X).

We have cutt<aF •X R≤−aG ∼ 0; cutt≥a •X R>−aG ∼ 0 for all F,G ∈ pshε(X). Hence, the induced
maps

cutt<aF •X R>−aG→ cutt<a •X G

and
cutt<aF •X R>−aG→ F •R>−aG

are homotopy equivalences. We have

cutt<aF •X G ≈ F •X R>−aG (32)

Similarly, we get
cutt≥aF •X G ≈ F •X R≤−aG. (33)

Whenever a ≤ b we have a natural transformation cut<a → cut<b. Let cuta≤t,b := Cone cut<a →
cut<b.

Let us also denote Tc : Qε → Qε; Tca = a+ c.

1) Let P := (x0, p0, y0, q0, t0) /∈ C(F,G). Let us show that F � G is nonsingular at P . Let f be a
smooth function on X and g on Y such that f(x0) = 0, g(y0) = −t0, dx0f = −p0, dy0g = −q0. Let
h : X × Y → R so that h(x, y) = f(x) + g(y). We then have

A[∆X ;fδ] � A[∆Y ;g∆] ≈ A[∆X×Y ,h∆].

Let F ′ := F ∗X A[∆X ;f∆], G
′ := G ∗Y A[∆Y ;g∆], (F � G)′ := (F � G) ∗ A[∆X×Y ;h∆]. We then have

F ′ �G′ ≈ (F �G)′.

It now follows that SS(F ′) = TfSSF , SS(G′) = TgSSG, and SS(F �G) = ThSS(F �G). It also follows
that C(F ′, G′) = ThC(F,G). We therefore have P ′ = (x0, 0, y0, 0, 0) /∈ C(F ′, G′) and it suffices to
prove that P ′ /∈ SS(F ′ �G′).

Therefore, the problem reduces to showing that if P = (x0, 0, y0, 0, 0) /∈ C(F,G), then P /∈ SS(F �G).
We assume below that P /∈ C(F,G).
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2) There exist neighborhoods U of (x0, 0) ∈ T ∗X,V of (y0, 0) ∈ T ∗Y , and δ > 0, such that whenever
(p, t1) ∈ SSF and (q, t2) ∈ SSG with p ∈ U and q ∈ V , there must be |t1 + t2| > δ.

3) Let A = {t ∈ R|∃p ∈ U : (p, t) ∈ SSF}; B = {t ∈ R|∃q ∈ V : (q, t) ∈ SSG}. It follows that
dist(A,−B) > δ.

4) Let t ∈ R. It follows that either [t−δ/2, t+δ/2]∩A = ∅ or [t−δ, t+δ/2]∩−B = ∅. In the first case
call [t − δ/2, t − δ/2] an A-interval, and t an A-point. Otherwise, call [t − δ/2, t − δ/2] a B-interval,
and t a B-point.

5) Let fk(x, y) be an U × V × (−δ/4, δ/4)-lense, to be denoted by `.

6) Let a, b ∈ R satisfy a+ b ≥ −δ/2.

Suppose [a− δ/4, a+ 3δ/4] is an A-interval. Let us show that

(R>aF �R>bH) •X×Y A` ∼ 0 (34)

for every H ∈ pshε(X), hence for G.

It suffices to check it for H = [W, c], where W ⊂ X is an open subset and c ∈ R. The statement then
follows automatically for c ≤ b as R>bH = 0 in this case.

7) Consider the case c > b. We have R>b[W, c] = [W, c]. We have

(R>aF � [W, c]) • A` = (R>aF •X TcA`)(W ) = (R>aF •X ATc`)(W ) ≈ (F •X cut<−aATc`)(W ),

where we have used (32). We have
cut<−aATc` ≈ A`′ ,

where
`′ = {min(fk(x) + c,−a)} = min `, `−a,

where `−a is the lense f1 = f2 = −a. We have

−a− 3δ/4 ≤ b− δ/4 ≤ min(fk(x) + c,−a) ≤ −a.

Thus, `′ is a generalized U × V × (−a− 3δ/4,−a+ δ/4)-lense so that

F •X A`′ ∼ 0,

as was required.

8) Consider now the case when (a− δ/4, a+ 3δ/4) is a B-interval.

Then we replace R>aF with [W, c], where c > a. We are to prove

([W, c] �R>bG) •X×Y A` ∼ 0,

where ` is a U × V × (−δ/4, δ/4)-lense.

Similar to above, we have

([W, c] �R>bG) •X×Y A` ≈ (R>bG •X ATc`)(W ) ≈ (G •X cut<−bATc`)(W ) ≈ (G •X A`′)(W ),
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where
`′ = min(fk + c,−b).

We have
a− δ/4 ≤ min(fk + c,−b) ≤ −b ≤ a+ 3δ/4.

and `′ is a U × V × (a− δ/4, a+ 3δ/4)-lense.

As (a − δ/4, a + 3δ/4 is a B-interval, G is nonsingular on V × (−(a − δ/4),−(a + 3δ/4)) so that
G •Y A`′ ∼ 0, as was required.

9) Let a + b ≤ −δ/2. Let a1 = −b− δ/4, b1 = b− δ/4. We have b1 ≤ b; a1 ≥ a + δ/2− δ/4 ≥ a. We
then have the following acyclic complex:

0→ R>a1F �R>bG→ R>aF �R>bG⊕R>a1F �R>b1G→ R>aF �R>b1G

→ Ra<t≤a1F �Rb1<t≤bG→ 0.

As a1 + b = −δ/4, we have
(Ra<t≤a1F �Rb1<t≤bG) • A` ∼ 0.

Indeed, as a1 + b = −δ4, the natural map

(Ra<t≤a1F �Rb1<t≤bG)→ R≤−δ/4(Ra<t≤a1F �Rb1<t≤bG)

is a homotopy equivalence so that we have

(Ra<t≤a1F�Rb1<t≤bG)•A` ≈ (R≤−δ/4(Ra<t≤a1F�Rb1<t≤bG))•A` ≈ (Ra<t≤a1F�Rb1<t≤bG)•cut≥δ/4A`.

, Finally, cut≥δ/4A` ≈ A`′′ , where `′′ = max(δ/4, fk) = δ/4 so that A`′′ ∼ 0. which implies the
statement.

Next, a1 + b1 = −δ/2 and a1 + b = −δ/4 ≥ −δ/2, we have (by 7) and 8)):

(R>a1F �R>b1G) • A` ∼ 0;

(R>a1F �R>bG) • A` ∼ 0.

Thus, if a+ b ≤ −δ/2 and (R>aF � R>bG) • A` ∼ 0, then (R>aF � R>b−δ/4G) • A` ∼ 0. Taking into
account 7), 8), it now follows by induction that (R>aF�R>bG)•A` ∼ 0, whenever a+b = −δ/2−Nδ/4,
N ≥ 0.

9) We have
hocolimN→∞(R>−δ/4−Nδ/8F �R>−δ/4−Nδ/8G)

∼→ F �G,

which implies the statement.
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7.5.1 Singular support of A[X,f ]

Let f : X → R be a smooth function. Set Lf := {(x,−dxf, f(x)|x ∈ X} ⊂ T ∗X × R.

Proposition 7.6 We have SSA[X,f ] ⊂ Lf .

Sketch of the proof As follows from Sec 6.0.15, 7.4.2, it suffices to consider the case f = 0. Next, it
suffices to consider the case X = Rn which reduces to the case n = 1 by virtue of the previous section.

Let (x0, p0, t0) ∈ R×R×R = T ∗R×R, where (p0, t0) 6= (0, 0). Choose δ > 0 so that max(|p0|, |t0|) > 2δ.

Let U = {(x, p, t)| |x − x0|, |p − p0|, |t − t0| < δ}. Let ` = {fk} be a U -lense on R supported on
|x− x0| ≤ δ.
We have

A[R,0] • A` ≈ Cone AR(K0)→ AR(K1),

where Kk = {x| |x| ≤ δ, fk(x) ≤ 0}. Case 1. |t0| > 2δ. As |fk(x) + t0| < δ, fk(x) are of the same
sign for all k and all x, |x| ≤ δ so that K1 = K0.

Case 2. |p0| > 2δ. As |fk(x)′ + p0| < δ, fk(x)′ are of the same sign for all k and all x, |x| ≤ δ.
Therefore, Kk = [fk(−δ), fk(−δ)]. So that the arrow AR(K0) → AR(K1) is homotopy equivalent to
the identity arrow A→ A, whence the statement.

7.5.2 SSA[U,0], where U has a smooth boundary

Let U ⊂ X be a domain with a smooth boundary. Let f be a smooth function in a neighborhood of
U . For x ∈ X set nx ⊂ T ∗xX be defined as follows: nx = 0 if x ∈ U ; nx is the closed ray consisting of
all inner normal vectors at x to U if x is a boundary point of U ; nx = ∅ otherwise. Set

Σ :=
⋃
x∈X

nx.

