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1 Closure of a dg-category

1.1 Generalities
1.1.1 dg-categories
By a dg-category we mean a category enriched over the category of complexes of A-modules, where

A=ZorA=0Q.

An arrow, or a morphism f : X — Y is a cocycle in Hom®(X,Y). We say that two arrows f, g are
homotopy equivalent, and write f ~ g, if the cocycle f — g is exact.

We say that f: X — Y is a homotopy equivalence if there exists g : Y — X such that fg ~ Idy and
gf ~1dx.
We say that an object X is acyclic if 0 ~ Id in Hom(X, X).

1.1.2 Enriched categories

Let C, D be categories enriched over a SMC M. Denote by C ® D a category enriched over M, where
ObC ®D = ObC( x ObD and Hom(X1, Y1); (X2, Y2)) = Hom(X1, X2) ® Hom(Y7, Y2).

1.2 Various completions

We will now introduce several operations, namely: twisting the differentual, adding a kernel of a
projector, adding direct sums and direct products. We will end up with an operation swell so that
swell C is closed under adding all the above listed objects.

1.3 Differential on an object

A differential on an object X of a dg-category C is an element D € Hom! (X, X) satisfying dD+D? = 0.
Define a dg-category DC whose every object is a pair (X, D), where X € C and D is a differential on
X; we set

Hom((X, Dx), (Y, Dy)) := (Hom(X,Y), D’),

where we introduce a new differential D’ on Hom(X,Y) as follows. Let f € Hom"(X,Y); set:
D'f=df + Dyf - (-1)"fDx

We have a natural functor DC ® DD — D(C ® D). If C is a SMC, then DC inherits the structure. If
C is enriched over an SMC M, then DC is enriched over DM. Call C D-closed if the obvious functor
C — DC is an equivalence of DG categories. The category DC is always D-closed.



1.4 Kernels of projectors

Let X be an object of C. A projector is an element P € Hom’(X, X) such that dP = 0 and
P? = P. Define a dg-category PC whose every object is a pair (X, Px), where Py is a projector on X.
Set Hom((X, Px), (Y, Py)) to be a sub-complex of Hom(X,Y') consisting of all elements f satisfying
Pyf=f=[Px.

We have a natural map PC ® PD — P(C ® D). If C is a SMC, then PC inherits the structure. If
C is enriched over an SMC M, then PC is enriched over PM. We call a dg-category P-closed if the

obvious inclusion C — PC is an equivalence of categories. If C is D-closed then so is PC. Therefore,
PDC is both P-and D-closed.

14.1

Call a category @ [[-closed if all small direct products and direct sums exist in C. It follows that PDC
is @ [ [-closed if such is C.

The goal of the subseqgent subsection is to provide a tool for constructing @ [ [-closed dg-categories.

1.5 Precofilters

Let S be a set. By definition, a pre-cofilter F on S is a collection of subsets on S satisfying:
—ifXeFandY C X, thenY € F;
— if X7, X9 € F, then so is X7 U Xs.

1.5.1

Let P be any family of subsets of S. Let precofilter(P) be the smallest pre-cofilter containing P. We
have: U € precofilter(P) iff U is contained in a finite union of subsets from P. We call precofilter(P)
the pre-cofilter generated by P.

1.5.2 Product of precofilters

Let 51,59 be sets and Fi, Fo precofilters. Let F; x Fa be the pre-cofilter generated by all subsets
Uiy x Uy C 51 x SQ, where Uy € F1 and Us € Fo.

Let p; : S1 x So — S; be the projections. We see that U € F; x Fo iff p;(U) € F;, i =1, 2.

1.5.3 Convolution of subsets

Finally, for E C S1 x Sy and F' C S x S3 we define Eo F' C S X S3 to consist of all (s1,s3) € S1 % Ss,
where there exists so € So such that (s, s2) € E and (se,s3) € F.

U CS,VCS xS,and W C S3, we define UoV C Sy and VoW C S; in a similar way.



1.5.4 Properness

As above, let E C S1 x S3 and F C S9 x S3. We say that the convolution E o F' is proper if for all
(s1,83) € S1 x S3, the set
{82 S SQ‘(Sl,SQ) € E; (82,83) S F}

is finite.

1.5.5 Precofilter hom

Let F; be a cofilter on S;, i = 1,2. Define Hom(F7, F2) on S x So to consist of all U C Sy x Sy, where
— for every L € F1, Lo U € F5 and the convolution L o U is proper.

1.5.6 Dual precofilter
Let F be a pre-cofilter on S. Define a cofilter F¥ on S to consist of all subsets U C S, where VN U
is finite for every V € F.

We have FV = Hom(F, T), where T is a pre-cofilter on the one-element set consisting of all its subsets.

1.5.7 Cofilters

We have an inclusion F C (FV)Y. Call F a cofilter if this inclusion is an equality. Observe that any
pre-cofilter of the form GV is a co-filter.

1.5.8 Formula for Hom

Let F; be pre-cofilters on S;, F»2 being a co-filter, we then have
Hom(F1, F2) = (F1 x Fy)Y.

In particular, Hom(F;, F2) is a co-filter.

1.5.9 Product of cofilters

Suppose that both F; and F» are cofilters. Then so is Fq; x Fa.

Sketch of the proof. Denote by Il a co-filter on Si consisting of all its subsets. Let also pg : S1 xSy —
S1 be the projection.

We have (F1 x F2)¥ D (F1 x II3)Y. The latter cofilter consists of all subsets ¥ C S7 x Sy satisfying
p1(X) € F and every fiber of the projection p; : ¥ — S; must be finite. It follows that (F; x IIo)VV =
F1 x IIy. Indeed, if X C Sy x Sz and p1(X) ¢ Fi, then there exists a Y € F)’ such that p1(X)NY = Z
is infinite. Therefore, there exists a subset W C X which is mapped bijectively onto Z via p;. It
follows that W € (F; x IIz)Y and W N X is infinite.

Hence, (F1 x F2)VV C Fy x Ily. Similarly, (F; x F2)VY C II; x Fa, which implies
(.7'_1 ><.7'—2)Vv C F1 xIIb NIy x Fo = F1 X Fa.
As FVV O F for any pre-cofilter F, the statement follows.
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1.5.10 Families of cofilters

Let 7 : S — T be a map of sets. Fix cofilters 7 on T and F; on Sy := 7w~ !, t € T. Define a cofilter
o= HteT}—ft to consist of all subsets U C S such that 7(U) € F and UN S, € F; for all t € T.

Equivalently: given any H C S such that H NS, € F and m(H) C FY, then H N U is finite.
This implies:

(Hﬂv 11 7

teT teT

1.5.11 Product of A-modules over a cofilter

Let S be a set and let X, s € S be a family of A-modules. Let F be a cofilter on .S. Set

to consist of all families {xs}ses where the set {s € S|zs # 0} belongs to F. We have natural maps

() @M~ T "xen

ses teT (s,t)eSxT

Hom(F,G F
I - 9 Hom(X,, ;) — Hom IT % I v
(s,6)eSXT ses teT,G

1.6 Aggrandizement

Let C be a category enriched over the category of A-modules. Let us define a new category aggC
enriched over the same category as follows.

— Objects of agg C are of the form (S, F,{Xs}ses), where S is a set, F is a cofilter on S, and X, € C,
seS.

— Let X := (Sz‘,]:i, {(Xi)s}seS)7 1=1,2. Set

I—IOJ(]: 7]:2)
HomaggC(-XhXZ) = H ' HOIn(XSI,XS2).
(s1,52)ES1%xS2

We have a natural functor
X : agg(C1) ® agg(Ce) — agg(Cr ® Ca),

where

(57 ]:7 {XS}SES) D (T7 g'{Xt}tET) = (S X T?"r X g, {Xs & Y;f})

This implies that a (symmetric) monoidal structure on C caries over to aggC.

11



If C is enriched over a monoidal category M, then aggC is enriched over agg M.
It follows that aggC is @ [ [-closed.
If C is a dg-catregory, then so is aggC.

1.6.1

We have natural functors: K : agg agg C — aggC and Hom : (aggC)°P ® agg D — agg(C°P ® D).

— K. Let 7: S — T be a map of sets, let S, :=7n"¢,teT. and X : S — C. Let Fr be a cofilter on
T and Fg, on S;. Every object Y of aggaggC is of the form

Y = HFT IT x..

teT SES:

Let ® be a cofilter on S, where U € ® iff U N S; € Fy, for all t and n(U) € Fr, that is

Set

—Hom. Let U = ers Xs €aggCand V = HtGeTY; € aggD. Set

Hom (F,G
Hom(U,V):= ] ( )(XS;Yt).
(s,t)eSxT

1.7 Swell

For a dg-category C denote swellyC := PD agg(C viewed as a dg-category. The resulting category is
PD & []-closed.

1.7.1 Graded free A-modules
Let grad be a dg-category whose objects are of the form [n], n € Z. Set Hom([n], [m]) = A[m — n]
[

n
Introduce a SMC on grad by setting [n]®[m] = [n+m]; define the brading B, : [n]®[m] — [m]®[n]
to be equal (—1)™™.

1.7.2 Definition of swell

Set swell(C) = swelly(C @ grad). The advantage of swell(C) over swelly(C) is the existence of cones
and shifts.
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1.7.3 Properties
There are natural functors
X : swellC @ swell D — swell(C ® D);

Hom : swellC°P @ swell D — swell(C°P ® D).

These functors are obtained via extension from aggC, aggD.

Therefore, if C is an SMC, then so is swellC. If D is enriched over a SMC C, then swell D is enriched
over swellC. Furthermore, if C is an SMC, then the tensor product is compatible with the direct
products in the obvious way.

If C is an SMC with an inner hom then so is swellC and that this inner hom is compatible with the
direct sums and direct products in the obvious way.

We have a natural functor swell swell C — swellC.
1.7.4

Let F: C — swell D be a dg-functor. It induces a functor

swell F : swell C — swellswell D — swell D.

1.8 Contraction and Co-contraction of Kernels
1.8.1 Preliminaries

Let Com be a dg-category of complexes of free A-modules. We have an obvious functor Com ® C —
swellC.

1.8.2 Contraction

Let h : D ® D°P — Com be the hom functor. Define a contraction functor

o :=op : swell(C%P ® D) @ swell(D°P © £) 23 swell(C°P @ D @ DP ® &) 5 swell(C°P @ Com @ €)
— swellswell(CP ® £) — swell(CP ® &).

Define a co-contraction functor:

Hom := Hom, : swell(C®D)°Peswell(CRE) Hop swell(CPRDPRCRE) LN swell(D°P@Com®¢)
— swellswell(DP @ £) — swell(DP ® &).

1.8.3 Associativity

The contraction functor has an obvious associativity property.
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2 Category GZ

Let pt be the category with one object whose endomorphism group is A. Set GZ := swell(pt).

We have an internal Hom in GZ as well as a tensor functor || from GZ to the category of complexes
of A-modules.

2.1 Explicit description of objects from GZ
Every object in GZ is the following collection of data:
(S7 F7g7D7P)7

where S is a set, F is a cofilter on S, g : S — Z is an arbitrary map, and

F F
D e Hom' ([ Jlg(s)); [[lo(s))); D*=0;
seS seS
F F
P e Hom ([ [lg(s)); [ [lo(s))); P*=P; DP=PD.
seS ses

2.2 Tensor product
Denote by ® the functor
® : GZ @ swellC = swell(pt ® C) = swell(C)

and likewise for the isomorphic functor ® : swellC ® GZ — swellC.

2.3 Truncation
2.3.1 Categories GZ<j, GZ> etc.

Let grad.,, be the full subcategory of grad consisting of all objects [n], n < k and grad, be the full
subcategory consisting of all [n], n > k. Let grad_; be the full sub-category consisting of one object
[k], etc. Let GZ<y, := swellg grady; GZ>}, := swellg grad.,, etc.

2.3.2 Stupid truncation

Let X := (S, F,g,D, P) € GZ, where (S, F,g,D, P) is as in Sec 2.1.
Let us define an object X=*, where k € Z.
Set S<F .= {s € S|g(s) < k}. Set

Fsk.={A|A e F; A c S5k
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Set g=F == g|g<r.

We have an obvious retraction in GZ:

F<k L7 0 T
I =)= [ = ] 6= 6):
seS<k SES s€S<k

Set DSF .= QDI; P<F .= QPI.
Set X<k := (5sk Fsk gsk Dsk psk)
We thus have constructed a functor of categories over sets:
—=k.GZ - GZ<.
It follows that this functor is the right adjoint to the embedding GZ<;, — GZ.
Likewise one defined a functor —=* which is the left adjoint to the embedding GZ>, — GZ.

One has a natural map
6 XSk[—1) —» x=2kHL

so that we have an isomorphism in GZ
X = Coned.

2.3.3 The object X*

We set X* := (X=F)ZF. The object X* has zero differential.

2.3.4 Truncation

We say that an object X € GZ admits a truncation if there exists a universal object 7<; X € GZ<y
which maps into X. We say that X € GZ stably admits a truncation if every object Y € GZ which
is homotopy equivalent to X, admits a truncation.

Likewise, for X € GZ, we denote by 7>4(X) the universal object in GZ> (if exists) endowed with a
map X — 7> X.