Proposition 7.7 We have
SSA[U,0] ⊂ Σ× {0} ⊂ T ∗X × R.

Sketch of the proof Choose an increasing sequence of smooth functions fn(x) such that fn(x)→∞ for
all x /∈ U and fn(x) = 0 for all x ∈ U .

We then have
hocolimn→∞ A{(t,x)|t≥fn(x)} → A[U,0].

Let p ∈ T ∗X × R\Σ × 0. It follows that there for every neighborhood V of p there exists an N such
that

SSA[X,fn(x)] = Lfn ∩ V = ∅.

This implies the statement.
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7.5.3 SSA[U,0]

Proposition 7.8 We have
SSAU,0] ⊂ (Σ× {0})a ⊂ T ∗X × R.

Sketch of the proof Apply the previous Proposition to X\U .

7.5.4 Inverse image under closed embedding

Let i : Y → X be a closed embedding. Let S be a closed subset of T ∗X × R. Define a closed
subset C ′Y S := S+̂T ∗YX|Y ⊂ T ∗X|Y × R, where +̂ is the Whitney sum. Let CY S ⊂ T ∗Y × R be the
image of C ′Y S under the projection T ∗X|Y → T ∗Y . In local coordinates: let y be coordinates on Y
and (y, x) on X. A point (y0, q0, t0) ∈ CY S iff there exists a sequence (yn, qn, xn, pn, tn) ∈ S, where
(yn, qn, xn, tn)→ (y, q, 0, t) and |xn|pn → 0.

Let S ∈ shε(X). Then SSi−1S ∈ CY SSS.

Sketch of the proof. 1) Let us introduce local coordinates (x, y) so that Y is given by the equation
x = 0. Suppose (0, η0, t0) /∈ CY SSS. We need to show that i−1S is non-singular at (0, η0, t0). By
change of variable t 7→ t− t0 − (η0, y)− 1, we reduce the problem to the case η0 = 0, t0 = −1.

Thus (0, 0,−1) /∈ CY SSS. This implies that there exists δ > 0 such that (x, ω, y, η, t) /∈ SSS, whenever

|x| < δ, |y| < δ, |η| < δ, |t+ 1| < δ, |ω||x| < δ.

Denote this set by W

2) Lemma. For each r0 > 0 there exists a smooth non-decreasing function gr0 : [0,∞) → [0, 1] such
that

a) there exists δ > 0 such that g(x) = 0 for all x ∈ [0, δ].

b) g(r0) = 1, in particular g(r) = 1 for all r ≥ r0,

c) |rg′(r)| < 1/2 for all r ≥ 0.

d) gr0(x) ≥ gr1(x) whenever r0 ≤ r1.

3) Let fk(y) be a W ′-lense on Y , where W ′ = {(y, η, t)||y| < δ, |ω| < δ, |t − 1| < δ, supported on the
set |y| ≤ δ. Set

φk
r0(x, y) = (fk(y)− 1− δ)(1− g(|x|)) + 1 + δ

. Let us show that {φk
r0} is a W a-lense supported on the set Kr0 := {(x, y)| |x| ≤ r0, |y| ≤ δ}.

a) it is clear that φ1
r0 = φ2

r0 away from Kr0 ;

b) 1 + δ > φr0 > (1− δ − 1− δ) + 1 + δ = 1− δ;
c)

|x| · |dxφk
r0 | = |x| · |f

k(y)− 1− δ| · |g′(|x|)| < |x| · |g′(|x|)| · 2δ ≤ δ;

d)
|dyφk

r0 | = |dyf
k(y)| · |1− g| < δ.
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We have φk
r0(x, y) ≥ φk

r1(x, y) if r0 ≤ r1. Furthermore

lim
r0↓0

φk
r0(x, y) = ψk(x, y),

where ψ(x, y) = 1 + δ if x 6= 0 and ψk(0, y) = f(y). Let `r0 := {φk
r0}.

We therefore have a homotopy equivalence

0 ∼ hocolimr0↓0 F •X A`r0 ≈ F •X i!A` ≈ i−1F •Y A`.

This shows the statement.

7.5.5 Direct image under closed embedding

Let i : Y → X be a closed embedding Let F ∈ shε(Y ). For every y ∈ Y , let py : T ∗yX → T ∗y Y be the
projection.

Proposition 7.9 We have

SSi!F ⊂ {(y, ω, t)|y ∈ Y ; (y, py(ω), t) ∈ SS(F )}

.

Sketch of the proof Let ` = {fk} be a lense on X. We have

i!F • A` ≈ F • Ai−1`,

where i−1` = {fk|Y }.

7.5.6 Direct image under open embedding

Let U ⊂ X be a domain with a smooth boundary. Let Σ be the same as in Sec. 7.5.2. Let F ∈ shε(U).
Let j : U → X be the embedding.

Proposition 7.10 We have
SS(j!F ) ⊂ SS(F )+̂Σa.

Sketch of the proof By change of coordinates one reduces the case to U ⊂ Rn, where U is a hyperplane
x0 > 0. Let us denote y := (x1, x2, . . . , xn) and x := x0. Let p /∈ SS(F )+̂Σa, w.l.o.g. we may assume
p = (x0, 0,−1) ∈ T ∗Rn × R. Therefore, there exists δ > 0 such that F is non-singular on the open
subset W ⊂ T ∗Rn × R conisting of all points

(y, x, a, η, t) ∈ R>0 × Rn−1 × R× Rn−1 × R,

where

0 < y < δ; |x| < δ; δ > a > −δ
y

; |η| < δ; |t+ 1| < δ.
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Let Ω ⊂ T ∗Rn × R consist of all points (y, x, b, ω) of the form

|y| < δ, |x| < δ, |b| < δ, |ω| < δ, |t+ 1| < δ.

` = {fk} be an Ωa-lense supported on the set |y| ≤ δ, |x| ≤ δ.
Choose smooth functions for each r > 0: σr : R→ [0, 1], satisfying:

—σr(x) = 0, x ≤ 0; σr0(x) = 1 for x ≥ r0;

— σr(x) = 0 in a neighborhood of 0;

— σr1(x1) ≤ σr2(x2) if r1 ≥ r2 and x1 ≤ x2;

—xσ′r(x) ≤ 1/2 for all x and all r.

Let us define new lenses
Fk
r (y, x) = (fk(y, x)− 1 + δ)σr(y) + 1− δ.

Let `r := {Fk
r }. We have

— `r is supported on a compact within U ;

— `r is an Ω-lense. Indeed:
1− δ ≤ F kk ≤ 1 + δ;

|dxFk| = |dxfk|σ(y) ≤ |dxfk| < δ;

−δy < min(ydyf
k, 0) < ydyF

k < 1/2|fk − 1 + δ| < δ.

We also have limr↓0 F
k
r (y, x) = fk(y, x) for all (y, x) ∈ U . The statement now follows.

7.5.7 Proper direct image

let f : X → Y be a proper map of smooth manifolds. Let F ∈ shε(X,C) and SSF ⊂ T . Let
f(T ) ⊂ T ∗Y × R be the set consisting of all points (x, ω, t), where there exists a y ∈ p−1x such that
(y, f∗ω, t) ∈ T .

Proposition 7.11 We have SSf!F ⊂ f(T ).

7.5.8 Direct image along Rn

Let p : X×Rn → X be the projection. Let F ∈ shε(X×Rn) and let SSF ⊂ T ⊂ T ∗X×T ∗Rn×R. Let
P : T ∗X × T ∗Rn × R→ T ∗X × (Rn)∗ × R be the projection and let I : T ∗X × R→ T ∗X × (Rn)∗ × R
be the embedding onto T ∗X × 0× R. Let f(T ) := I−1P (T ).

Proposition 7.12 We have SSF ⊂ f(T ).
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7.5.9

Let X be a smooth manifold with a marked point x0. Let SX ⊂ shε(X) be the full sub-category
consisting of all objects F such that SSF ⊂ T ∗X × {0}.

We have functors shε(X)
F→ sh(X)

G→ shε(X), where F (S) = S •pt At≥0; G(T ) := T � At≥0.

Proposition 7.13 The functors F,G are mutually inverse equivalences of categories.

7.5.10

Let X be a simply-connected manifold with a marked point x0. Let Loc(X) ⊂ shq(X) be the full
sub-category consisting of all objects supported on T ∗XX × 0. Let const(X) be the full sub-category
consisting of all F ∈ const(X) satisfying Fx0 ∈ A-mod ⊂ GZ.

Proposition 7.14 1) We have Hom(F,G) ∈ GZ≥0.

2) The through map
τ≤0Hom(F,G)→ Hom(F |x0 ;G|x0)

is a homotopy equivalence.

7.5.11 Sheaves constant along Rn

Let p : X × Rn → X be the projection. Let C ⊂ shε(X × Rn) be the full sub-category of objects F ,
where

SS(F ) ⊂ T ∗X × T ∗RnRn × R.

Proposition 7.15 The category C consists of all objects F homotopy equivalent to objects of the form
G� ARn, G ∈ shε(X).

7.5.12 Fourier transform

Let E = Rn with the standard euclidean pairing φ : E × E → R. Let F ∈ shq(E × E), F = A[E×E,φ].
Let F t = A[E×E,−φ][n].. Let R : T ∗E × R → T ∗E × R, where R(q, p, t) = (p∨,−q, t + 〈p, q〉), where
∨ : E∗ → E is induced by the pairing. Let a : E → E be given by a(v) = −v.

Let F,Ft : shq(E)→ shq(E), F(G) := G ∗E F ; Ft(G) := G ∗E F t.

Proposition 7.16 1)We have a zig-zag termwise homotopy equivalences FFt ≈ Id; FtF ≈ Id; Ft ≈
a!F[−n];

2)SS(G ∗E F) ⊂ R(SS(G)).
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7.5.13 Fourier transform of convolution

Let E1, E2, E3 be real vector spaces. Let K ∈ shε(E1|E2, C); L ∈ shε(E2|E3, C). Let a2 : E2 × E3 →
E2 × E3, a2(v, w) = (−v, w).

Proposition 7.17 We have
F(K ∗E2 L) ≈ FK ∗E∗2 a2!FL;

The proof is straightforward.

Let now K ∈ shε(E1|E2;C) and F ∈ sh(E2, C). Let a : E1 → E1 be given by a(v) = −v.

Corollary 7.18 We have 1)
FK !F ∼ a!(FK)!FF.

2) The natural map
((FK)!FF ) ∗E1 FK → FF

is homopy equivalent to

((FK)!FF ) ∗E∗1 FK ≈ a!FK
!F ∗E∗1 FF ≈ FK !F ∗E1 K → FF.

Indeed, 1) follows from the above proposition and 2) follows from the fact that F is a homotopy
equivalence of categories, therefore preserves pairs of adjoint functors.

7.6 Comparison of the two inverse images

Let i : Y → X be a closed embedding. Let m = dimY ; n + m = dimX. Let F ∈ shε(X). Set
DY := i!AX . We have a natural map i!DY → AX . Let ∆X : X → X ×X be the diagonal embediding.
We have an induced map ∆X!i!DY → ∆!AX . We now have an induced map

F ∗X ∆!i!DY → F ∗X ∆!AX ≈ F.

Let δ : Y → X × Y be the diagonal embedding. We have

i!F ∗X δ!DY ≈ F ∗X ∆!i!DY ,

whence induced maps
i!F ∗X δ!DY → F ;

F ∗X δ!DY → i!F. (35)

7.6.1 Theorem: formulation

Let U ⊂ T ∗X×R be a conic open subset containing T ∗YX×R, where conic means stable under positive
dilation of fibers of the bundle T ∗X × R→ X × R.

Theorem 7.19 Suppose SS(F )∩U ⊂ T ∗X×R is proper over X×R. Then the map (35) is a homotopy
equivalence.

The rest of the subsection is devoted to the proof.
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7.6.2 Reduction to the flat case

The statement is local in Y . Let y0 ∈ Y . Choose a pre-compact neighborhood V of y0 endowed with
a diffeomorphism φ : V ∼= Bn × Bm ⊂ Rn × Rm, where Bn ⊂ Rn is the unit ball centered at 0 and
φ(Y ∩ V ) = 0×Bm. We have an identification T ∗X|U = U × Rn × Rm. It follows that there exist an
open cone C ⊂ Rn × Rm , C ⊃ Rn × 0, and a compact subset K ⊂ Rn × Rm such that

φ(U ∩ T ∗V × R) ⊃ V × C × R

and
SS(F ) ∩ T ∗V × C) ⊂ T ∗V ×K.

One can choose diffeomorphisms h : Rn ∼= intBn; hm : Rm ∼= intBm and an open cone A ⊂ Rn × Rm,
Rn × 0 ⊂ A, satisfying: (hn × hm)∗(intBn × intBm × C) ⊃ Rn × Rm × A, where (hn × hm)∗ :
T ∗(intBn × intBm)→ T ∗(Rn × Rm) is the induced map.

3) The problem reduces to the case X = Rn×Rm, Y = 0×Rm, SSF ∩Rn×Rm×A is compact, where
A ⊂ Rn × Rm is an open cone, 0× Rm ⊂ A.

Let (x, y) be local coordinates on Rn × Rm. Let (x, ω, y, η) be coordinates on T ∗(Rn × Rm). There
exists a C > 0 such that

A ⊃ {(ω, η)|0 < C|η| < |ω|}.

There exists a D > 0 such that F is non-singular on the set

{(x, ω, y, η)|max(D,C|η|) < |ω|}.

Denote H := {(ω, η)|η 6= 0; max(D,C|η|) < ω}. Let

Σ := Rn × Rm\H,

Σ = {(ω, η)| |g| ≤ max(D,C|η|)}

7.6.3 Applying the Fourier tranform

Let us apply Fourier transform (7.5.12).

1) We have FF is supported on Σ.

2) The properties of Fourier transform imply that the map

FδY !DY ∗X F → FF

is homotopy equivalent to the following map

A[{(x1,y1,x2,y2)|x1=x2},0] ∗Rn×Rm FF → A{(x1,y1,x2,y2)|x1=x2,y1=y2},0] ∗Rn×Rm FF

which is homotopy equivalent to the natural map

p−1p!FF → FF,

same as in Sec. 5.16.3. The map (35) is then equivalent to the induced map

p!FF → p∗FF.

which is a homotopy equivalence because p is proper on the support of FF.
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8 Action of Sp(2N)

Let G be the universal cover of Sp(2N). Let V = R2N be the standard symplectic vector space with
the coordinates (q, p) and let E = RN so that V = T ∗E. The group Sp(2N), hence G, acts on V .

8.1 Graph of the G-action on T ∗E

. Let a : T ∗E → T ∗E be the antipode map (q, p) 7→ (q,−p). Let Γ ⊂ G × V × V consist of all
points of the form {(g, v, gva)| g ∈ Sp(2N); v ∈ V }. It follows that there exists a unique Legendrian
sub-manifold L ⊂ T ∗(G×E×E)×R which — diffeomorphically projects onto Γ under the projection

T ∗(G× E × E)× R→ G× T ∗(E × E)× R.

— contains all the points of the form (e, v, va, 0), where e is the unit of G and v ∈ V .

Let C be the full sub-category of sh∞(G× E × E) consisting of all objects F satisfying:

— there exists a homotopy equivalence F |e×E×E ∼ A[∆E ],0, where ∆E ⊂ E × E is the diagonal.

— SS(F ) ⊂ L.

We have a functor C → A-mod, F 7→ F |(0,0,0)

Theorem 8.1 This functor is a weak equivalence.

Sketch of the proof. Part 1: Let us construct at least one object S of C satisfying F |0,0,0 = A.

1) For an open subset U ⊂ G, let LU ⊂ T ∗(U × E × E) × R) be the restriction of L. Let CU be the
full sub-category of shq(U ×E×E) consisting of all objects F such that SS(F ) ⊂ LU and there exists
a homotopy equivalence F |e×E×E ∼ A[∆E ,0].

2) Let U be a small enough geodesically convex neighborhood of unit in Sp(2N) satisfying: for each
g ∈ U we have: (q, p′) is a non-degenerate system of coordinates, where (q′, p′) = g(q, p). U lifts
uniquely to G, to be denoted by the same letter.

3) We will freely use the notation from Sec. 7.5.12. Let

R1 : T ∗E × T ∗E × R→ T ∗E × T ∗E × R,

be defined by R1(u1, u2, t) = (u1, R
−1(u2, t)), where R as in Sec 7.5.12. Let C′U ⊂ shq(U × E × E)

consist of all objects F such that

— there exists a homotopy equivalence F |e×E×E ∼ F′.

— SSF ⊂ R1(LU ).

It follows that the functor G 7→ G ∗E F induces a homotopy equivalence of categories C′U → CU .

4) The Legendrian manifold R1LU ⊂ T ∗(G×E ×E)× R projects uniquely onto the base G×E ×E,
therefore, R1LU is of the form Lf for some smooth function f on G× E × E.

Let A ⊂ shq(G× E × E) be the full sub-category of objects F satisfying:

— SS(F ) ⊂ T ∗U×E×EU × E × E × 0;
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— there exists a homotopy equivalence F |e×E×E ∼ AE×E .

It follows that A is the category consisting of all objects homotopy equivalent to A[U×E×E,0].

According to Sec. 7.4.2, the convolution with A∆E ,f gives a homotopy equivalence of categories
A → C′U .

Fix an object SU ∈ CU along with a homotopy equivalence

SU |0×E×E ∼ A[∆E ,0].