2.3.5 Lemma
Lemma 2.1 Let X € GZ>o and suppose it admits a truncation. Then 7<x € GZ—o.

Sketch of the proof Let Y := 7<¢X. Let ¢ : Y — X be the natural map. Let
C := Cone(Id : Y= — y<0)[-1],

in other words,
C= (Y<O D Y<O[_1]7 D)a
Where D =1d : Y<0 — Y<0[—1]. Tt follows that D € GZ<o.

We have a natural map ¢ : C — Y, where c[y<o = I; cly<o_y = —dI, where I : Y<0 - Y is the
embedding.

It follows that tc = 0 which implies that ¢ = 0, hence I = 0 and Y <Y = 0, which implies the statement.
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2.3.6 Lemma

Lemma 2.2 Let X € GZ be homotopy equivalent to an object Y € GZx>o. Then there exists a direct
sum decomposition X = A® B, where A € GZ>q, B € GZ<q, and B is acyclic.

Sketch of the proof
By definition we have maps f: X =Y, ¢g:Y — X, h € Hom (X, X), where

Idy = gf + dh + hd. (1)

Set 7 := dh|xo : X° — X". We have
72 = dhdh| xo = d(hd)| x-1h]| xo. (2)
Let us restrict (1) onto X 1. As Y € GZ>q, gf = 0. Therefore, hd|x-1 = Idx-1 —dh|x—1. Substitute
this equality into (2):
72 = d(hd)| x-1h|xo0 = dhxo + ddhh|xo = 7.

Thus 7 : X° — XY is a projector and we can decompose X? = K @ L where 7| = 0; 7|, = Id|L.

We have d|, = dr|, = 0. Denote Dy : K — X0 % x>0,
Consider 7d : X1 — X9, We have

7d = dhd|x—1 = d(Id — dh)|x—1 = d|x-1.

This shows that d|yx—1 factorizes through L: d|x-1 : X! T 5 X0, Set
Dpi=X<0A x 1%,

where p is the obvious projection.

Set A:= (X<"@® L,D); B:= K® X>Y Dg). The restriction of h onto B shows that B is acyclic.
We see that thus chosen A and B satisfy all the conditions.

2.3.7 Lemma on stable truncation
Lemma 2.3 Every object of GZ>¢ admitting a truncation admits it stably.

Sketch of the proof Let Y € GZx>p be an object admitting a truncation. Denote H := 7<oY. As
follows from Lemma 2.1, H € GZg. Let i : H — Y be the structure map.

Let X € GZ be an object homotopy equivalent to Y. Let us decompose ¥ = A @ B according to
Lemma ?7. It follows that A is homotopy equivalent to Y. It now sufices to show that A admits a
truncation.

Fix a homotopy equivalence f: A —Y; g:Y — A; gf =1da +dha + had; fg =1dy + dhy + hyd.
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Let us prove that gi : H — A is the universal map from an object from GZ<o to A. Let f: U — A,
where U € GZ<. It follows that f factors through U%:

U0 % A

It follows that d4¢ = 0. We therefore have gf¢p = ¢ + dha¢ + hadp = ¢. On the other hand, the
map f¢ : U% — Y factors uniquely through H: f¢ = ity : U° % H - Y so that o = gfo = gir.
That is ¢ factors through gi. Let us check the uniqueness of this factorization which is equivalent to
the following statement. Let x : U° — H. Then giy = 0 implies x = 0. Indeed, we have:

0= fgix = ix + hydix + dhyix = ix.
As i is a universal map, ix = 0 implies x = 0.

Corollary 2.4 Let X € GZ be an object homotopy equivalent to an object Y from GZx>y. Then
T<0X = 17<0Y ®© B, where B € GZ<g 1s an acyclic object.

Proof. Follows directly from the proof of Lemma.

2.3.8 Complexes of free modules

Let A-freemod be the category of complexes of finitely generated A-modules concentrated in the
non-negative degrees. One has an embedding of A-freemod C GZx as a full sub-category.

Lemma 2.5 FEvery object X € A-freemod admits a truncation.

Sketch of the proof Let H := H°(X). We have a short exact sequence of A-modules:
0— H — X°— Cokerd” — 0. (3)
The embedding Coker d° < X! implies that Coker d° is a finitely generated free A-module. Therefore,

the exact sequence (3) splits and we can write X = H @Y, where Y € A-freemod; H°(Y) = 0.

For every U € A, the natural map Hom(U;Y?) — Hom(U, Y'!) is an injection. Indeed, it suffices to
check this statement for U = Hsfe (0], in which case the statement can be checked directly. Therefore,
T<oY = 0, whence 7<9X = H. This implies the statement.

2.4 The category GZtrunc
Let GZtrunc be the full subcategory of GZ consisting of all objects which are homotopy equivalent

to an object from A-freemod. It follows that GZtrunc is a full symmetric monoidal sub-category of
GZ.
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2.4.1 The category contract

Let contract C GZ<( be the full sub-category whose each object is isomorphic to a direct sum M & T,
where M is a finitely generated free A-module (concentrated in degree 0) and M € GZ<y is an acyclic
object. The category contract is a full symmetric monoidal sub-category of GZ<y.

It follows that every such an object M @ T € GZ> admits a truncation 7>¢, where 7>o(M & T) = M.

Therefore, we have a sequence of lax symmetric monoidal functors (enriched over sets):

T<0 T>0
GZtrunc = contract = A-freemody,

where A-freemody is the category of finitely generated free A-modules.

The lax structure on 7<o follows from the universal property of 7<g. Indeed, 7<gA ® T7<oB € GZ<y,
therefore, the natural map 7<pA ® 7<oB — A ® B factors through 7<((A ® B).

Similarly, we have a natural map 7>0(A ® B) — 7>0A ® 7>0B which is an isomorphism if A, B €
contract, so that 7> is a tensor functor.

We have embeddings as full sub-category A-freemod L contract 2 GZtrunc. Each of these
embeddings is a tensor functor. By definition, I is left adjoint to 7<op and J is right adjoint to 7> so
that we have natural transformations of tensor functors

ITSO — IdgZtrunc; Idcontract — JTZO-

3 Filtered objects

Let C be a symmetric monoidal category enriched over A-mod. Suppose C is PD @ []-closed. Finally,
we assume that the tensor product in C commutes with direct sums.

3.1 Category filt(C’

Let filtC’' be a dg category whose each object X is by definition a collection of objects griX € C,
1€ Z. We set
Homgeer (X, V) = [ Home (X, Xom).

n<m

One has a SMC structure on filtC’, where

n
gr"(XeY) =X ey
p=0

Let us define a functor || : iltC’ — C, where

1X|=Per"x o [[er"x.

n<0 n>0

We call | X| the total of X.

18



We have a lax tensor structure on |X|, that is we have a natural transformation

IX|® Y| = |X® Y]

Indeed (we set X,, = gr"X; Y, =gr"Y):

X[V = (P Xn P Yn) PEP X @ [[ Yo) P(]] X @ P Vo) B[ Xm@ [] Yo)

m<0 n<0 m<0 n>0 m>0 n<0 m>0 n>0
(P xneve@P[[EneY)e@P[[ XneYme [[ Xa@Yn
m,n<0 m<0n>0 n<0m>0 n,m>0
-D 1l xnev.d
m n>m n

Next, for every m € Z we have a map

HXm®Y: H X @Y, — H @Xk®Yn—>|X®Y].

n>m n+m>2m n+k>2m k<m

Likewise we have a map
[ Xme Y. =Xy,

m>n

which finishes the construction.

Let filtC’ C filtC be the full sub-category of objects X satisfying: there exists an M € Z such that
gr'" X =0 for all m > M. The restriction of || onto this sub-category is then a strict tensor functor.

For X € filtC’ define an object FZ*X, where
gr'FZFX = gr! X if | > k;

gr' FZF X = 0ifl < k.

Define F=<F in a similar way. We have natural transformations

FSFX o X - F2RX (4)

3.2 The category filtC

Set filtC := DAfiltC’; filtC_ := DfiltC" etc. The functors F=¥, F<F and the natural transformations
(4) carry over to filtC. Let (X, D) € filtC. The component of the differential D which maps Xj_; to
X}, defines a natural transformation 6 : F<F~1X — F¥X[1] so that we have an isomorphism

(X,D) = Coned.
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3.3 Filtered homotopy equivalences

For (X, D) € filtC set Gr*X := |FZ*F<FX| € C. We have Gr*X = (gr¥, Dyx), where Dyi : Xi — Xp
is the component of D.

Proposition 3.1 Suppose Gr*X are acyclic. Then both X and | X| are acyclic.
Sketch of the proof Set X,, = gr" X; X,,, = gr""X. By definition

D e ] Hom'(X,, X,n) = [ [ Hs

n>m s>0

where Hy =[], Hom!(X,,, X,1s). Thus we can write D = ESZO D,, where Dy € H;. We are given
that the object (X, Dy) is acyclic.

We are to solve an equation
Dh+hD =1d,

where h € Hom™1(X, X). Or, in the components,
dhs + Dohs + hs Do = us
where ug = Id and for s > 0, us = ZO<i§s D;hs_; + hs_;D;. One can resolve this system recursively

by s, using the acyclicity of (X, Dp).

3.3.1 Corollary

Corollary 3.2 Let f: X — Y be an arrow in filtC such that all the induced maps GrFf : GrF X —
Gr*Y are homotopy equivalences. Then f and |f|: |X| — |Y| are homotopy equivalences.

Set | X| = (€ gr"X, D) We have thereby a strict symmetric monoidal functor filtC — C.
n>0

3.4 Derived Tensor product

Let F : C — swelll{ and G : C°P — swellV be functors between GZ- categories (that is cateories
enriched over GZ). C may be a non-unital category.

Define an object F' @ G € swell(d ® V) as follows.
For N > 0, set

gr Vel (FG):= @@ F(Co)®@Hom(Cy,C1)®---®@Hom(Cy_1,Cy)RG(Cy) € swelld @ V).
Co,C1,....,CN

We have the standard bar-differential on ®¥(F,G) which gives rise to an object (®%(F,G),D) €
filt swell/ @ V). Set F @ G := (®%(F,G), D).
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3.4.1 Relative derived tensor product

Let F: D®C — swelld, G : COP®R®E — swellV. Let d € D; e € £. Let F; : C — swellld;
G : C°P — swell V be the restrictions. Let us define a functor F®% G : D& — swell(d @ V), where

F oL G(d,e) = F;oF G..

3.4.2

Let I be a poset. Denote by the same symbol I a non-unital category, where Hom;(i,j) = Z if i < j,
and Hom;(7,j) = 0 otherwise. Let I be a finite poset and let F' : I — swellld; G : I°P — swell V.
Then we have gr—" @ (F,G) = 0 if N exceeds the number of elements in I.

3.5 Hocolim

Let C be a GZ-category and I be a small category. Let J be the A-span of I. Let const : J°P — GZ
be the constant functor, const®P(j) = Z. Let F : I — swell(C) be a functor. Still denote by F' its
extension F : J — swell(C).

Set
hocolim; F' := F ®% const.

3.6 Derived Hom

Let F': C — swellld and G : C — swell V be dg functors between GZ- categories.
Define an object RHome (F, G) € swell(UU°P ® V) as follows. For N > 0, set

gr¥ RHom(F,G) := @ Hom (F(Cy)®@Hom(Cy, C1)®- - -@Hom(Cn_1,Cn); G(Cn)) € swell(UPRV)
Co,ChriCn

We have the standard bar-differential D on RHom(F, G). Still denote

RHom(F,G) := | RHom(F,G)| € swell(L{°P; V).

3.7 Holim

Let C be a GZ-category and I be a small category. Let J be the A-span of I. Let C' : J — GZ be
the constant functor, C(j) = Z. Let F' : I — swell(C) be a functor. Denote by the same letter the

extension of F' onto J. Set
holim; F' := RHom(C, F) € swellC.
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3.7.1 Homotopy stability
Let FH:C—>U; G:C°P = V.

Proposition 3.3 Supppose F(c) is acyclic for all ¢ € C. Then F ®" G, RHom(F, H), and
RHom(H, F) are acyclic.

The Proposition follows from Prop. 3.1.

Corollary 3.4 If F(i) is acyclic for all i € I, then so are holim F' and hocolim F'.

3.7.2 Functoriality

Let f: I — J, F:J— C be functors. We have natural maps

¥+ holim(F) — holim(F'f);  fi : hocolim(F f) — hocolim(F).

Suppose g : J — [ is a right (or left) adjoint to f. Then f; and ¢ are quasi-inverse to each other,
same for f* and g*.

3.8 Filtered limits and colimits

Recall that a poset I is called filtered if for every finite subset S C I there exists an ¢ € I such that
1> s for all s € S, such an i is called an upper bound of S. A subset J C I is called co-final if every
finite subset S C I has an upper bound from J.

Let ¢ : J — I be the embedding and let F': I — C be a functor. We have a natural map
1 : hocolimy F' o ¢ — hocolim ; F.
Proposition 3.5 The map v is a homotopy equivalence.