5) For h ∈ U , set Sh := SU |h×E×E . Every g = G can be written as g = g1g2 · · · gn, where gi, g
−1
i ∈ U .

Set Sg1,...,gn = Sg1 ∗E Sg2 ∗E · · · ∗E Sgn .

For each g, choose an object SgU which is homotopy equivalent to one of Sg1,...,gn ∗ESU for g1 · · · gn = g.
Observe that the objects Sg1,...,gn and Sg′1,...,g′m , where g1 · · · gn = g′1 · · · g′m = g are homotopy equivalent.
It suffices to show that

Sg1,··· ,gm,(g′m)−1,··· ,(g′1)−1 ∼ A[∆E ,0]

that is Sg1g2···gn = A∆E ,0 whenever g1g2 · · · gn = e. As U is geodesically closed, there is a unique
shortest geodesic line joining g1 · · · gk and g1 · · · gk+1. We will thus get a broken geodesic line starting
and terminating at e. As G is simply connected, this line can be contracted to a point. By possibly
adding intermediate points, one can reduce the problem to the case when there exist smooth paths
hk : [0, 1]→ U such that h1(t) · · ·hn(t) = e, hk(1) = e, hk(0) = gk for all k. Let Sk ∈ sh([0, 1]×E×E),
Sk := h−1

k SU . Consider

Σ := S1 ∗E S2 ∗E · · · ∗E Sn ∈ shq(I
n × E × E)|∆I×E×E ,

where ∆I ⊂ In is the diagonal.

It follows that
Σ1×E×E ∼ A[∆E ,0]; Σ0×E×E ∼ Sg1,g2,··· ,gn .

Next, the singular support estimate shows that Σ is locally constant along ∆I , which implies the
statement.

6) Choose a covering G =
⋃
n gnU . Let I ∈ CovG be the poset consisting of all non-empty inter-

sections gi1U ∩ · · · gikU . Each element of I is geodesically convex. It follows that all the restictions
SgilU |gi1U∩···∩gikU are homotopy equivalent. Indeed, choose a point h ∈ gi1U ∩ · · · ∩ gikU ; 4) implies
that there is a homotopy equivalence of restrictions SgilU |h×E×E with Sh. The statement now follows
from 4).

For every A ∈ I, A = gi1U ∩ gi2U ∩ · · · ∩ gikU , choose an object SA ∈ CA to be homotopy equivalent
to each of the restrictions SgilU |A×E×E .

7) For each V ∈ I let j : V → G be the embedding. Let TV := jV!SV .

8) Whenever A ⊂ B, A,B ∈ I, we have a homotopy equivalence A ∼ Hom(TA, TB). Let rAB : TA → TB
be the image of 1 ∈ A.

9) We have rBCrAB is homotopy equivalent to EABCrAC for some EABC ∈ A×.

10) EABC is a 2-cocycle on I. Since H2(G,A×) = 0, EABC is exact. Therefore, wlog we can assume
that EABC = 1.
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11) Denote J (A,B) := τ≤0Hom(TA, TB). We have a functor J → I which is a homotopy equivalence
of categories so that we have the constant functor Z : J op → Iop → GZ, Z(A) = A for all A.

Finally, we set S := SG := Z ⊗LJ op S.

Part 2. Uniqueness The convolution with S gives a pair of quasi-inverse maps between CG and the
full sub-category of objects S ∈ shq(G × E × E) with SSS ⊂ T ∗GG × T ∗E(E × E) × {0}, where there
exists an isomorphism

S|e×E×E ∼ A{(e,e,0)|e∈E}.

The latter category, hence the initial one, satisfies Hom(F,G) ∈ GZ≥0 for every pair of objects.
Passing to τ≥0 yields the statement.

8.1.1 The object S

Fix an object S ∈ C endowed with a homotopy equivalence S|0,0,0 → A.

9 Objects supported on a symplectic ball

9.1 Projector onto the ball

Let i0 : R/2πZ→ Sp(2N) be a one-parametric subgroup consisting of all transformations

q′ = q cos(2a) + p sin(2a);

p′ = −q sin(2a) + p cos(2a).

Let i : R ↪→ G be the lifting. Denote A := i(R). Let T ∈ shq(A×E ×E) be the restriction of S. The
object T is microsupported within the set

Σ = Σ0∪{(a,−(q2+p2), q,−p, q′, p′,−S(q, p, a))|(q, p) ∈ V ; a ∈ R, sin(2a) 6= 0} ⊂ T ∗A×T ∗E×T ∗E×R
(36)

where

Σ0 = {(πn,−(q2+p2), q,−p, q, p, 0)|(q, p) ∈ V, n ∈ A}∪{(π(
1

2
+n);−(q2+p2), q,−p,−q,−p, 0)|(q, p) ∈ V, n ∈ A};

S(q, p, a) =
cos(2a)(q2 + (q′)2) + 2qq′

2 sin(2a)
.

Let B = R with the coordinate b. Let pB : B × E × E → E × E be the projection. Set

PR := pB!T ∗A A[{(a,b)∈A×B|b<R2},−ab][1] ∈ shq(E × E).

Let
∆a≤0 := {(a, a)|a ≤ 0} ⊂ A×A.

We have
PR ∼ pA!T ∗A A[∆a≤0,−aR2],

where pA : A× E × E → E × E is the projection.
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9.1.1 The map α : T−πR2PR[2N ]→ PR

We have a homotopy equivalence
T a−πT [−2N ] ∼ T ,

where T a−π is the translation along A by −π units.

Thus, we have a map

PR ∼ pA!((T
a
−πT ) ∗A A[∆a≤0,−aR2][−2N ]) ∼ pA!(T ∗A A[{(a1,a2)|a2≤0,a1=a2+π},−a2R2])[−2N ]

∼ pA!(T ∗A A[{(a1,a2)|a1≤π;a1=a2},πR2−a1R2])[−2N ]

∼ TπR2pA!(T ∗A A[{(a1,a2)|a1≤π;a1=a2},−a1R2])[−2N ]

→ TπR2pA!(T ∗A A[{(a1,a2)|a1≤0;a1=a2},−a1R2])[−2N ] ∼ TπR2PR[−2N ].

This map can be rewritten as
α : T−πR2PR[2N ]→ PR.

9.1.2 Hom(TcPR;PR)

Let (ν − 1)πR2 < c ≤ νπR2, where ν ∈ Z. Let Gc := Hom(TcPR;PR). Then

Gc ∼ Z[−2Nν] if ν ≥ 0, Gc = 0 if ν > 0.

The natural map GνπR2 → Gc is a homotopy equivalence. The generator of GνπR2 , ν < 0 is given by
α∗n.

The map PR → A[∆E ,0] induces a homotopy equivalence

Hom(TcPR;PR)→ Hom(TcPR; A[∆E ,0]).

9.1.3 PR is a projector

We have a natural map
pr : PR → A[∆E ,0]. (37)

Let CR ⊂ shq(E) be the full subcategory of objects supported away from
◦
BR × R ⊂ T ∗E × R.

Let shq[
◦
BR] ⊂ shq(E) be the left orthogonal complement to CR. We have PR ∗E F ∈ shq[

◦
BR];

ConePR ∗E F → F ∈ CR so that PR gives a semi-orthogonal decomposition.

9.1.4 Generalization

Denote by shε[T
∗X ×

◦
BR × R] ⊂ shε(X × E) be the left orthogonal complement to the full category

of objects supported away from T ∗X ×
◦
BR × R. The convolution with PR gives a semi-orthogonal

decomposition.
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9.1.5 The object γ = Coneα

Let γ := Coneα. We have

γ ∼ T ∗A A[{(a1,a2)|a1=a2;−πR2<a1≤0},−aR2]

We have a homotopy equivalence

Ec := Hom(Tcγ,PR)
∼→ Hom(Tcγ; A[∆E ,e0])

We have
Ec = (ConeGc → Gc−πR2 [−2N ])[−1],

where the map is incuced by the multiplication by α.

Therefore,

—Ec = A[−2N − 1], 0 < c ≤ πR2;

—Ec = 0 otherwise.

9.1.6 Singular support of γ

We have

SST ∗A A[{(a1,a2)|a1=a2,−πR2<a1≤0},−aR2] ⊂ {(a,R2 + k, q,−p, q′, p′, t− aR2) ∈ Σ| − π < a < 0} ∪ S,

where Σ is as in (36) and

S = {(−π,R2 + k, q,−p, q, p,−πR2)|k ≤ −p2 − q2} ∪ {(0, R2 + k, q,−p, q, p, 0)|k ≤ −p2 − q2}.

Therefore, we have

SSγ ⊂ {(q,−p, q′, p′,−aR2−S(a, q, q′))|p2+q2 = R2;−π < a < 0}∪{(q,−p, q, p,−πR2)|q2+p2 ≤ R2}
∪ {(q,−p, q, p, 0)|q2 + p2 ≤ R2}.

It follows that 0 ≤ −aR2 − S(a, q, q′) ≤ πR2 if −π < a < 0.

9.1.7 Singular support of P

Similarly, one can find

SSP ⊂ {(q,−p, q′, p′,−aR2 − S(a, q, q′)|p2 + q2 = R2; a < 0} ∪ {(q,−p, q, p, 0)|q2 + p2 ≤ R2}.
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9.1.8 Singular support of ConeP → A[∆E ,0]

We have
Cone(P → A[∆E ,0]) ≈ pA!T ∗A A[{(a1,a2)|a1=a2,a1≤0},−aR2]

so that

SST ∗A A[{(a1,a2)|a1=a2,a1≤0},−aR2] ⊂ {(a,R2 + k, q,−p, q′, p′, t − aR2) ∈ Σ|a < 0} ∪ S′,

where Σ is as in (36) and

S′ = {(0, R2 + k, q,−p, q, p, 0)|k ≥ −p2 − q2}.

Therefore,

SS Cone(P → A[∆E ,0]) ⊂ {(q,−p, q′, p′,−aR2−S(a, q, q′)|p2+q2 = R2; a < 0}∪{(q,−p, q, p, 0)|q2+p2 ≥ R2}.

9.1.9 Corollaries

Corollary 9.1 We have
Cone(P → A[∆E ,0]) • A[pt,c] ≈ 0;

Cone(P � P → A[∆E×∆E ,0] • A[pt,c] ≈ 0.

for all c ≤ 0.

Corollary 9.2 Let F ∈ sh(E × E). Then the natural maps

Hom(A∆E×∆E
;F )

∼→ Hom(P � P;F � A[pt,0]);

Hom(A∆E×∆E
;F )

∼→ Hom(T2πR2γ � γ[−4N ];F � A[pt,0])

are homotopy equivalences.

9.1.10 Convolution of γ with itself

We have a homotopy equivalence

γ ∗E γ ∼ γ ⊕ T−πR2γ[2N ].

Denote by µ : γ ∗E γ → γ the projection.

We now have the following homotopy equivalence

Hom(Tcγ,A[∆E ,0])
µ→ Hom(Tcγ ∗E γ; A[∆E ,0]),

for all c except those in (πR2, 2πR2].

In particular, for 0 < c ≤ πR2, we have:

Hom(Tcγ ∗E γ; A[∆E ,0]) ∼ A[−2N − 1];
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For c ≤ 0, the above expresssion is homotopy equivalent to 0.

Let Λ ∈ shq(pt); Λ = Cone(A[pt,−πR2] → A[pt,0]).

We have a chain of homotopy equivalences

Hom(γ; A∆E
� Λ)

µ∼ Hom(γ ∗E γ; A∆E
� Λ) ∼ A[−2N ].

In particular, we have a homotopy equivalence

Hom(γ,Λ � A∆E
[2N ]) ∼ A.

Let
ν : γ → Λ � A∆E

[2N ] (38)

be the generator.

One also has a map ε : Λ � A∆E
→ γ which has a homotopy unit property with respect to µ, the

through map
γ ∼ A∆E

∗E γ → Λ � A∆E
∗E γ → γ ∗E γ → γ

is homotopy equivalent to the Identity.

The induced map
Hom(γ,Λ � A∆E

)
ε→ Hom(γ, γ) (39)

is a homotopy equivalence. The map ν on the LHS corresponds to Id on the RHS.

9.1.11 Lemma on ν � ν

Consider the following maps

γ � γ
ν�ν→ Λ � A∆E

� Λ � A∆E
[4N ]→ Λ � A∆E×∆E

[4N ]; (40)

γ � γ
µ→ p−1

14 γ � p−1
23 A∆E

ν→ Λ � p−1
14 A∆E

� p−1
23 A∆E

[3N ]→ A∆E×∆E
[4N ]. (41)

Here the maps µ is obtained from µ by conjugation. The last arrow is the generator of

Hom(p−1
23 A∆E

⊗ p−1
14 A∆E

; A∆E×∆E
[N ]).

Lemma 9.3 The maps (40) and (41) are homotopy equivalent.

Sketch of the proof One reformulates the statement as follows:

By the conjugacy, the map ν correponds to a homotopy equivalence

ξ : Λ→ γ ∗E2 A∆[Rn,0]
[n]

The problem reduces to showing that the map

Λ→ Λ ≈ (γ�γ)∗E4A∆×∆[2n]→ (γ�γ)∗E4A(v1,v2,v3,v4)∈E4|v1=v4;v2=v3
[n] ≈ (γ∗Eγ)∗E2A∆[n]→ γ∗E2A∆[n]

(42)
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is homotopy equivalent to
Λ⊗ Λ→ Λ→ γ ∗E2 A∆[n]. (43)

According to Sec. 35 we have a homotopy equivalence,

γ ∗E2 A∆[n] ∼= Hom(A∆; γ).

The map ξ rewrites as ξ′ : Λ→ Hom(A∆; γ)] which produces a map e : Λ⊗ A∆ → γ.

The map (42) rewrites as

Λ⊗ Λ→ Hom(A∆; γ)⊗Hom(A∆; γ)→ Hom(A∆; γ ∗E γ)→ Hom(A∆; γ).

The map (43) rewrites as
Λ⊗ Λ→ Λ→ Hom(A∆; γ).

Homotopy equivalence of the two maps follows from the following maps being homotopy equivalent:

Λ⊗ A∆ ∗E Λ⊗ A∆
e∗e→ γ ∗E γ → γ

and
Λ⊗ Λ→ Λ→ γ.

The latter statement follows from Sec. 9.1.10.

9.1.12 γ as an object of shπR2(E × E)

It follows that γ is supported within the set E ×E × [−πR2; 0]. Therefore, γ determines an object of
shπR2(E × E), to be denoted by Γ.

Using the bar-resolution for Γ ∗E Γ, we see that it is glued of γ ∗E Λ∗
n
E ∗E γ. We therefore have the

following homotopy equivalences (all the hom’s are in shπR2(E × E):

Hom(Γ; A∆E
)
ξ∼ Hom(Γ ∗E Γ; A∆E

) ∼ A[−2N ].

9.2 Study of the cateory shq(F × E × E)[T ∗F × intBR × intBR × R]

9.2.1 The category AI

Let I ⊂ R be an open subset. Denote by AI the full sub-category of

shq(F × E × E)[T ∗F × intBR × intBR × R]

consisting of all objects X, where

SS(X) ∩ T ∗F × intBR × intBR × I = ∅.
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9.2.2 Study of A(a,∞)

Let F ∈ A(a,∞).

We have a natural map
F ∗ (PR � PR)→ (R≤aF ) ∗ (PR � PR),

where R≤a is as in the proof of Claim 7.5.

Lemma 9.4 The above map is a homotopy equivalence.

Sketch of the proof Equivalently, we are to show

(R>aF ) ∗ (PR � PR) ∼ 0.

We have
hocolimc↓aR>cF

∼→ R>aF,

therefore, it suffices to show that

R>cF ∗ (PR � PR) ∼ 0, c > a.

As PR is supported within BR ×BR × [0,∞), we further reformulate:

(R>cF ) ∗ (PR � PR) ∼ 0. (44)

Let us study SSR>cF. As F ∈ AI , F is non-singular on the set

Ω{(f, η, v1, ζ1, v2, ζ2, t)| t > a; |v1|, |v2| < R}.

Let `{fk} be an Ωa-lense. According to (32), we have

(R>cF ) • A` ≈ F • τ≤−cA` ≈ F • A`−c ,

where `−c = {min(−c, fk)}. This implies that R>cF is non-singular on Ω, which implies (44).

9.2.3 Study of A(−∞,a)

Lemma 9.5 Let F ∈ A(−∞,a). Then τ<aF ∼ 0.

Sketch of the proof It suffices to show that R≤cF ∼ 0 for all c < a. Similar to the previous Lemma,
we deduce that R≤cF is non-singular on the set

T ∗F × intBR × intBR × R.

Next, we have homotopy equivalences

R≤c ≈ R≤c(F ∗ (PR � PR))
∼→ R≤c(R≤cF ∗ (PR � PR)) ∼ 0.

This proves the statement.
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9.2.4 Study of AR\a

Let bR ⊂ E be the open ball of radius R centered at 0. We have functors

α : sh(F × bR × bR)→ AR\a,

where
α(S) = (S � A[pt,a]) ∗ (PR � PR);

β : AR\a → sh(F × bR × bR),

β(T ) = T • Apt,a.

Proposition 9.6 The functors α, β establish homotopy inverse homotopy equivalences of categories.

Sketch of the proof Let S ∈ AR\a. According to the two previous subsections we have homotopy
equivalences:

S ≈ R≤aS ∗ (PR � PR) ≈ (τ≥aR≤aS) ∗ (PR � PR) ≈ ((S • At≥a) � A[pt,a]) ∗ (PR � PR),

which implies the statement.