Sketch of the proof. Still denote by J, I the A-spans of J,I. 1. Let h : J ® I°? — GZ; h(j,1) =
Homy(7,j). We have a term-wise quasi-isomorphism of functors J — C

F®%h—>Foc.

2) We have natural map
h @ const; — const.

This map is a quasi-isomorphism of functors. Indeed, for each ¢ € I, we need to prove that the natural
map

h(i,—) @% const; — A (5)
is a homotopy equivalence.

2.1) We have an obvious embedding I : Ab — GZ, where Ab is the category of complexes of free
abelian groups bounded from above.
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The map in (5) can be obtained from a similar map in Ab under I. The corresponding map in Ab is
known to be a homotopy equivalence because it is isomorphic to the natural map

hOCOlimJ’EJ;jZi A— A
2.2) We have a commutative diagram

Foz1 ®§ const y " F ®% constr
F @% h®% const,;

which implies that the horizontal arrow is a homotopy equivalence.

3.8.1 Constant functor on a poset with the least element

Proposition 3.6 Let I be a poset with the least element. Then the natural map hocolim;A — A is a
homotopy equivalence.

Sketch of the proof We have an isomorphism const;(—) = Hom(z, —). Therefore, we have a homotopy
equivalence
Hom;(z, —) @ constror = A(z) = A.
3.8.2 Constant functor on a filtered poset
Proposition 3.7 Let I be a filtered poset. Then the natural map

hocolim;c; A — A

1s @ homopy equivalence.

Sketch of the proof Let x € I and let I>, C I consist of all y € I, y > x. The subset I>, is cofinal.
Consider the through map
hocolim;ez, A = hocolim;e; A — A.

It is a homotopy equivalence by the previous subsection. This implies the statement.

3.8.3 Reduction to the colimit over the set of all finite subsets

Let I be a poset. Let P(I) be the poset of all non-empty finite subsets of I ordered with respect to
the inclusion.

Let F: I — C be a functor. Let PF : P(I) — C be defined by

PF(S) := hocolimseg F(s)
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Let Q(I) C P(I) consist of all subsets S possessing the greatest element. Denote by p(.S) the greatest
element of S. We then have a monotone map

Q) — 1.

We have a natural transformation € : PF|g) — p~LF of functors Q(I) — C. For every S € Q(I), p
induces a homotopy equivalence in C

~

PF(u(8)) = p~'F(S) = F(u(S)). (6)

The map p induces maps
hocolimgy) PF — hocolimgy) p~'F — hocolimy F. (7)

The left arrow is a homotopy equivalence by (6). Let us show that the right arrow is a homotopy
equivalence. It suffices to check it for F'(—) = A[Hom;(i,—)], i € I. Let Z C Q(I) consist of all S
with ©(S) > i. The problem reduces to showing that the following map

hocolimyz A — hocolimlzl. A

induced by p is a homotopy equivalence which follows from the fact that Z is filtered and I>; has the
least element so that both the natural map

hocolim[Zi A—A

and the through map
hocolimz A — hocolimlzl, A— A

is a homotopy equivalence, whence the statement.

Thus, the through map (7) is a homotopy equivalence.

3.8.4 Nilpotent functors

Let I be a filtered poset and F' : I — C a functor. Call F' nilpotent if for every x € I there exists a
y € I, y > x such that the map F(x) — F(y) is homotopy equivalent to 0.

Theorem 3.8 Let F' be nilpotent. Then hocolimy F' is acyclic.

Sketch of the proof

A. According to the previous subsection it suffices to show that hocolimg ) PF' is acyclic. It follows
that PF : Q(I) — C is nilpotent. Thus, replacing I with Q(I) and F' with PF allows us to assume
without loss of generality that for every element « € I the set I<, := {yly < z} is finite.

B. Using induction by #I<,, one can show that there exists a monotone map ¢ : I — I such that
¢(x) > x for all z and the natural map F(x) — F(¢(z)) is homotopy equivalent to 0 for all x € 1.

C. Let G : I — C be an arbitrary functor. Show that the natural map

hocolim,e; F(x) — hocolim,e; F(¢p(x))
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is a homotopy equivalence.

It suffices to prove the statement for F'(z) = Hom(i,z), ¢ € I. One can reprlace I with a cofinal subset
Is;, in which case all the maps F(z) — F(¢(z)) are isomorphisms, whence the statement.

D. Set F": I — C,
F™(x) = F(go $o--- o0 4(a).
N————

n times

We have natural maps
in: F" — F"M o n>0.

It follows that the induced map
hocolim; F™ — hocolim F™*!

is a homotopy equivalence. Therefore, hocolim; F' is homotopy equivalent to

hocolim,, hocolim; F™ = hocolim; hocolim,, F".

It also follows that the induced map F"(z) — F"*!(z) is homotopy equivalent to 0. This implies that
hocolim,, F™(z) is acyclic for every x. Therefore, the natural map

hocolimy hocolim,, F™ — hocolim; 0 =0

is a homotopy equivalence, as we wanted.

3.9 Stability of a functor
Let Ic : C — swellC and J¢ : C°P — swell(C°P) be the embedding functors. Set
Ac := Je L Ip € swell(C°P ® C).
For every S € swell(C) we have a narural map
SolAec— S.

Call S stable if this map is a homotopy equivalence.

3.9.1 Equivalent definition
The hom-functor Hom : C°P x C — GZ extends naturally to a functor

Hom : C°P @ swellC — GZ.
For S € swellC we thus get a functor hg : C°P — GZ. Let Id¢ : C — C be the identity functor. Set
R(S) := hg @ Id¢ € swell(C).

We have a natural map R(S) — S. S is stable iff this map is a homotopy equivalence.
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3.9.2
Let F': C°P — GZ be a GZ- functor. Set
R(F) = F @"1dc. (8)
We have S o A¢ = R(hg) for any S € swell(C).
Proposition 3.9 Every object of the form R(F') is stable.

Follows from the associativity of ®.

3.9.3

Let X € swell(C°P @ D) and Y € swell(D°P ® E) be stable, then so is X o Y.

3.9.4

Let F': C' — D be a functor. Let X € swell(C) be a stable functor. Then the functor swell(F)X is
stable.

Indeed, we have swell(F)(X o A¢) = (X o Jo) ®% (swell(F)I¢). The natural transformation
(swell(F)Ic) o Ap — swell(F)I¢o

of functors C' — swell D is a term-wise weak equivalence. This implies the statement.

4 Classical categories

4.1 Categories (., Q

Let € be a positive real number or co. Let Q. be the following category enriched over the category
A-freemod. Set Ob Q. := R Denote by e, the object of Q): corresponding to a real number a. Set
Hom(e,, ep) =Z if a <b < a+e. Set Hom(e,, ep) = 0 otherwise.

We have an SMC structure on Q) via e, ® e, = eq1p. The categories ()c have internal hom. We have
strict tensor functors red : Q:;, = Q.,, €1 > €2.
4.1.1 The category Q)

Let Q. be the union of all Q., e € {1,1/2,1/4,...,1/2™,...} U{oo}. Let us define hom. Let €' € Q,
and €;> € Q.,. Set Hom(e',e;?) = 0 if £; < e3. Otherwise, set

Hom(ey', e;’) = Homg,, (€4, ep).

We also have an SMC structure on @, where

€1 €o . min(ey,e2)
€y D€y =€,y .
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We also have an internal hom
Hom(e;!;€;*) =0

if £1 < 9. Otherwise,
€1. 82\ _ Q82
Hom(ey';e;,”) =€, .

4.1.2 The regularized categories Ry s, Ry,

Let Ryjon C Q120 be the full sub-category consisting of all objects of the form e,;, jon, m € Z. The sub-
category Ry o is discrete and closed under the tensor product. The embedding I /o0 @ Ryjon — Q1/2n
has a right adjoint, to be denoted by pry s, where pry oneq = €,,/2n, where m is the largest integer
satisfying m/2" < a. Let Ry/on := swell Ry jon, the functors I, pr extend to functors I jon : Ryjon —
Q1/2n, Prijon + Qijon — Ryjon.

Let us define a full sub-category of R, C @), consisting of all objects of the form e n= 0,1,2,...

m 27‘17
m € Z. R, is closed under the tensor product so that the embedding I : R, — @, 1s a tensor functor.

/2y 1/
) o em/Q"’
integer satisfying m /2" < a. We have a lax tensor structure on pr i.e. a natural transformation

The functor I has a right adjoint, to be denoted by pr, where pr(e}l where m is the largest

pr(X) @ pr(Y) = pr(X ®Y)

satisfying the associativity condition.

Let Ry, := swell R,,. The functor pr extends to a lax tensor functor pr : @, — R,,. Via pr, the SMC
Q! is enriched over the category Q.

4.1.3 A Hopf algebra ¢ in R,

Let P be the set of all numbers of the form m /2", m > 0, n > 0. For a € P let den(a) := 1/2", where

n is the smallest non-negative integer such that 2"a € Z. Let V € Q,, be defined by V := [] Aq,
acP

den

where A\, := eq @ Let Pq : V — fo be the projection. Let

Do p:fa—fo®@ fap, 0<a<b

be the natural map.
Let D:V —=V®YV bedefined as D =3>"_,; DY pr
Let

a*

o0

0= P-1)%*k.

k=0
We have an obvious Hopf algebra structure on ¢, where the product is the concatenation and the
co-product is given by requiring that V[—1] is primitive.
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4.1.4 /-modules in R,: the category R,

Let R, be the following category: its objects are of the form f;/Zn m,n € Z,n > 0. and

/271’
Hom(f;//z;, ]{/{/Q:N) = A whenever n < N and m/2" < M /2", Hom(f;/f;m ;/;?;VN) = 0 otherwise.

It is clear that every /-module X in R, gives rise to an object of swell Ry, to be denoted by [X].

Let R, be the category, enriched over GZ, whose every object is a ~-module in R, and we set

Homg, (X,Y) := Homgwen r, ([X], [Y])-

We have a tensor structure on R, where we let X ® Y to be the same as in the category R, with
the induced ¢-module structure (coming from the co-product on ¢). This tensor structure admits an
inner hom, again borrowed from R,,.

4.1.5 Tensor functor Q. — R,

Let Q%Qn C Qo be the full sub-category formed by all objects of the form e, /9n, m € Z. We have
a right adjoint functor to the embedding p, : Qo — chx/)Qn, where pp(eq) = €,,/on and m is the
largest integer such that m/2" < a. We have an embedding i, : %QW — Ry, in(em/zn) = f:n/f;n. Let
T+ Qoo — Ry be induced by i,p,. We have a tensor structure on m,.

We have a natural transformation of tensor functors m, — mp41. Set m(X) = hocolim,, m,(X). We
have an induced tensor structure on 7. Via 7, every category enriched over Q. is enriched over R,.
PART 2. SHEAVES

5 The category of sheaves

We fix a ground SMC C enriched over the category of finite complexes of finitely generated free
A-modules.

Let X be a locally compact topological space. Let Openy be the category whose objects are open
sub-sets of X and we have a unique arrow U — V iff U C V. We denote by the same symbol the
A-span of Openy.

Similarly, denote by precompact y the poset of all open precompact sets in X.
5.1 Pre-sheaves

Denote psh(X, C) := swell(OpenSP @C); psh(X) := swell(Openy).

5.2 Coverings

Let U € Openy. A covering of U is a subset U C Openy; satisfying:
— U is closed under finite intersections;

— the union of all elements in ¢/ is U.
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5.3 Various gluing conditions
5.3.1 Meyer-Vietoris Condition

Let F': Openy — swell C be a functor. Say that F' satisfies the Meyer-Vietoris conditon if, given a
pair of open subsets U,V of X, the total of the complex

0—->FUNV)-FU)®FV)—->FUNV)—=0 9)

is homotopy equivalent to 0.

5.3.2 Coverings
Let U be an open subset of X. Let U be a family of open subsets of U whose union is U and which

is closed under finite intersections.

We have an induced poset structure on U as well as an embedding Iy : Y — Openy. Call U a finite
covering if U is a finite set.

5.3.3 Finite covering condition

Let F': Openy — swell C be a functor. Let U be an open subset and U be its covering. We say that
F satisfies the gluing condition with respect to U if the natural map

hocolimy, F — F(U)

is a homotopy equivalence. The Myer-Vietoris condition (9) is equivalent to the gluing condition with
respect to the covering {U, V,UNV} of the set UUV (where some of the sets U, V,U NV may concide).

Proposition 5.1 Suppose F satisfies the Meyer-Vietoris condition and F () ~ 0. Then F satisfies
the gluing condition for any finite covering U.

Sketch of the proof Let U be a covering of U. Say that a subset M C U generates U if every element

of U is a finite intersection of a finite number of elements from M.

Let us use induction by the number of elements in M. If M consists of one element, the statement is
obvious.

Let now M = {Uy,Us,...,Un_1}. Let V :=U;UUsU---UUpN_;. Let V be the covering of V' generated
by U1,Us,...,Un_1. Let W be the covering of V NUp generated by Uy NUy,UsNUy, ..., Un_1NUn.