9.2.5 SS(α(F ))

Proposition 9.7 Let C be a closed conic subset of T ∗F × T ∗bR × T ∗bR. F ∈ AR\a and suppose
SS(F ) ∩ T ∗F ×BR ×BR × a ⊂ C. Then SS(α(F ) � A[pt,a]) ⊂ C × a.

9.2.6 The category AR\a,∆

Let α : BR → BR be the antipode map, α(q, p) = (q,−p). Let

∆α = {(α(v), v)|v ∈ intBR} ⊂ intBR × intBR.

Let AR\a,∆ ⊂ AR,\a be the full sub-category of objects X where

SS(X) ∩ T ∗F × intBR × intBR × R ⊂ T ∗FF × T ∗∆α(intBR × intBR)× a.

Let AF ⊂ sh(F × bR × bR) be the full sub-category of objects T where

SS(T � A[pt,a]) ⊂ T ∗F×∆bR
(F × bR × bR × a). (45)

According to the previous subsection, we have a homotopy equivalence

β : AF → AR\a,∆.

Furthermore, let Loc(F ) ⊂ sh(F ) be the full sub-category of objects T where

SS(T � A[pt,a]) ⊂ T ∗FF × a.

Let γ : Loc(F )→ AF be given by
γ(S) = S � A∆bR

.

Lemma 9.8 γ is a homotopy equivalence of categories.

Therefore,

Proposition 9.9 the functor ζ := βγ : Loc(F )→ AR\a,∆ is a homotopy equivalence of categories.
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9.2.7 The category CI

Let shq(F ×Rn×Rn)[T ∗F × intBR×T ∗Rn×R] be the full sub-category of shq(F ×Rn×Rn) consisting
of all objects F which are left orthogonal to all objects non-singular on T ∗F × intBR × T ∗Rn × R,
same as in Sec 9.1.4.

Below we will study the full sub-category

CI ⊂ shq(F × Rn × Rn)[T ∗F × intBR × T ∗Rn × R]

consisting of all objects T satisfying SS(T ) ∩ T ∗F × intBR × T ∗Rn × R ⊂ L.

9.2.8 Main Theorem

Let AF be a category as in (45).

Theorem 9.10 We have a homotopy equivalence between the categories CI and AF .

The proof of this theorem occupies the rest of the subsection.

1) Extend I to F × [−1, 1]×BR as follows. For t ∈ [−1, 1]\0, set

J(f, t, x) =
I(f, tx)− I(f, 0)

t
+ I(f, 0).

This map extends uniquely to a smooth map J : F × [−1, 1]×BR → T ∗Rn. The grading of I extends
uniquely to a grading J of J .

Let K = J |F×0. It follows that K is a family of linear symplectomorphisms of T ∗Rn restricted to BR.
The grading J determines uniquely a map

µ : F → Sp(2N)× R. (46)

2) For every (f, t) ∈ F × BR we have a Hamiltonian vecor field on BR, namely
dJ(f, t)

dt
. Let H(f,t)

be a smooth function on BR correpsonding to this vector field and satisfying H(f,t)(0) = 0. It follows
that H : F × I × BR → R is a smooth function. It extends to a smooth function on F × I × T ∗E
whose support projects properly onto F × I.

3) Let χ : R → [−1, 1] be a non-decreasing smooth function such that χ(t) = −1 for all t ≤ −1,
χ(t) = 1 for all t ≥ 1, and χ(0) = 0. Let K(f, t) = J(f, χ(t)) and h(f, t, v) = H(f, χ(t), v)χ′(t) so

that h(f, t,−) is the Hamiltonian function of the vector field
dK(f, t)

dt
. It follows that there exists a

unique family of symplectomorphisms M : F × R× E → E such that

a) M |F×0 is the family of linear symplectomorphisms coinciding with J |F×0 = KF×0;

b)
dM(f, t)

dt
is the Hamiltonian vector field of h(f, t,−).

It also follows that M |F×R×BR = K

4) The family M defines a Legendrian sub-manifold LM ⊂ T ∗(F ×E×E×R) such that LM ∩T ∗F ×
BR × T ∗E × R = LK .
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5) According to the theorem of Guillermou-Kaschiwara-Schapira, there exists a quantization of LM :
an object Q ∈ shq(F × E × E) such that SSQ ⊂ LM and Q|t=0 = µ−1S, where µ is as in (46).

6) Similarly, one defines a quantization Q′ of the family M−1 of inverse symplectomorphisms.

7) Let ∆ : F × E × E → F × I × F × I × E × E be the following embedding

∆(f, v1, v2) = (f, 1, f, 1, v1, v2).

We have endofunctors
S 7→ S ∗F×E ∆!Q; S 7→ S ∗F×E ∆!Q

′

of shq(F × E × E) which descends to homotopy inverse homotopy equivalences between CO and CI ,
where O : F ×BR → BR

ι→ E is the constant family, where ι is the standard embedding.

By definition, CO = AR\0,∆. By Proposition 9.9 we have a homotopy equivalence ζ : Loc(F ) → CO.
We thus have constructed a zig-zag homotopy equivalence between Loc(F ) and CI . Denote by PI ∈ CI
the object corresponding to AF ∈ Loc(F ).

9.2.9 Inverse functor

We have PI ∈ shq(F × bR × E).

Let I ′ : F ×BR → T ∗E be given by I ′(f, v) = αI(f, α(v)), where α : T ∗E → T ∗E, α(q, p) = α(q,−p).
Let QI := σ!PI′ ∈ shq(F × E × bR), where σ : bR × E → E × bR is the permutation.

Let ∆F : F → F × F be the diagonal embedding.

Proposition 9.11 We have

QI ∗F×E ∆F !PI ≈ AF � PR ∈ shq(F × bR × bR).

9.2.10

Let π : T ∗F → F be the projection. Let GI ⊂ T ∗F × T ∗E be an open subset defined as follows

GI = {(φ, v)|v ∈ I(π(f)× intBR)}.

Let us also define functors

P : shq(F × bR)[T ∗F × intBR]→ shq(F ×E)[GI ]; Q : shq(F ×E)[GI ]→ shq(F × bR)[T ∗F × intBR],

where
P(S) = S ∗F×bR ∆F !PI ; Q(T ) = T ∗F×E ∆F !QI .

Proposition 9.12 The functors P,Q establish homotopy mutually inverse homotopy equivalences be-
tween the categories shq(F × bR)[T ∗F × intBR] and shq(F × E)[GI ].
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9.2.11 Lemma on PI ,QI

We abbeviate P := PI , Q := QI .
We have natural maps

α : ∆−1
F (Q ◦bR P)→ AF×∆E

;

β : ∆−1
F (P ◦E Q)→ AF×∆E

.

We therefore have a pair of induced maps

Id ◦ α, β ◦ Id : P ◦E Q ◦E P → P. (47)

which are homotopy equivalent and likewise for the pair:

α ◦ AF×∆E
,AF×∆E

Id◦ : Q ◦ P ◦ Q → Q. (48)

One gets the following corollary from (47), (48).

A. Let
p1, p2 : F × E × E × E × E → F × E × E

be projections, where
pi(φ, e1, f1, e2, f2) = (φ, ei, fi).

The maps α, β induce, by the conjugacy, maps

A : p−1
1 P ⊗ p

−1
2 → Q→ A{f1=e2}[N ];

B : p−1
1 Q⊗ p

−1
2 → P → A{f1=e2}[N ].

Let pij : (F × (E × E)2)2 → F × E × E be projections, where

pij(φ
1, e1

1, f
1
1 , e

1
2, f

1
2 , e

2
1, f

2
1 , e

2
2, f

2
2 ) = (φi, eij , f

i
j).

We have the following maps

A : (p1
1)−1P ⊗ (p1

2)−1Q⊗ (p2
1)−1P ⊗ (p2

2)−1Q A�B−→ A{f1=e2,e1=f2,f3=e4,e3=f4}[2N ]

→ A{f1=e2,e1=f2=e3=f4,f3=e4}[2N ]

B : (p1
1)−1P ⊗ (p1

2)−1Q⊗ (p2
1)−1P ⊗ (p2

2)−1Q A�B−→ A{φ1=φ2,f1=e4,e1=f4,f2=e3,e2=f3}[2N ]

→ A{f1=e4,e1=f4,f2=e3,e2=f3}[2N ][2N ]

We also have a map

δ : A{f1=e2,e1=f2=e3=f4,f3=e4}[2N ]→ A{f1=e4,e1=f4,f2=e3,e2=f3}[2N ][2N ]
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As follows from (??), we have a homotopy equivalence:

B ∼ δA.