We have a complex:
0 — hocolimyy F' — hocolimy F' & F(Uy) — hocolimy F' — 0
whose totalization is acyclic for any functor F': Openy — swell C. We also have a map of complexes

0 —— hocolimyy F' —— hocolimy F' & F(Uy) — hocolimyy F —— 0

| | l

0——=F(VNUy) F(V)& F(Uy) FU) 0
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By the induction assumption all the vertical arrows except the rightmost one are homotopy equiva-
lences. The bottom line is an acyclic complex by Meyer-Vietoris. Hence, the rightmost vertical arrow
is a homotopy equivalence, which prove the induction transition.

5.3.4 Direct limit condition

We say that a functor F': Openy — swell C satisfies the direct limit condition if given any filtered
poset I and any monotone map U : I — Openy, the natural map

hocolim;e; F(U;) — F(U Us)
el

is a homotopy equivalence.

5.3.5

F : Openy — swell C satisfies the gluing condition for any covering U iff F(0) ~ 0, F satisfies the
Meyer-Vietoris condition and the direct limit condition.

5.4 Definition of a sheaf

Let sh(X,C) C psh(X, C) be the full sub-category consisting of all objects F' satisfying:
— I is stable;

— hp satisfies the gluing condition for all coverings of all open subsets of X.

5.5 sections supported on a compact set
Let K € compacty. Denote

[k (F) := holimyeopen;xcv hr(U).
We have

FK(F) = Hompsh(X) (hOCOthEOpenX;KCU U; F)

5.6 Representability

Let us define an object Ax € sh(X), for every K € compacty, with the property that we have a
natural transformation of functors psh(X, C) — swell C:

Hom(A.—) — I'(—).
which induces a homotopy equivalence

Hom(Ag; F) — ' (F)

whenever F' € sh(X, C).
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5.6.1 Finite coverings of K

A finite covering of K is a finite subset & C Openy satisfying:
— every element of U/ is a precompact subset of X;

— the union of all elements in U contains K;

— U is closed under intersection.

Denote by Cov the set of all finite coverings of K.

5.6.2 A pre-sheaf Ay

For U € Cov set
Ay := holimy ¢y Ay € pSh(X)

denote by tx : X — Ay the natural map.

5.6.3 Cap-product

Denote by N : Openy x Openy — Openy the following functor: N(U,V) = U N V. This functor
extends naturally to a functor

N : psh(X) ® psh(X) — psh(X).

This functor gives a tensor structure on psh(X). The unit of this structure is X.

5.6.4 Definition of Al,.

Let S(K) be the poset of finite subsets of Covy. For I € S(X), set

A=) Au

uel

Let I C J. We then have an induced map kr;: A; — Ay given by

A = mAuﬂ ﬂ X — ﬂAz,{,

Uel Ue\I UeJ

which is induced by the maps 1y : X — Ay, U € J\I.
It is clear that kjxkry = kix, I C J C K. Therefore, A_ : S(K) — psh(X) is a functor.

Set
Al = hocolim e g(x) Ar. (10)
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5.6.5 Lemma
Let U,V € Covg. Write U <V if for every U € U there exists a V € V such that U C V.

Lemma 5.2 Suppose Y < V. Then the natural map
Ay — Ay NAy

is a homotopy equivalence in psh(X).

Sketch of the proof The above map reads as
holimy¢yy U — holimgrez holimy ¢y U — holimgr¢y holimy ¢y U NV
Therefore, it suffices to show that for every U € U the natural map
U — hocolimycy U NV

is a homotopy equivalence.

Denote by W C Openy; the sub-set consisting of all subsets of the form U N'V. We have a functor
VW, (V)=UnNV. Let I : WP — Open$ be the embedding.

Let U : W°P x V — GZ be given by ¥(W, V) = Homyy(W;¢(V)). We have
I o1 = Homyy (V;1).
Whence a homotopy equivalence
holimy ey U NV = RHomyep (A; Homyy (¥; ) = RHomyyos (Ay @5 ;).
The natural map Ay ®§ ¥ — Ay is a homotopy equivalence, because for every W € W we have
Ay @5 (W) = hocolimyev.yrr-w — A,

and there exists the least element in V containing W. Thus, we have a homotopy equivalence

I(U) S RHomyyos (Ayy; I) = RHomyyos (Ay @5 U; 1)
because U € W is the greatest element.
Corollary 5.3 Let S € S(K) and let V € S satisfy V <U for allUU € S. Then the natural map

Ay — Ag

s a homotopy equivalence.

Lemma 5.4 Let I € Covy. The two mapsii: A = AiNX — ArNAr and io : Ar = XNAr — ArNA;
are homotopy equivalent.

Sketch of the proof We have a map
m:ArNAr = hOhm(Ul,Ul)GIXI UpnNU; — hOIim(U,U)GIXI UnU =A;.

We have miy; = mis = Id. As i1, 42 are homotopy equivalences, so is m. As mi; = miso, the statement
follows.
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5.6.6 Proof that A} belongs to sh(X).

Let us check the conditions from Sec 5.4.

A. Stability is stable under direct limits, so we are to check the stability of Ay, which is a finite
complex of objects of the form U, U € U, which implies the statement.

B. Direct limit condition. Let A € Openy and let A be a family of open subsets of A which forms a
filtered poset. We will show that the natural map

hocolimpe 4 Al (B) — A (A)
is a homotopy equivalence. Equivalently, we are to prove:

hocolim;¢g(xy Cone((hocolimpe 4 Ar(B)) — Ar(A))

is acyclic. To this end we will show that for every I € S(K) there exists a J € S(K), J > I, such that
the map

Cone((hocolimpe 4 A7 (B)) — Ar(A)) — Cone((hocolimpe 4 Aj(B)) — Aj(A)) (11)

is homotopy equivalent to 0.
Bl. Let I = {U1,Us,...,Uy,}. Let us construct a covering V € Covy with the following properties:

— there exist poset maps ¢y : V — U}, such that every V € V satisfies (V') C ¢ (V) for all .

Let U = |, U. One can choose an open subset U’ C U for every U € U such that U CcU. Let V
consist of all finite intersections of the sets U’. For every V € V, let Si(V) = {U € U|V C U'}. Set

Pp(V) = ﬂUeSk(V) U.

B2. Set T :=[[, U. Set ¢ :=[[, ¢x : V = L. Fori = (U1,Us,...,U,) € I, setU; := UiNUzN---NUp.
B3. Set J = I U {V}.

It follows that V <Uy, k=1,2,...,n.

Therefore, the natural map
Ay = A=Ay NA;

is a homotopy equivalence.
The maps ¢ induce a map

W:AI%AvﬂAVﬂ-"ﬁAVgAV.

We have a diagram
Ay 4;; Ay NA;
T NTU
i1

Ar ArNA;

12

Here i1, i are as in Lemma 5.4 so that 71 ~ 75 and both ¢; and i2 are homotopy equivalences. We have
jm = ot1. Therefore jm ~ oy, where oig is the natural map A; — Ay. Therefore, one can replace in
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(11) the natural map A; — Ay by the map jm. As j is a homotopy equivalence, we can replace jm
with 7, so that the problem now reduces to showing that the map

Cone((hocolimpe 4 Ar(B)) — Ar(A)) — Cone((hocolimpe 4 Ay(B)) — Ap(A))

is homotopy equivalent to 0. This map factorizes as

Cone((hocolimpe 4 holim;e7 Hom(U;, B)) — holim;e7 Hom(U;, A))
— CODQ((hOCOlimBGA hOlimVeV Hom(u¢(v), B)) — hOlimVeV Hom(u¢(v), A))

% Cone((hocolim e 4 holimy ¢y Hom(V;, B)) — holimy ¢y Hom(V, A))

Let us show that the arrow G is homotopy equivalent to 0.

We have a homotopy equivalence

Cone((hocolim pe 4 holimy ey Hom(Uy(yy, B)) — holimy ey Hom(Uyyy, A))
— Cone(hocolim ge 4 holimy ¢y, Hom(Ug vy, B) — hocolim e 4 holimy ¢y Hom Uy, A))

= hocolim pe 4 holimy ey (Hom(Uyvy, B) — Hom (Uy vy, A)).
Similarly, we have a homotopy equivalence

Cone(hocolimpe 4 holimy ¢y Hom(V, B) — holimy ¢y Hom(V, A))
= hocolim e 4 holimy ¢y Cone(Hom(V, B) — Hom(V, A)).

The arrow G is then homotopy equivalent to the arrow

G1 : hocolim e 4 holimy ¢y Cone(Hom (Ugy(yy, B) — Hom(Ugyry, A))
— hocolimpe 4 holimy ¢y Cone(Hom(V, B) — Hom(V, A))

induced by the embedding V' C Uy v).

Let V4 C V consist of all those V' € V satisfying Uy C A. It follows that V CcAforalV e Vy.
Hence, there exists By € A such that V C By for all V € V4 because all V are compact.

Let 04 : V°P — GZ be defined by d4(U) = A if U € V4 and d4(U) = 0 otherwise. We have a natural
transformation d 4 — Ayop.

The map G factorizes as follows:

hocolim e 4 holimy ¢y, Cone(Hom (U (v, B) — Hom(Uy(v), A))
= hocolimpe 4 holimy ey 64 (V) @ Cone(Hom(Uy(vy, B) — Hom (Uy(v),
— hocolimpe 4 holimy ¢y §4(V) ® Cone(Hom(V, B) — Hom(V, A))
— hocolimge 4 holimy ¢y Cone(Hom(V, B) — Hom(V, A)).

4))

It therefore suffices to show that the object

hocolimpe 4 holimy ¢y 04(V) ® Cone(Hom(V, B) — Hom(V, A))

34



is acyclic.

The set of all B € A, where B D By , is cofinal in 4. Therefore, the above written object is homotopy
equivalent to

hocolimpe 4, BB, holimy ¢y 64(V) ® Cone(Hom(V, B) — Hom(V, A))

But the map Hom(V, B) — Hom(V, A) is an isomorphism whenever B € A, B D By, V € V4. This
implies the statement.

C. Finite covering condition. Let A € Openy and let 7 be a finite covering of A. Show that the map
hocolimpe7 Al (B) — A (A) (12)

is a homotopy equivalence.

C1) Choose a finite subset S C A such that X,Y € T, XNS=YNS implies X =Y. Consider the
set X consisting of all open sets U € Openy such that U C A and S C U. The poset X is closed
under union, hence, it is filtered.

C2) For each U € X, we have a natural map

hocolimpe7 A% (B NU) — hocolimper A% (B).

As follows from B), the natural map
hocolimy ey hocolimper Al (B N U) — hocolimper Al (B)

is a homotopy equivalemce.
We have a commutative diagram

~

hocolimgre x hocolimper Al (BN U) hocolimpeT A (B)

| i

hocolimgyex A (U) = Al (A)

It therefore suffices to show that the left vertical arrow is a homotopy equivalence, which follows from
hocolimper A (BNU) — Ak (U)

being a homotopy equivalence.

Observe that the open sets B NU form an open covering of U, to be denoted by Ty. It also follows
that if By,Bs € T and By NU = By, NU implies By = Bsy. Therefore, the rule B — B NU is an
isomorphism of posets 7 — Ty and we have an isomorphism

hocolimper A (B NU) = hocolimprey;, Al (B').

C3) Call a subset V' € Openy small if V N U is contained in some element of 7;;. Every point z € X
has a small neighborhood U,. Indeed, if x ¢ A, then choose U, so that it does not intersect U; if
x € A, then there exists a B € T such that x € B and we can choose U, so that U, C B.
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Call a covering U € Covg small if so is every element of Uf. As the intersection of small sets is small,
such coverings exist.

Let ¥ C S(K) be a subset, where {U1,Ua, ..., U,} € X iff at least one of U; is small. The subset ¥ is
cofinal, therefore, the map
hocolimes A — A’K

is a homotopy equivalence. The proplem now reduces to showing that the natural map
hocolimper Ar(BNU) — Ar(U)

is a homotopy equivalence for every I € X.

It follows that every Ay is a finite complex whose every term is of the form
Z=WnNnANAynNA,

where W is a small open set. Therefore, Ay is a finite comlex whose every term is of the form Z, where
Z is small.

It therefore suffices to show that the map
hocolimpe7;, Hom(Z, B) — Hom(Z,U) (13)

is a homotopy equivalence.

If Z is not contained in U, both sides are 0. If Z C U, then let R C Ty consist of all those B containing
Z. R is non-empty because Z is small. R has the least element (the intersection of all its elements).

The map (13) is isomorphic to the natural map
hocolimper A — A

which is a homotopy equivalence as R has the least element.

5.6.7 Lemma

Lemma 5.5 Let U € Openy be a neighborhood of K. Then the natural map Ay = X NA — UNAY
1s a homotopy equivalence.

Sketch of the proof Let § := Cone X — U. We are to show that 6 N A% ~ 0.
Choose V € Openy, K C V; V C U.

Let [V] € Covgk be the covering consisting of a unique element V. It follows that 6 N Ay ~ 0. Let
Sy C S(K) consist of all subsets containing [V]. Then it follows that

0 o hocolimseg,, Ar ~ 0.
As Sy C S(K) is cofinal, the natural map
hocolimses, Ar — hocolimycg(x) Ar = Ax

is a homotopy equivalence, hence § N Al ~ 0.
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5.6.8 Fundamental system of coverings

A subset T C Covy is called the fundamental system of coverings of K if for every V € Covg there
exists U € T such that U < V. Let S(T) C S(K) consist of all finite subsets of T. We have a natural
map

hocolimyeg () Ar — hocolimeg k) Ar = Al

Proposition 5.6 This map is a homotopy equivalence.

Sketch of the proof Define a subset ¥ C S(K) to consist of all I € S(K) such that for every U € I
there exists a V € I N'T such that V < U. Observe that ¥ is a cofinal subset of S(K) so that we have
a homotopy equivalence

hocolimyexy A = hocolim e g(x) Ar = A

The problem reduces to showing that the natural map
hOCOhmIes(T) AI — hOCOlim]eZ A[ (14)

is a homotopy equivalence.
For I € S(K) denote r(I) :=INT € S(T). We have a natural map
Ar(l) — Ay

which is a homotopy equivalence for all I € 3.

Let i : S(T) C ¥ be the embedding of posets. Let h : S(T)°P x ¥ — GZ be defined by h(z,y) =
Homy (i(); y) We have Homy(i(); y) = Homg(r)(z;7(y)).

We therefore have a commutative diagram
A ®5L~(T) HOIHS(T)(‘? x) —=A_ ®é Homy (i(—);y)

a |

Ar(y) Ay

This diagram proves that the natural map
A_ ®§(T) Homy (i(—);y) = Ay.

is a homotopy equivalence

In order to prove that (14) is a homotopy equivalence, it now remains to show that the natural map
hocolim ¢ g1y Homs(i(z); i(y)) — hocolim,ex Homyg (i(x); 2)

is a homotopy equivalence for every x € S(T), which is obvious because we have an isomorphism
Homg()(,y) — Homy (i(x),i(y))-
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5.6.9 Definition of Ay

Let I be the poset of all neighborhoods of K. Set

Ak := hocolimyex U N Al

We have a natural map A — Ag which is a homotopy equivalence by Sec 5.6.7.

5.6.10 Represenatability

The map X — A, induces a map
hocolimyex U — Ak

Let F € sh(X). We have an induced map
Hom(Ag; F') — Hom(hocolimyex U; F') = ' (F).
Theorem 5.7 The above map is a homotopy equivalence.

Sketch of the proof. Let us rewrite the map:

Hom (hocolim i ek x sy U NAr; ) — Hom(hocolimyex Us F).

For U € Covg, let |U| be the union of all elements in U. For I = {Uy,Us, ..., U} € S(K), set
|| = [Us| O U N0 U
The above map factors as:
Hom (hocolim g nyexxs(x) U NAr; F)
= Hom(hocolimeg g )vex,vcin U NAL; F) % Hom(hocolimyex U; F)

The first arrow in this sequence is a homotopy equivalence because the subset {(U,I) € K x S(K)|U C
[I|} € K x S(K) is cofinal. Therefore, the problem reduces to showing that the second arrow u is a
homotopy equivalence. Let us rewrite u as

holimyexc holim e gk, Hom(U N Ar; F) — holimyex Hom(U, F).
It suffices to show that for every U € K, the map
hocolimyeg(x),, Hom(U N Ar; F') — hocolim;eg(xy,, Hom(U, F') — Hom(U, F)

is a homotopy equivalence. The right arrow is a homotopy equivalence because the poset S(K)y is
filtered. Let us show that the left arrow is a homotopy equivalence, which reduces to showing that for
every I € S(K)y, the map

Hom(U NAr; F') - Hom(U, F)

is a homotopy equivalence.
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Let I = {Us,Us,...,Up}. Let T := Uy x Us x -+ x Uy. For i = (U1,Us,...,Uy) € I, denote
Vi=UiNnUyN---NU,. We have

Hom (U NAr; F) = hocolim;ez F(V; N U).
It now follows that the natural map
hocolim;ez F(V;NU) = F(|I|NU) = F(U)

is a homotopy equivalence by the finite covering gluing property of F. This finishes the proof.

5.6.11 The objects Ax generate sh(X)

For U € precompact y denote Ry := Ag, R: precompactg(p — sh(X).
We have natural transformations

Az < hocolimy, 5V 5 U. (15)
For U € precompact y set
Cy := hocolimy,— V' € psh(X),
C : precompactyy — psh(X). Let also I : precompactyy — psh(X) be given by I(U) = U. so
that ¢ : R — I. We can now rewrite (15) as a diagram of natural transformations of functors
precompact y — psh(X):

R+~ C—1.
Let F € psh(X,C). Denote
R(F) := F ®ecompact . B € sh(X,C).
We then have an induced diagram
F ®;L>recompact R F ®;L>recompact +« € = F ®precompacty I = F. (16)

Theorem 5.8 Let F € sh(X,C). Then every arrow in (16) is a homotopy equivalence.

Sketch of the proof

Let us show that the arrow

F oL C— Fot R (17)

precompact x precompact x
is a homotopy equivalence.

Indeed, Let G € sh(X), and consider the induced map

Hom(F ®F R;G) — Hom(F ®%

precompact x precompact x

C;G). (18)
Denote G’,G" : precompacty — swell C, where G'(U) = Hom(Cy; G); G”(U) = Hom(Ry; G). We

have a natural transformation G’ — G’ induced by the natural transformation C — R. Then the
map (18) is homotopy equivalent to

RHom(F,G") — RHom(F,G"). (19)
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The Representability theorem implies that G'(U) — G”(U) is a homotopy equivalence for all U,
therefore, (19) is a homotopy equivalence. Hence so is (18) and (17).

Let us switch to the remaining arrows in (16). Let U € Openy and consider the induced sequence:
F ®1{;recompactx C(U) — F ®£recompactx I(U) — F(U) (20)
Rewrite:

hocolimVEPrecompaCtX‘VcU F(V) = hocolimy e precompact x ;vcv F(V) = F(U)

both arrows are homotopy equivalences by the covering axiom for F.

As F is a stable object, it follows that both arrows in (20) are homotopy equivalences. This proves
the theorem.

5.6.12 Meyer-Vietoris property of Ax

Let K,L C X be compact subsets. We then have a complex
MV(K,L):=[0 = Axur — Ax ® A = Agnr — 0]

Proposition 5.9 This complex is acyclic

Sketch of the proof A. It suffices to prove that Hom(MV (K, L), G) ~ 0 for any G € sh(X). As follows
from the Representability theorem, the complex Hom(MV (K, L), G) is homotopy equivalent to the

complex
0—=TgnG—Tkg(G)dTL(G) - T(KUL)— 0.

B. Let us show that the natural map
f: hOCOlimU:)K;VDL UNV — hocolimy—~>gnr W

is a homotopy equivalence in psh(X).

Let A € Open$?. Consider
Hom(A, Cone f) = Cone(hocolimys k. v>r.unvca A — hocolimpy~knr.wca A

Both colimits are filtered, therefore, Hom(A, Cone f) ~ 0, whence Hom(Cone f; Cone f) ~ 0 as we
wanted.

C. Similarly, one checks that the natural map
hocolimy~5k.v>, U UV — hocolimy > kur, W

is a homotopy equivalence in psh(X, C).

D. The natural map
hocolimy5 i,y U — hocolimy~ i Ut

is a homotopy equivalence because the set {V € Openy |V D L} is filtered.
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E. B,C,D imply that the natural maps
I'knrG — hOliHlUDK;VDL G(U N V);

I'kur G — holimys kv~ G(U UV);
'k G — holimysk.v-r G(U);
I'tG — holimy~x,v-r G(V)
are homotopy equivalences.

Hence, Hom(MV (K, L); G) is homotopy equivalent to
holimy-xv->,[0 = GUNV) - GU)S G(V) - GUUV) — 0]

which is acyclic because G satisfies Meyer-Vietoris.

5.7 Triangulations

We assume that X is a manifold with corners.

Fix a triangulation 7 of X. Denote by the same symbol T the poset of simplices of 7. Let 7, be the
n-th baricentric subdivision of 7.

Let us identify each = € 7T, with the corresponding compact subset of X. Denote by Star,(z) €
precompact y the star of x, which is by definition the interior of the union of all closed simplices of T,
containing x.

5.7.1 Theorem on Hom(A,;A,)

Theorem 5.10 Let x,y € T. If v C y, then the natural map A — Hom(Ay;A;) is a homotopy
equivalence. Otherwise, Hom(Ay; A,) ~ 0.

Sketch of the proof

Denote by U,(y) the union of all Star,(z) where z C y, z € T,. The open sets U,(y) form a
fundamental system of neighborhoods of y. Therefore we have a homotopy equivalence

Hom(Ay;Az) 5 holim,, A, (U,(y)) = holim,, Al (U, (y)).

In the case z C y, the map A — Hom(A,;A;) gives rise to a map A — holim,, A, (Uy(y)). This map
coincides with the map determined by the natural maps ¢y, : A — AL (U, (y)) coming from the inclusion
x C Up(y).

Let U,, € cov, be the covering formed by the stars of all simplices of 7, contained in x. Let £ C cov,
consist of all U,,. £ is a fundamental system of coverings of x.

Consider Ay, (Un(y)), N > n. In the case x C y, we have Un C Uy(y), whence an isomorphism

Auty (Un(y)) = holimy,, A,
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in which case we have a homotopy equivalence A — holimy,,, A = Ay, (U, (y)). Likewise all the maps

A :> AuNk (Un(y)> :> A{uNl ,Z/{Nz,...uNk}(UTL(y))'

are homotopy equivalences, this proves that A — Hom(A,;A;) is a homotopy equivalence.
Suppose that z is not contained in y.

In this case we have

Cone(holimueuN‘um(x\Un(y)#@ A — holimyeyy, A) 5 Aviy (Un(y))-
Let us show that the LHS is acyclic, which would imply the statement.
Indeed, holimy,efy jun(z\U, ()0 A computes Chech cohomology of
U u
u€UN [uN(z\Un (y))#0
with respect to the covering by the elements of Uy, which is contractible.

Likewise, holim,ezs, A computes Chech cohomology of U, (x), which is contracible as well.

5.8 Constructible subsets

Let T be a triangulation of X, call a closed subset K C X T -constructible if it is a finite union of closed
simplices from 7. A locally closed subset Z C X is called T-constructible if it can be represented as
a difference of two T-constructible subsets of X.

Let Zy, Z5 be T-constructible locally closed subsets of X. Denote dZy := Z\Zl.

Theorem 5.11 1) Hom(Az,,Az,) is homotopy equivalence to a finite complex of finitely generated
free A-modules concentrared in the positive degrees, in particular it admits a truncation.

2) We have a homotopy equivalence T<oHom(Az, ’AZ2) — H, where H 1is a finitely generated free
A-module of locally constant A-valued functions on Zs\dZy supported on Zs N Z.

5.8.1 Generalization

Let X C X’ be an open embedding and 7 a triangulation of X’. A locally closed subset Z; C X is
called T-constructible if it is such as a subset of X’. The above theorem still holds true in sh(X).

5.9 Base of topology

Let B C Openy be a poset which is a base of the topology on X. Let us define a full sub-category
sh(B,C) C swell(B°P ® () satisfying the same axioms as in Sec. 5.4 when all the open sets involved
are in B.

We have a functor
Ip : sh(B,C) — swell(B°? @ C') — psh(X, C).
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Theorem 5.12 The functor I establishes a quasi-equivalence sh(B,C) — sh(X, C).

Sketch of the proof

1) Let us show that the functor Ip takes values in sh(X, ). Let F' € sh(B,C). The stability of Ig(F)
follows from Sec. 3.9.4. Let us check the covering axiom. Let U be an open subset of X and let U be
an open covering of U. Let us inscribe a B-covering V into U so that V < U.

We have
hocolim geyy F(A) < hocolim( 4 pyerixv,pca F(B) = hocolimpey F(B) = F(U),

which implies the covering axiom.

2) Tt follows readily that Ip is a fully faithful functor. Therefore, it now remains to show that I is
essentially surjective. Indeed, for every compact K C X let covg(K) C covg consist of all coverings
U whose every element in in B. It follows that covg(K) C covg. is a fundamental system of coverings.
Let Sp(K) C S(K) consist of all subsets of covg(K).

Let
AIB( := hocolimye g, (r) Ar-

We have a homotopy equivalence A?( — A

Therefore, we have a homotopy equivalence
F(U) ®precompactx A% :> F(U) ®precompactx AU :> F

in sh(X, C). Finally,
F(U) ®precompact x Ag S Sh(B, C)

5.9.1 Product

In particular, let Z = X x Y Let B be the base consisting of all open sets of the form U x V', where
U € Openy, V € Openy. Denote sh(X|Y,C) :=sh(B,C).

5.9.2 Lemma

Lemma 5.13 Let K C X, L C Y be compact subsets. We have a zig-zag homotopy equivalence
between Ag XA and Ag«r,.

Sketch of the proof Both objects homotopically represent the same functor.

5.10 Convolution of kernels

Let A : Open$? x Openf — GZ be given by A(U, V) =Zif UNV # 0 and A(U,V) = 0 otherwise.

Let us define the convolution functor as follows:

oy : psh(X|Y,C) ® psh(Y|Z, C) — psh(X|Y|Y|Z,C) 3 psh(X|Z, C).
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One checks that this functor induces a functor

oy : sh(X|Y,C) ®@sh(Y|Z,C) — sh(X, Z).
This way we get a non-unital 2-category kernels whose 0-objects are locally compact spaces and

kernels(X,Y) = sh(X,Y).