This can be rewritten as follows: we have an object

P ◦F Q ◦F×E P ◦F Q ∈ shq(E
6)

The map A induces a map

A : P ◦F Q ◦F×E P ◦F Q → Ae1=e6,e2=e3,e4=e5 [−3N ];

The map B induces a map

B : P ◦F Q ◦F×E P ◦F Q → Ae1=e6,e2=e5,e3=e4 [−2N ]

we also have a map
δ1 : Ae1=e6,e2=e3,e4=e5 → Ae1=e6,e2=e5,e3=e4 [N ]

and we have a homotopy equivalence
B ∼ δ1A. (49)

Let γ ∈ shπR2(E × E) and γ → Ae1=e2 ⊗ Λ[2N ]. be as in Sec. 9.1.5.

Let F ∈ shπR2(E × E) be such that SSF ⊂ V × V .

We then have the following maps

P ◦F Q ◦F×E P ◦F Q ◦E6 (p−1
23 γ ⊗ p

−1
45 γ ⊗ p

−1
16 F)

∼ Ae1=e6,e2=e3,e4=e5 [−3N ] ◦E6 (p−1
23 γ ⊗ p

−1
45 γ ⊗ p

−1
16 F)

∼ Λ⊗ (Ae1=e6 ◦E×E F)[−3N + 4N − 2N ] (50)

P ◦F Q ◦F×E P ◦F Q ◦E6 (p−1
23 γ ⊗ p

−1
45 γ ⊗ p

−1
16 F)

∼→ Ae1=e6,e2=e5,e3=e4 [−2N ] ◦E6 (p−1
23 γ ⊗ p

−1
45 γ ⊗ p

−1
16 F)

→ Ae1=e4,e2=e3 ◦E4 (p−1
23 γ ⊗ p

−1
14 F)[−2N ]

→ Ae1=e4 ◦E2 (F)[−2N + 2N −N ] (51)

As follows from (49) and Sec 9.1.11

Lemma 9.13 the maps (50) and (51) are homotopy equivalent.

9.3 Pair of consequitive families

Let u : F × Br → BR, v : F × BR → E be graded families of symplectic embeddings. Let w :
F ×Br → E be defined by w(f, b) = v(f, u(f, b)). The gradings define liftings gu : F ×Br → Sp(2N);
gv : F ×BR → Sp(2N) of the corresponding differential maps.

Let gw : F × Br → Sp(2N) be given by gw(f, b) = gv(f, u(f, b))gu(f, b). It follows that gw lifts the
differential map F ×Br → E determined by w. Therefore, gw is a grading of w.
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Proposition 9.14 We have a homotopy equivalence Pv ◦ Pu
∼→ Pw.

Sketch of the proof As above, let us extend the family v to a family

vt : F × [−1, 1]×BR → E,

where

vt(f, t, b) =
v(f, tb)− v(f, 0)

t
+ v(f, 0).

Let wt : F × [−1, 1]×Br → E, where wt(f, t, b) = vt(f, t, u(f, b)). The gradings from v and w extend
to vt, wt. We will show that there exists a homotopy equivalence

Pvt ◦ Pu
∼→ Pwt . (52)

Restriction to t = 1 will then show the Proposition.

To show the existence of (52), it suffices to establish the homotopy equivalence of the restriction to
t = 0. Observe that v0 comes from a family of linear symplectomorphisms F → Sp(2N) whose grading
defines a lifting V0 : F → Sp(2N). Let V ∈ sh∞(F ××E ×E) be the corresponding object. We have
a homotopy equivalence

Pv0 ◦ Pu ∼ V ◦ Pu

so the problem reduces to establishing a homotopy equivalence V ◦ Pu
∼→ Pv0u.

In a similar way (via considering the family ut), one reduces the problem to the case when the family
u is linear. The grading then defines an object U ∈ sh∞(F ×E ×E). Similarly, the linear family v0u,
along with its grading, defines an object W ∈ sh∞(F × E × E).

Next, we have homotopy equivalences U ◦ PBr
∼→ Pu; W ◦ PBr

∼→ Pv0u so that the problem reduces to
establishing a homotopy equivalence

V ◦ U ∼→W,

which follows from Sec 8.

9.4 Mobile families

9.4.1 Definition

Let U ⊂ T ∗E be an open subset let j : U → T ∗E be the corresponding open embedding. Let
I : U ×BR → T ∗E be a family of symplectic embeddings, where we assume I|U×0 = j.

The family I defines a Lagrangian sub-manifold

LI ⊂ T ∗U × intBR × T ∗E.

Set F = E ⊕ E∗.
We have a natural identification T ∗U = U ×F . For each ξ ∈ U let Lξ := T ∗ξ U × intBR × T ∗E ∩LI ⊂
F × intBR × T ∗E. Let Pξ ⊂ F × intBR be the image of Lξ under the projection along T ∗E Call I
mobile if for every ξ, Pξ is a graph of an embedding intBR → F .
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9.4.2 Main proposition

We have objects PI ,QI ∈ shq(U × E × E). Let p1, p2 : U × E × E × E × E → U × E × E be the
projections

p1(u, e1, f1, e2, f2) = (u, e1, f1); p2(u, e1, f1, e2, f2) = (u, e2, f2).

Consider
RI := p−1

1 PI ◦ p−1
2 QI .

Let i : E3 → E4; p : E3 → E2 be given by i(a, b, c) = (a, b, b, c); p(a, b, c) = (a, c). According to the
previous subsection, we have a map

p!i
−1RI → A[U×∆E ,0]

where ∆E ⊂ E × E is the diagonal.

By the conjugacy, we have a map
RI → A[U×∆14×∆23,0][N ],

where N = dimE which, in turn, gives rise to a map

α : πU !RI → A[∆14×∆23,0][−N ],

where πU : U × E4 → E4 is the projection along U .

Let V ⊂ U be an open subset satisfying: for every u ∈ U , if I(u×BR) ∩ V 6= ∅, then I(u×BR) ⊂ U .

Let pi : T ∗E4 → T ∗E be the projections i = 1, 2, 3, 4. Let pij := pi × pj : T ∗E4 → T ∗E2.

Proposition 9.15 Let A,B ∈ shq(E × E) and assume that SSA ⊂ BR × BR × R; SSB ⊂ V . Then
H := (Coneα) ∗E4 (p−1

23 A ◦ p
−1
14 B) ∼ 0.

Sketch of the proof. Let us define a family of symplectic embeddings

J : U × (−1, 1)×BR → T ∗E

by means of dilations, same as above. One then defines an object πU !RJ ∈ shq((−1, 1)× E4), a map

αJ : πU !RJ → A[(−1,1)×∆14×∆23,0][−N ],

and an object
HJ := (ConeαJ) ∗E4 (p−1

23 A⊗ p
−1
14 B) ∈ shq((−1, 1)).

Singular support estimate (see below) shows that

SSHJ ⊂ T ∗I I × R.

Therefore, it suffices to show that HJ |0 ∼ 0, in other words, the problem reduces to the case when I
is a family of linear symplectic embeddings. The latter case can be reduced to the case when every
embedding is a parallel transfer which is straightforward.
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Estimate of SSHJ . It suffices to show that

SS(πU !RJ ∗E4 (A�B)) ⊂ T ∗(−1,1)(−1, 1).

Let us identify
T ∗(U × R× E4)× R = (U × R)× (F ⊕ R)× F 4 × R.

We have

SS(RJ) ⊂ {(τ, ηJ(τ, v1)− ηJ(τ, v2), va1 , J(τ, v1), va2 , J(v2))|τ ∈ U × R, vi ∈ F, |vi| < R} × R

∪ {(τ, ζ, v1, w1, v2, w2)||v1|, |v2| ≤ R; max(|v1|, |v2|) = R.} × R.

Consider now SS(RJ ∗E×E A). As SS(A) ⊂ {(v1, v2)||v1|, |v2| < R}, it follows that

SS(RJ ∗E×E A) ⊂ {(τ, ηJ(τ, v1)− ηJ(τ, v2), J(τ, v1), J(τ, v2))||v1|, |v2| < R} × R.

Let us estimate
SS((RJ ∗E×E A) ∗E×E B).

It follows that there exists a compact subset K ⊂ U such that

SS((RJ ∗E×E A) ∗E×E B) ⊂ {(τ, ηJ(τ, v1)− ηJ(τ, v2))|τ ∈ K × (−1, 1), |v1|, |v2| < R} × R.

Namely, one can choose K = {u ∈ U |I(u,BR) ∩ V 6= ∅}.
Let now τ = (u, x) ∈ U × (−1, 1). We have ηJ(τ, v) ∈ F ⊕ R. Let f(τ, v) be the F -component and
x(τ, v) be the R-component. Let us now estimate

SS(πU !(RJ ∗E4 (A�B))).

As πU is proper on the support of RJ ∗E4 (A�B), the singular support in question is determined by
the condition f(τ, v1)− f(τ, v2) = 0. As the family I is mobile, this condition implies v1 = v2, which
implies ηJ(τ, v1)− ηJ(τ, v2) = 0 and

SS(πU !(RJ ∗E4 (A�B))) ⊂ T ∗(−1,1)(−1, 1)× R.