5.11 Definition of Ao, where C is a locally closed subset
5.11.1 One point compactification

Let X = X U oo be the one point compactification of X. The topology on X is defined as follows: a
subset U C X not containing oo is open iff it is an open subset of X. A subset U C X containing oo
is open iff X\U is compact. The space X is compact and Hausdorff as long as X is locally compact.

5.11.2 Restriction of a sheaf onto an open subset

Let U C X be an open subset Let |7 : OpenSP — OpenyP, where V]y =V if V.C U and V|y = 0
otherwise. This functor extends to a functor | : psh(X,C) — psh(U, C). It follows easily that this
functor transforms sheaves into sheaves so that we have a functor

| : sh(X,C) — sh(U, C).

5.11.3 Definition of A¢, C is closed

Let C' C X be a closed subset. Let C C X be the closure of C'in X. C = C if C is compact and
C = C U oo otherwise. The set C' is compact.

Set

If C'is compact, we have an isomorphism Af, = Ac, therefore, we denote A, by Ac.

5.11.4 Ac, general case.

If C' C X is a locally closed subset, then let dC := 6\0 C X and set
AC := Cone AY — AdC'

Let L C K be closed subsets of X. Let C = K\L We have C C K; dC C L, dC = K N L. Whence an
induced map

Cone(AK — AL) — COHG(A@ — AdC)

which is a homotopy equivalence. Indeed, let K’, L', C’ be the closures of K, L,C in X. Let dC’ =
C’\C'. By definition, we have

Ak =Ar/|x; AL =Ap|x; Ac =Acr|x; Adcr = Adc|x.
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Therefore, it suffices to show that the natural map

Cone(Agr — Ar/) — Cone(Agr — Ager)
is a homotopy equivalence.
We have dC' = C'N L' and K' = L' UC’, whence the statement.

5.12 Convolution with Aq
5.12.1 Convolution with U € psh(X, Z)

For H : Openy — swell C' and K € compacty, set

H(K) := Cone(H(X\K) - H(X)).
The rule K — H(K) determines a functor compactyy — swell C.
Consider the following complex of functors Open$f x Open? — GZ:

0—h— AOpen;’(p x OpenP —d— 0,

where h(U,V) = Aif V. C X\U, h(U,V) = 0 otherwise. This complex is termwise acyclic. Let
F € psh(X,C) and U € precompacty. We have the following acyclic complex in swell C:

0 = A([U], F') = Aopense x opense ([U], F) — 0.
This complex is isomorphic to
0— F(X\U)—= F(X)—=UoF —0.
This can be reinterpreted as a term-wise homotopy equivalence of functors precompactg(p — swell C:

FU)SUoF.

5.12.2 Convolution with Ax

Theorem 5.14 We have a term-wise zig-zag homotopy equivalence of functors sh(X,C) x
compactyy — swellC: (F,K) v~ F(K) and (F,K) — Ag o F.

Sketch of the proof A. According to Sec. 5.6.10, we have a map hocolimyeprecompact |k cv U — Ak in
psh(X). Consider the induced map
hOCOthEprecompactX|KCU UoF — AgoF.

Using the argument similar to those from Sec. 5.6.10, one can show that this map is a homotopy
equivalence whenever F' € sh(X, C).

Next, we have homotopy equivalences
F(K) & hOCOIimUEprecompactX|KCU Uo F(U) = hOCOthEprecompactX|KCU UoF.

This finishes the proof.

Corollary 5.15 Let F € sh(X,C). We have a zig-zag homotopy equivalence of functors sh(X,C) :
Openy — swell C' between (F,U) — F(U) and (F,U) — Ay o F.
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5.13 Direct image

Let f: X — Y be a continuous map of locally compact topological spaces. We then have a functor
f~!:Openy — Openy. Let F :€ sh(X,C). Set fiFF € sh(X,C) to be defined by

HF = F(f7'U) ®feopeny U € psh(Y, C).
It follows that we have a term-wise homotopy equivalence
hr(U) S hp(f710).
It now follows easily that hy p satisfies all the sheaf axioms so that fiF' € sh(Y,C).

Theorem 5.16 1) There exists a kernel Ky € sh(Y|X) and a zig-zag term-wise homotopy equivalence
of functots sh(X) — sh(Y') between fi and F +— Kyox F.

2) One can choose Ky = Ar,, where I'y CY X X is the graph of f.
Sketch of the proof 1) The functor f; is homotopy equivalent to R fi. We have to

Rf'F = hle<U) ®5Eprecompacty Aﬁ — F(f_lU) ®5€precompacty Aﬁ
According to Corollary 5.15 the latter functor is term-wise homotopy equivalent to

L
F— AU ®U€precompaetX AfflU oF
& hOCOhm(T,U)Ecompact()’(pXprecompactX|TDU Ar ® (Af—lU o F)
= (hOCOIim{(T,U)Ecompact(;(pXprecompactX|TDU} Ar X Af—lU) oF

Thus, we can set

Ky = hOCOhm{(T,U)Ecompactg(pXprecompacty\TDU} Ar X Af—lU' (21)

2) If X is compact, the statement follows from the fact that Ky represents the functor I'r,. The general

case reduces to this one via passage to the compatifications: let Y, X be the one point compactification
and let X’ be the closure of I'f in ¥ x X. The projection onto Y determines a map f': X’ =Y. We
also have an open embedding i : X =Ty < X’ such that f'i = f.

5.13.1 Convolution with the constant sheaf on the diagonal

Corollary 5.17 We have a zig-zag homotopy equivalence of the endofunctors on sh(X,C): Id and
F— Aa, o F, where Ax C X x X s the diagonal.

Set f = Idx in the above theorem.

5.14 The inverse image functor

Let f : X — Y be a continuous map of locally compact topological spaces. Let F' € sh(Y). Set
f~lish(Y,C) = sh(X,0): f71F = FoAr,, where Gp CY x X is the graph of f.
We have a zig-zag homotopy equivalence of bifunctors sh(Y, C) x sh(X,C) — swell C,

(F,G)+— f'FoGand Fo fiG.
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5.14.1

Theorem 5.18 We have a zig-zag term-wise homotopy equivalence of functors Openy — sh(X):
U~ f_lAU and U — Af—lU'

Sketch of the proof We have a zig-zag homotopy equivalence of functors Openy — GZ: V —
(f'Ay)(V) and V +— (f~'Ay) o Ay; which is zig-zag homotopy equivalent to

V= Ayo (fAv): Ve AAV(U); V= Ay(f10);

V — Ay OAfflU; V’-)AfflU(V)

5.14.2 Inverse image under closed embedding
Let ¢ : X — Y be a closed embedding.

Proposition 5.19 We have a homotopy equivalence of functors compact}p x sh(Y) — swellC:
(K,F)~ (i"'F)(K) and (K, F) — F(i(K)).

Sketch of the proof Assume for simplicity X C Y. Use the notation ~ for 'zig-zag pointwise homotopy
equivalent’. The functor (K, F) s i ! F(K) is zig-zag pointwise homotopy equivalent to

(F,K) = i"'FoAg ~ FoilAx ~ F(U) @peopen, 1A (U)
~ (F,K)— F(T) ®%€compacty Homeompact, (U3 T) ®ILJeprecompactX WAk (U)
5 (FK) = F(T) ®fecompact, Ak (i~ 'intT)
~ (F.K) — F(T) ®%€compactx Hom(V, i~ intT) ®XL/eprocompactY Ak (V)
5 (FK) = F(V) ®6pen, Ak (V)

Set R(U) := Cone(F(X NU) - F(X)), R: Openy — swellC. It is easy to see that R satisfies the
gluing properties for all coverings. Hence, we have

F(V) @6peny Ak (V) % R(V) @Gpen Ax(V) = R(K) ~ F(K).

This proves the statement.

5.14.3 Direct image under closed embedding of Ax
As above, let i : X — Y be a closed embedding.

Corollary 5.20 We have a zig-zag pointwise homotopy equivalence of functors compactyy — sh(Y):
K Az(K) and K — 1/Ak.

Sketch of the proof We have

AR (L) ~ Ak o i AL R i ALK) ~ ALGI(K)) = AL o Ak = Aoy (L).
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5.15 Convolutions of constant sheaves on simplices

Fix a triangulation 7 of R”. Let A be a star of a simplex from 7.

5.15.1 Lemma
Lemma 5.21 1) We have a homotopy equivalence

Arn[n](A) = A.

Sketch of the proof Follows from a standard computation.

5.15.2 Corollary
Corollary 5.22 We have a zig-zag homotopy equivalence of functors T°P — GZ:

u +— Agn[n](Star(u)) and u+— A.

Sketch of the proof As follows from the previous Lemma, Agn(Star(u)) admits a trunctation and the
natural transformation of functors 7°P — GZ:

T<oAgrn [n](Star(u)) — Arn[n](Star(u))

is a termwise homotopy equivalence.

Finally, we have a natural transformation of functors 7°P — GZ:
TgoARn [n](Star(—)) — ATOP

which is a homotopy equivalence as well.

5.16 Dualization of convolution
In this section we assume that C has internal hom. Consider a functor
sh(X,C)°P @ sh(X|Y,C)°? @ sh(Y,C) — swell C;
(F,K,G) — Homg(F ox K;G).

Theorem 5.23 There exists a functor sh(X|Y,C)°P @ sh(Y,C) — sh(X,C), (K,G) — K'G, and a
21g-zag pointwise homotopy equivalence of functors

(F,K,G) = Homg(F ox K;G) and (F, K,G) — Hom(F; K'G).
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Sketch of the proof. A. We have a homotopy equivalence
L ~
hF(U) ®UGprecompactX U—F.
We have an induced homotopy equivalence

HOH](‘F o K7 G) :> Hom(hF(U) ®ll}€precompactx Uo K; G)

Denote A : Openy — swellC, A(U) := Hom(U o K;G). We can now continue

Hom(hr(U) UoK;G) = RHomprecompact (hp; A).

L
®U€prec0mpactx

B. Let us also introduce a functor Z : compacty — swellC. For P € compacty, let dp : Open? —
GZ, 6p(U) = Aif PNU # 0 and 6p(U) = 0 otherwise. Set 6% : Open$F x Openy? — psh(Y),
LU, V) =6p(U)® V. Set

Z(P) = Hompsh(Y) <5§(K)a G)

We have a natural isomorphism A(U) = Z(U) for every U € precompacty .
C. It follows that Z satisfies Meyer-Vietoris. For every P, () € compacty, we have

0—Z(PNQ)— Z(P)®d Z(Q) — Z(PUQ) — 0] ~0,
where [] denote the totalization of a complex. Indeed, denote dpg : Open;’(p — GZ,

5P,Q = [0 — 5PUQ — 0p @(5@ — 5POQ — O].

Observe that dpo(U) = 0 whenever U N (PUQ) C Por UN(PUQ) C Q. Denote by Bx the set of
all pre-compact subsets of X with this property. They form a base of topology on X. Hence, there
is an object in psh(Bx x Openy,, C') which is homotopy equivalent to K. It follows that dpgo K ~ 0
which proves the statement.

D. Define a functor M : Openy — swell C, where Set M (U) := hocolim pecompact x|k Z(K). We
have a natural transformation M — A because A(U) = Z(U).

Let us show that the induced map RHom(hr; M) — RHom(hp; A) is a homotopy equivalence. Equiv-
alently RHom(hp; Cone(M — A)) is acyclic. Let r : precompactyy X precompacty — GZ be

given by r(U,V) = Aif (U) € V; r(U,V) = 0 otherwise. as F' € sh(X,C), the natural map
hr ®1€recompactx r — hp is a termwise homotopy equivalence. Therefore, it suffices to show that

RHom(hp ®£recompactx r; Cone(M — A)
is acyclic. Equivalently:

hOhmVGprecompactX|UCV Cone(M (V) — A(V)) ~ 0.
As the holim is filtered, it suffices to show that for every V € precompacty, V O U there exists a
W € precompacty, W D U, W C V, such that the induced map

Cone(M (W) — A(W)) — Cone(M (V) — A(V))
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is homotopy equivalent to 0. To this end, it suffices to choose W so that W C V.

F. Set K'G := M(U) ®£rec0mpactx U and show that K'G € sh(X,C). The stability axiom is obvi-
ous. Let us check the remaining properties. We have a term-wise homotopy equivalence of functors
precompacty — swellC: hyi; — M. Therefore, it suffices to show that M satisfies the direct limit
gluing property, Meyer-Vietoris, and M ({)) ~ 0. The direct limit gluing property and M (0) ~ 0 is
obvious. Let us check Meyer-Vietoris.

F1. Let U,V € precompacty. Let compact;; be the poset of compact subsets of U and similar for
compacty . Let us prove that the natural map

hOCOthGcompaatU;LEcompactV F(K ) L) — hocoanEcompactUUV F(M)

is a homotopy equivalence for every F' : compacty — swellC. Indeed, it suffices to check this
statement for F'(M) = Hom(N, M), N € compacty -, in which case the statement reduces to

hOCOthEcompactU;Lecompactv;NCKUL A— hOCOhmMECompactUUV;NCM A.