10 Tree operads and multi-categories

10.1 Planar/cyclic trees

Let us introduce a notation for a tree t. Denote by inp(t) the set of inputs of t, Vt the set of inner
vertices of t, for v ∈ Vt, denote by Ev the set of inputs of v. Let pt be the principal vertex of t.

10.1.1 Planar trees

Define a planar tree as a tree with a total order on every set Ev; we then have an induced total order
on inp(t).

We have a unique identification of ordered sets Ev = {1, 2, . . . , nv}, where nv = #Ev; inpt =
{1, 2, . . . , nt}, where nt = #inpt.
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10.1.2 Cyclic trees

Define a cyclic tree as a tree with a total order on every set Ev, v 6= pt, and a cylic order on pt. We
then have an induced cycic order on inpt, in particular, we assume inppt 6= ∅.
A rigid cyclic tree is a cyclic tree along with identifications Ept = {1, 2, . . . , npt}; inppt = {1, 2, . . . , nt}
which agree with the cyclic order on both sets.

10.1.3 Inserting trees into a tree

Let t be a planar tree. Let tv, v ∈ Vt be planar trees where ntv = nv. One then can insert the trees
tv into t. Denote the resulting tree by t{tv}v∈Vt .
Similarly, let t be a rigid cyclic tree. Let tv, v ∈ Vt\pt be planar trees with ntv = nv; let tpt be a rigid
cyclic tree with ntpt

= npt . One then can define a similar insertion, to be denoted by t{tv}v∈Vt .

10.1.4 Isomorphism classes of trees

Let trees be the set of isomorphism classes of planar trees and treescyc be the set of isomorphism
classes of rigid cyclic trees. Let A be a SMC enriched over ground. T (A) be the ground-category
of all families of objects in A parameterized by trees t cyctrees.

Let also treesn ⊂ trees be the subset consisting of all isomorphism classes of trees with nt = n and
likewies for cyctreesn. The above defined insertions are defined on the level of isomorphism classes.

10.1.5 Famililes parameterized by isomorphism classes of trees

Let A be a
⊕

-closed SMC. Let T (A) be a category, enriched over sets, whose every object is a family
of objects Xt ∈ A, t ∈ treest cyctrees. Let X,Y ∈ T (A). Let us define a new family X ◦Y ∈ T (A)
as follows:

X ◦ Y (T) =
⊕

T=t{tv}v∈Vt

X(t)⊗
⊗
v∈Vt

Y (tv).

This way, T (A) becomes a monoidal category. The unit object unit ∈ T (A) is defined by setting
unit(t) = unitA for all isomorphism classes of planar trees with one vertex (corollas) and all iso-
morphism classes t of rigid cyclic trees with one vertex and matching numberings of Ep and inpt.
Otherwise, unit(t) = 0.

10.2 Collections of functors

Let C be a GZ-category tensored over A.

Let us define a category over Sets, F(C), as follows

F(C) :=
∞∏
n=0

swell(Cn ⊗ Cop)×
∞∏
n=1

Cn
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so that an object F ∈ F(C) is a collection of objects F [n] ∈ swell(C⊗n ⊗ Cop), n ≥ 0, and F (n) ∈
swell(C⊗n), n ≥ 1.

Let t be a planar tree. Define an object

F (t) ∈ swell(C⊗nt ⊗ Cop).

A) Let h : Cop ⊗ C → ground be the hom functor.

B) We have an equivalence of categories⊗
v∈Vt

(C⊗nv ⊗ Cop) ∼=
⊗

v∈Vt\pt

C ⊗ Cop

⊗ (C⊗nt ⊗ Cop),

coming from the bijection ⊔
v∈Vt

Ev ∼= Vt t inpt\pt

which associates to an edge its target.

As a result we have a through map

◦t :

⊗
v∈Vt

swell(C⊗nv ⊗ Cop)→ swell
⊗

v∈Vt\pt

C ⊗ Cop

⊗ (C⊗nt ⊗ Cop)→ swell(C⊗nt ⊗ Cop).

C) Set F (t) := ◦t(
⊗
v∈Vt

F [nv ].

Let now t be a rigid cyclic tree. Define a functor F (t) ∈ swell(Cnt) in a similar way. Let

◦t : C⊗npt ⊗
⊗

v∈Vt\pt

(C⊗nv ⊗ Cop)→ C⊗nt

be defined similar to above and set

F (t) := ◦t(F (npt ) ⊗
⊗

v∈Vt\pt

F [nv ].

10.3 Schur functors

Suppose C is tensored over A. Let X ∈ T (A) and F ∈ F(C). Define an object SX(F ) ∈ F(C) as
follows

SX(F )[n] :=
⊕

t∈treesn

t(F ); SX(F )(n) =
⊕

t∈cyctreesn

t(F ).

We have natural isomorphisms

SXSY F ∼= SX◦Y F ; SunitF ∼= F.

In fact, we have a T (A)-action on F(C).
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10.4 Tree operads

A tree operad in T (A) is the same as a unital monoid in T (A).

10.4.1 A tree operad triv

Let triv ∈ T (A) be given by triv(t) = unitA for all t.

10.4.2 Endomorphism tree operad

Let C be enriched and tensored over A. Let F,G ∈ F(C). Consider a functor HF,G : T (swellA) →
Sets,

HF,G(X) = Hom(SXF ;G)

The functor HF,G is representable. Denote the representing object by HF,G. We have (t is planar):

HF,G(t) = Homswell(C⊗nt⊗Cop)(F (t);G[nt]);

if t is a rigid cyclic tree, we have:

HF,G(t) = Homswell C⊗nt (F (t);G(nt)).

Set EndF := HF,F . We have a natural tree operad structure on EndF . Furthermore, we have an
EndF −EndG-bi-module structure on HF,G (where we interpret tree operads EndF ,EndG as monoids
in T (swellA).

10.4.3 Quasi-contracible tree operads

Let now A = pt so that swellA = GZ. Call a tree operad O ∈ T (GZ) pseudo-contractible if

1) O(t) ∈ GZ admits a truncation for every O(t). We therefore have an induced tree operad structure
on τ≤0O and a map of tree operads τ≤0O → O.

2) Every object τ≤0O admits a trunctation τ≥0, to be denoted H0O(t) which is a finitely generated
free A-module; we have an induced map of tree operads τ≤0O → H0O. We require this map to be a
term-wise homotopy equivalence.

A quasi-contractible tree operad is a pseudo-contractible operad O endowed with a map of tree operads
triv→ H0(O).

In this case there exists a splitting of the map τ≤0O(t)→ H0O(t), hence a pull-back of the diagram

triv→ H0(O)← τ≤0O,

to be denoted by trivO so that we have a diagram

triv
∼← trivO → O.

Let O1,O2 be quasi-contractible operads and M a O1 − O2-bi-module. Call M pseudo-contractible
if there exist truncations τ≤0M(t) and τ≥0τ≤0M(t) =: H0M(t), where each H0M(t) is a finitely
generated free A-module.
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A quasi-contractible O1 −O2-bi-module M is a pseudo-contractible O1 −O2-bi-module M endowed
with a map

(triv, triv, triv)→ (H0O1, H
0M, H0O2)

of triples: a pair of tree-operads and their bi-module.

Similar to above, we have a pull-back of the diagram

(triv, triv, triv)← (τ≤0O1, τ≤0M, τ≤0O2)→ (H0O1, H
0M, H0O2),

to be denoted by (trivO1 , trivM; trivO2) so that we have a diagram

(triv, triv, triv)
∼← (trivO1 , trivM, trivO2)→ (O1,M,O2).

10.5 Pull backs from F(D) to F(C)

Let A have internal hom. Let C,D be categories enriched over A. Let G ∈ F(D). Let L ∈ swell(Cop⊗
D).

Consider the following functor H : F(C)op → Sets as follows.

1) We have functors
eL : C⊗n ⊗ Cop ⊗ (Cop ⊗D)⊗n → D⊗n ⊗ Cop,

via using the hom-functor C⊗n ⊗ (Cop)⊗n → GZ, as well as

fL : D⊗n ⊗Dop ⊗ Cop ⊗D → D⊗n ⊗ Cop.

via the hom functor Dop ⊗D → GZ.

Similarly, one defines a cyclic version:

1)
ecyc
L : C⊗n ⊗ (Cop ⊗D)⊗n → D⊗n;

2) Set
H [n](F ) := Hom(eL(F [n] ⊗ L⊗n;G[n]);

H(n)(F ) := Hom(ecyc
L (F (n) ⊗ L⊗n;G(n)).

Set
H(F ) =

∏
n≥0

H [n](F )×
∏
n>0

H(n)(F ).

It follows that the functor H is representable. Denote the representing object by L−1G.

Let X ∈ T (A). We have a natural map SXL−1G→ L−1SXG.
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