As both colimits are filtered, the statement follows.

F2. Similarly, we can prove that the natural map
hocoanEcompactU;LEcompactV F(K N L) — hocoanEcompaC‘cUmV F(M)

is a homotopy equivalence.

F3. The natural map
hOCOthECompactU;LECompactV F(K) — hocoanEcompactU F(K)

is a homotopy equivalence because the set compacty, is filtered.

F4 For A € precompacty, set
F/(A) = hOCOIimKEcompactX\KCU F(K)
The natural map

hocolim g ccompacty;; Lecompacty, [0 = F(K N L) — F(K) ® F(L) — F(K U L) — 0]
= [0=FUNV)=s FU)eF (V)= FUUV)—-0. (22)

is a homotopy equivalence.

F5. It now remains to apply F4 to F' = Z, where Z is as in C. Then F’ = M and the LHS of (22) is
acyclic.

5.16.1 Projection along R"
Let Z € sh(R" x X|X), Z = Arnxa, so that Z is the graph of the projection p : R" x X — X.

Proposition 5.24 We have a zig-zag homotopy equivalence of functors sh(X) — sh(R™ x X)) between
G+ GXArn[n] and G — Z'G.
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Sketch of the proof.

Choose a triangulation 7 of R™. Let B be the base of topology on R™ formed by stars of all simplices
of all baricentric sub-divisions of T.

According to Sec 5.9, it suffices to construct a zig-zag homotopy equivalence between the following
functors B x Openy x sh(X,C) — swell C:

(A, U,G) — Z'G(A x U) and (A,U,G) — Arn[n](A) @ G(U).

According to Sec 5.9.2 and 5.15 we have homotopy equivalences
Arn K AA, = Az;

Ag+ (UoAx) = (AoArn) ® (UoAp,) > (Ax U)o Z;

These equivalences induce a zig-zag pointwise homotopy equivalence between A(A x U) and
Hom(Ag; G), hence I'i7G. Here A is as in the previous subsection.

Therefore Z'G(A,U) is zig-zag homotopy equivalent to

hocoth,‘ﬁcU I‘WG.

We have a natural transformation G(U’) — I'tzG, which induces a map
hocolimy, g7, G(U") hocolim gy TerG
Let us show that this transformation is a homotopy equivalence. Indeed, set
C(U') :=ConeG(U') = I'nG.
The problem now reduces to showing that
hocolimy; g7y Cc(U') ~ 0.

As the colimit is over a filtered poset, the statement follows from: let U’ C U”, then the induced map
C(U") — C(U") is homotopy equivalent to 0, which is immediate.

We also have a homotopy equivalence hocolimU,‘ﬁcU G(U') — G(U), which establishes a zig-zag
homotopy equivalence between Z'G(A,U) and G(U).

As follows from Sec 5.15, we have a zig-zag homotopy equivalence between
Arn[n](A) and A,

which finishes the proof.
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5.16.2 Inverse image under closed embedding

Let i : X — Y be a closed embedding. Let W € sh(Y|X); W = Ar,.

Theorem 5.25 We have a zig-zag pointwise homotopy equivalence of functors sh(X) — sh(Y) G —
W'G and G — i,G.

Sketch of the proof Let F € sh(Y). We have F oy W =~ i~ 'F.

Therefore, we have
Z(L) ~ RHomx (i~ 'Ar; G) ~ RHomx (A;-17,; G) ~ holimy e precompact  [5i-117. G(U)
Next,
M(U) = hOCOhmVGprecompactY|VCU holimyy ¢ ecompact <[Vnxcw G(U).
We have natural maps
G(U N X) < hocolimy, o\ compact, (e G(V N X) = M(U)

both of which are homotopy equivalences, whence the statement.

5.16.3 Direct images under proper map

Let p: X =Y beamap. Let I', C X xY be the graph of p and Fﬁ, C Y x X be the transposed graph
of p.

We then set p; : sh(X,C) — sh(Y,C); pmF = Fox Ar,; p~' :sh(Y,C) — sh(X,C): p'G = Goy Ar:.

We have Ar, oy AF; ~ Axx,x. Let Ax C X x X be the diagonal. As Ax C X xy X, we have a map
Axx,x — Aay, whence a zig-zag map
p'pF = F,

we then have an induced zig-zag map
pF — p.F.

Theorem 5.26 Assume p is proper on the support of F'. Then the above map is a homotopy equiva-
lence.

Sketch of the proof The statement reduces to the case p is proper. Next, one reduces the statement to
showing that the through map

Hom(Ag;pF) — Hom(p *Ag;p 'pF) — Hom(p 'Ag; F)

is a homotopy equivalence for any compact set K C Y. As p is proper, p~ 'K is compact and the
above map is homotopy equivalent to

hOCOlimUGprecompactY;KCU p'F(U) - hOCOlimVGprecompaC‘cX;p_lKCV F(V)

which can be rewritten as
. -1 .
hocolimy eprecompacty sk cv £'(p~ U) — hocolimy cprecompact  ip-1 kv £(V)-

As p is proper, the open subsets of the form p~'U, U D K form a base of neighborhoods of f~!1K.
Therefore, the above map is a homotopy equivalence by the cofinality argument.
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6 Quantum/Semi-classical sheaves

6.0.4 Definition of sh.(X, C)

Let £ € Ry U {oco}. We will use the SMC Q. as in Sec. 4.

Let she(X,C) C swell(X°P ® Q. ® C) be the full sub-category satisfying the following conditions
below.

A. Stability. Every object F' € sh.(X,C) must be stable. Recall the meaning of this condition. Let
hg : Openy @QEP — swell C be defined by hp(U,a) = Hom((U, a); F). Then the natural map

hF(U’ CL) ®€U7a)60penx x Q2P (U’ CL) - I

is a homotopy equivalence,
B. Sheaf condition ’along X’. F must belong to sh(X,C ® Q.) C swell(Open? @C ® Q2P).

C. Direct limit condition for Q.. For every U € Openy and every a € R, the natural map
hOCOhmb|b>a hF((U7 b)) - hF(U7 a) (23)

must be a homotopy equivalence.

D. Completeness condition. For every U € Openy there must be:

hOCOlimbeRop F((U, b)) ~ 0.

6.0.5 The category sh, (X, C)

We set
psh,, (X, C) := swell(Openf @C @ Q).

Let us define a full sub-category sh,, (X, C) of objects satisfying the conditions A,B from the previous
subsection and the condition C for any € > 0: the natural

hocolimyps.q hr((U, f3)) = he (U, f3) (24)

must be a homotopy equivalence.

The category shy, (X, C) is enriched over Q,, hence R,,.

6.0.6 A fully faithful embedding of sh.(X,C) into sh(X x R, C)

Let int C Openg be a subset consisting of all open intervals (both finite and infinite). The subsets
from int form a base of topology on R. Therefore, we have a quasi-equivalence of categories

sh(X x int,C) — sh(X x R, C).
Let 7 : int — Q3F, 7(a,b) = a if a # —o0; 7(—00,b) = 0. We then have an induced functor

7 : psh(X x int, C') — swell(Openf ®Qu ® C)
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One checks that 7 induces a map

7+ sh(X x int, ) — shoo (X, O).
We have a homotopy equivalence
p(F) == F((U,)) ®{yu)copeny xint (U:7(w)) = 7(F).
Let us now define a functor s : shoo (X, C') — sh(X x int, C).

S(F) = F(Ua W(u)) ®(U,u)eOpenX xint (Uv u)
So that we have a homotopy equivalence

s(F)(V,v) = F(V,7(v)), (V,v)€ Openy xint. (25)

We have natural transformations

pS(F) = F(V,’/T(’U)) ®(V,v)€0penX xint (‘/7 W(V)) — F; (26>

Sp(V) = F((U’ u)) ®(LU,u)eOpenX Xint Hom((U, TF(U); (Va TF(U)) ®(V,v)€0penx Xint ®(Va U)
< F((Ua ’LL)) ®(LU,u)eOpenX xint Hom((U, u); (‘/a U)) ®(V,v)€0penx xint ®(Vva U)

~

— F. (27)

Let shq(X,C) C sh(X x int,C) be the full sub-category consisting of all objects F satisfying
F(—o00,a) ~ 0.

Theorem 6.1 1) The functor s takes values in shq(X,C).

2) The natural transformation (26) is a termwise homotopy equivalence.

3) The natural transformation (27) induces a homotopy equivalence for all F' € shq(X).

The functors p and s, therefore, establish a quasi-equivalence between sheo(X,C) and shq(X,C).

Sketch of the proof. 1) Follows from (25).
2)

pS(F)(U, a) :> F(‘/a F(U)) ®(V,’v)€0penx xint HomOpenX XQ%’((M F(U)); (Uu a))
& F(W7 b) ®OpenX X Q3% HomOpenX XQ%’((VV? b)7 (‘/, W(U))) ®(LV,U)EOpenX xint HOIH((VY, 7T(’U)); (U, (Z))

We have a homotopy equivalence

Homopenx XQco)é)((VV’ b); (V’ 7T(’U))) ®%V,v)€0penx Xint HomOpenX XQ;’S((‘/? W(U)); (Ua a))
= HomOpenX XQ%’((W b)v (‘/7 W(”))) ®(LV,U)€OpenX xint HomOpenx Xint((vj ’U); (U7 (CL, OO))
— HomOpenX XQOP((W b)’ (Uv a))

[e5S}
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So that we have an induced homotopy equivalence

F(W’ b) ®OpenX x Q2P HomOpenX ngg((Wv b); (V7 TI'(U))) ®€V,fu)€0penx xint HOII]((‘/, W(U)); (Uv a))
:> F(W7 b) ®Openx x Q3P HomOpenX XQ%’((VV’ b)a (Uv (I)) :> F(U7 a)
which proves the statement.

3) We have

sp(F) (U, w) = F(V,0) @Gpony xint HoMopen , xqzp (Vi(0); (U, 7(u)))
= F(V,0) @6peny xint Homopen y xint (V5 0); (U, (m(u), 00)))
= F((U, (n(u),00))).
The induced map
F(U,u) = sp(Uyu) = F((u, (m(u),c0)))
coincides with the natural map induced by the embedding u C (7(u), 00), whence the statement.

Below we will use the notation sh,(X) instead of sho(X).

6.0.7 Objects in shy(X)

Let F: Q38 — sh(X, C) be a functor. Say that F satisfies the direct limit condition if 1) The natural
map hocolimgegop 45 F'(d) = F(c) is a homotopy equivalence;

2) hocolim e gor F'(d) ~ 0.

Denote
R(F) := F(u) ®5EQ;’§ u € swell(OpenSP ®Q« ® C).

It follows that R(F') € shy(X,C). The stability follows from the fact that R(F) is a bounded from
above complex consisting of objects of the form F(u) @ v, (u,v) € Qo ® Quo, Which are stable. Next,
we have

hr(r) (U, ¢) = F(d)(U) @Y gep Homg, (c,d) = F(c)(U),

which implies the statement.

6.0.8 Object Ay

Let K C X be a compact subset and let f : K — RU oo be a lower -continuous function. That is
f~(a,00) € Openy for all @ € R. Let

Ko :={zv € K|f(x) < c}.

Set Fig f(c) = Ak, ., so that Fig g QY — sh(X,A). One checks that Fig y) satisfies the direct limit
property so that RFjg g € shy(X).

Proposition 6.2 We have

s(RFik,f]) = Awzp)t>f(2)[1] € shq(X).
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Sketch of the proof

We have
s(RF ik, )(U,u) = (RE|k ;) (U, 7(u)) = Fig g (7(u)(U).

We have a zig-zag homotopy equivalence

SR(F[K7f]) ~ F[K,f] (ﬂ(u))(U) ®%U,u)€0penx xint AU X Aﬁ :> F(T((u)) Queint Aﬁ-
Let 7 : int — R°P; ¢ : int — R be given by 7((a,b)) = a; o((a,b)) = b.
We have a homotopy equivalence

COHG(A(U(U),OO) ©® A(,Oo’ﬂ.(u)) — Ar) = Az.

Let us consider

F(7(u)) @yeint AR = F(m(u)) ¢ Homing (u,R) ® AR
= F(r(R) K AR ~ 0.

F(ﬂ-(u)) ®1[1j€int A(o‘(u),oo) &~ F(ﬂ-(u)) Queint Hoono (O’(U), U) ®veQ oo A(v,oo)
= F(7(u)) @ueint Homing(u, (—00,0(v))) @vequc Aw,oo) — F(1(=00,0(v))) @ve@u Aw,o) ~ 0,

because F(m(—o0,0(v))) = F((—00,00)) ~ 0.

We now have a homotopy equivalence
F(Tr(u)) ®5€int (A(J(u),oo) @ A(—oo,w(u) — AR) = F(?T)) ®5€int A(a(u),oo)[l]
Finally, we have

F(ﬂ-(u)) ®5€int A(foo,ﬂ(u)) “ F(TI’(U)) Queint Hoono (U; 71'(’11,)) ®égg A(foo,v)
= F(W(u)) Rueint Homint((ua OO); (UOO>) ®£€Qoo A(—oo,v) = F(”(”? OO)) ®5€Qoo A(—oo,v)
= F(v) @} o A(—oow) & hocolimy ) eing F(0) KA oo w) = hocolim(y w)eint Af(z,b)|f(x) <vst<w}

& Cone hoconm(v,w)eint A(x,t)\f(x)>v;t<w - hOCOhm(v,w)Eint Ak x (—oo,w))

The open sets {(x,t)|f(z) > v;t <w} C K xR form an open covering of the set {(x,t)|t < f(z)}. The
open sets K x (—oo,w) form an open covering of K x R. Therefore, we have a homotopy equivalence

Cone(hOCOhm(v,w)Eint A(a:,t)|f(x)>v;t<w — hOCOhm(v,w)Eint AKX(—oo,w))

= Cone(Apji<s(x) = ArxR) = A= f(2)-

This proves the statement.
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6.0.9 Definition of Ag g
We have

L o~ . L ~ L
RF[KJ] = Ax\f(x)gc ®Qgg C < hOCOhm{LECOInpactX| fle\p>c} ®C€Qggc - AK\U ®U6precompactK f(U)

where we set

fU):= inf f(z).

zeUNK
In the case UN K = () we let f(U) to be the zero-object of swell Q.

Let C C X be a locally closed sub-set and let f : C'— R be a lower-continuous function. Set

A[Cvf] = AC\U ®5Eprecompactx f(U)

We have
s(Aic.f) = sR(Fio, 1) = A t)|weCt>f(x)-

6.0.10 Functoriality of A
Let C1, C5 be closed subsets of X, If Cy C Cs, f1 is a lower continuous function on Cq, fo on Cy and

fale, < f1, we have a natural map Aic, 5,] — Alc,,,] coming from the inequality fo(U) < f1(U) for
any U € precompact y.

6.0.11 The functors red. .,

Let g1 > €2, 1,62 € RU{o0}. The functors red.,., : Qs, — Q¢, induce functors red;,, : sh., (X,C) —
she, (X)

6.0.12 Reduction of Ak g
In the notation of Sec. 6.0.10 suppose g|x + & < f. Then the natural map

redoogA[M7g] — redoosA[K,f]

equals 0 because such are all the maps g(M\L) — f(K\L) in Q..

6.0.13 The functor X : sh.(X,C) ®sh.(Y,C) — sh. (XY, C)
We have a natural functor
@ : psh. (X, C) @ psh.(Y, C) — psh. (XY, C).

which descends onto the corresponding categories of sheaves.
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6.0.14 Convolution

Let F € psh (X|Y,C), G € psh.(Y|Z,C). Let g : Openy x Openy — GZ; g(U, V) =AifUNV #0
and g(U,V) = 0 otherwise. We get an induced functor g : psh (X|Y|Y|Z,C) — psh.(X|Z,C). We
then get an object FXG € psh (X |Y|Y|Z,C). Set

Fxy G:=g(FRG) €psh,(X|Z,C).

Let F oy G € psh_(X|Z) be given by

FOY G = (F Xy G)|0,

where |g : psh, (B, C) — psh(B) is given by (U, a)|o = Homg_ (0,a) ® U. In particular, if F,G € sh.(X),
then F' e G € swell C.

All the above functors descend onto the corresponding categories of sheaves.

6.0.15 Convolution with the constant sheaf on a graph

Let X CY. Let F: X — R be an upper continuous functions. Let C' C X be a closed subset and
f : C — R alower continuous function. Let I' C X x Y be the graph of the embedding X C Y. Let
F'=Fou. ' Let 1 : X — T be the identification.

Proposition 6.3 We have a natural zig-zag homotopy equivalence
A[C,f] *x AI‘,F’ ~ A[X,F’+f] S Shoo(Y)
Sketch of the proof We have

Alc, 1) *X Ar pr € Ao\ *X Ar\ (v i) D0, eprecompact y o .y /(U NC) +E(V x WNT))
= Ac\u X AP\ (vew) ©(1,v,w)eprecompactx oy y (f (U N C) + F((VNW)))
~ A\ AW)) D0, eprecompact oy [ (U) + F((V NW)))
& hocolim aeprecompacty AC\(UUA) (17 v.1) eprecompact x » x oy ([ (U) + F(V AW)))
~ Ac\(04) @A eprecompacty HOM(A,V W) & v eprecompacty x oy (F (U NC) + F((V N W)))
~ AC\(UUA) DA precompact x U precompact x NOCOIN (1« 1 eprecompactS®. [ acvow} (f (UNC)+F(((VAW)))

XXY

:> AC\(UUA) ®ﬁ€precompactx,UEprecompactX (f(U N C) + F(A))

The last arrow is a homotopy equivalence because the poset
{V x W € precompacty |4 C VNW}

is filtered.
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Let us continue:

AC\(UUA) ®(LA,U)EprecompactXXX (f(U) + F(A))
~ AC\B ®é€precompactx HOIH(B, vu A) ®%A,U)€precompactXXX (f(U N C) + F(A))
(28)

We have a homotopy equivalence (we assume (A, U) € precompacty, v ):

COne(hOCOhm(A’U)|B\(AuU)7,g@ fUNC)+F(A) — hOCOlim(A,U) fUNC)+F(A))
— Hom(B,U U A) ©(4 ) (f(UNC) + F(A)).

As
hocolim 4 ¢y f(U NC) + F(A) ~ f(0) + F(0) =0,

we have
HOII](B, Uu A) ®%A,U) (f(U N C) + F(A)) ~ hOCOIim(A,U)|B\(AUU)7£® f(U N C) + F(A))[l]
Next, we have an acycilic complex
hOCOIim(A,UﬂB\(AUU);é(D f(U N C) + F(A)
— (hOCOIim(A,UﬂB\A;é@ f(U N C) + F(A)) D hOCOlim(AJJ)‘B\U#@ f(U N C) + F(A)
— hoconm(A,UﬂB\(AﬂU);ﬁ@ f(U N C) + F(A)
As f(0) = F(0) is the 0 object of @, the middle term in this complex is acyclic. Therefore,

Hom(B, UUA)®E, 1) (F(UNC)+F(A)) ~ hocolim (4 )\ (arwyzo S (UNC)+F(A) 5 (f(BOC)+F(B)).
so that we can continue (28):

Ac\B ®é€prec0mpactx Hom(B,U U A) ®€A,U)Eprecompactx><x (f(UNC)+ F(A))
~ Ac\B @Beprecompact /(BN C) + F(B)
& Ac\B @B eprecompact, Hom(¢, f(BNC) + F(B)) @% jop ¢
~ (hocolimy peprecompact x| f(BNC)+F(B)>c} Cone(Ap @ Ac — Ac)) ®f€Qgg c.

Let
Se :={B € precompactx|f(BNC)+ F(B) > c}.

The set S, is closed under finite intersections; the union of all elements of S, equals
Upsrse = X\CU{z € C|f(x) + F(x) > c}.

We therefore have a homotopy equivalence

hOCOIim{BGprecompactX|f(BﬂC’)+F(B)Zc} Cone(Ap ® Ac — Ac)) ®£€Qgg c

= Cone(Au,, ., @ Ac = AC) Ol gop ¢ = Alacc|f(a)+ Fa)<e) ©eeqer ¢ = A, 14+
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Corollary 6.4 1) We have a zig-zag homotopy equivalences

Any.f*x Aaxig R Aay f+g5

ld~ Any,r *x Aoy,

6.0.16 Universal property of A/x
Let X be compact.

Theorem 6.5 We have a zig-zag homotopy equivalence of functors shy(X) — GZ: F
Hom(A[Xﬂ;F),

F— Cone(holimcﬁoo AX,—f—C — hOlim(uo Fex A[X’(;_f])[—l],

and
F +— Cone(holimg ;oo Ax,—¢ — holims o F ex Ajx 5 f)[—1]

1) The third functor is zig-zag homotopy equivalent to the second one by the cofinality argument.
Below we construct a zig-zag homotopy equivalence of the first two functors.

2) By virtue of Corollary 6.4 2, the endofunctor F' — F'xx Aa .. on sh.(X) is a homotopy equivalence,
therefore, the statement reduces to the case f = 0.

3) We have
Arx,0)(¢) = Cone hocolims g Ax ® Hom(c, —6) — hocolimg oo Ax ® Hom(e, C).
Which implies
Hom(A[X’O}; F) = holims|o,c—oc Hom(Ax; Cone(F(C) — F(—6))[—1])

holims | c—y00 Cone(F (X, C) — F(X,—0))[—1] = holims|0.c—00 F ®x Cone(A;x,—c] — A[Xﬁ])[—l].

7 Singular support

7.1 Lenses

Let X be a smooth manifold. Let 2 C T*X x R be an open subset. Call Q fiberwise convex if every
fiber of 2 under the map Q — T*X x R — X is convex. Fix a fiberwise convex ).

60



7.1.1

Let K C X be a compact set. A lense £ supported on K C X is a collection of the following data:

— a pair of lower continuous functions fX := f(}‘, k = 0,1, defined on K such that f! +¢ > f0 > f!
for all z € K.

An Q-lense with support K is a lense ¢ with support K’ C K additionally satisfying:

there exists a neighborhood U of K’ such that the functions f°, f! can be extended to smooth functions
U satisfying:

a) for each x € K', the point (z, —dfX, f%(x)) is in Q, k = 0, 1.
b) f° and f! coincide outside of K.

7.1.2 The sheaf A,

Given a lense /, let us define an object Ay € sh.(X) as follows.
A Let a,b e R, 0<b—a<e. Let hg: Q¥ — A, xap(7) = Aif z € (a,b] and xp(z) = 0 otherwise.
A1l. Let 045 € Qc) be represented by the following complex

o= (a—2) = (b—2) = (a—e) = (b—e) 2 a—b—0.

We have a termwise homotopy equivalence hs_, — Xqb-

A2. Set
Ar:=AL ® Lecompact 5f0(K\L);f1(K\L)'
We then can represent Ay by a complex in she(X)
cee —r A[KJO,QE] — A[K,f1725} — A[K,fofs] — A[K, fl — 8] — A[K,fo] — A[K,fl] — 0,
where we denote, by abuse of notation red A(x s] by Ajx,f]- The composition of every two successive

arrows in this complex is 0 via Sec (6.0.12).

7.1.3 Sections of A,

We have

Ao(U,a) = AL(U) @ Lecompactx 00 (k\L);f1 (K\L (@)
AL(U) ®Lecompacte Xfo(k\L);f (K\L(@)
< AL(U) ® Lecompacty, Cone Homg_ (a, fOK\L)) — Homg_ (a, fHK\L))
flsa(U)
~ COIle(AKfO>a(U) — AKf1>a(U))m'

:> Cone AKf0<a(U) — AK
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7.1.4 Fitlered colimits of A,

Let ¢1, 2 be lenses supported on K. Write {1 < {9 if fgk1 < f};, k = 0,1. wherever the two functions
are defined. This gives a partial order to the set of lenses supported on K.

Whenever ¢; < /5 we have an induced map Ay, — Ay,. Let I be a filtrant poset and let ¢;,i € I be
a monotone [-family of lenses supported on K. set fekl (x) := sup;er fl}‘i; k =0,1. We see that /7 is a
lense supported on K. We also have a homotopy equivalence

hocolim;er Ay, — Ay,

Call a lense ¢ a generalized €2-lense supported on K if £ = £; and all £; are {)-lenses supported on K.

7.1.5 Maximum of a pair of lenses

Let ¢1,¢5 be Q-lenses supported on K. Let A := sup({y,¢3) be defined by f/l\‘ = sup(fék17 kaQ). Then A
is a generalized {2-lense supported on K. Sketch of the proof:

1) we have a monotone sequence of smooth non-decreasing functions ¢, (z), where
— ¢n(x) =01if z <O0;
— op(z)=1if 2 > 1/n.

Let @, (z) = [ ¢n(z). In particular
0

0 < ®,(z) <max(0,z); 0<gp(x) <1. (29)

2) Set f(x) = f5 (x) + Pn(fi5 (x) — f5 ().

We have dfX(X) = dfgli () + qﬁn(fﬁlz (x) — ffk1 (:z:))(dfﬁk2 () — alfgk1 (x)). As follows from (29) and from the
fiberwise convexity of 2, each fX is an Q-lense with support K. Since f¥(z) 1 max( fek1 (x), fgk2 (x)), the
statement follows.

7.1.6 Infinite suprema of lenses

Let £s = {fX}, s € S be generalized Q-lenses with support K. Let fX(z) := sup fX(x) Then ¢ = {f¥}
S

sE
is also a generalized lense with support K. Indeed, we first consider the case of finite S. This reduces
to a two-element set S, which follows from the previous subsection.

If S is infinite, pass to the filtrant poset P of finite subsets of S. To each finite I C S, associate
f}‘ := max;cs fX. Let £; be the lense supported on K determined by the functions f}‘ The lenses £1
satisfy all the conditions from Sec.7.1.4.
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7.2 Localization of

Let Q = QUQyU---UQ, be a finite cover by fiberwise convex subsets. Let {f¥} be an Q-lense
supported on a compact K. One then has smooth functions f0 = ¢° < ¢! < ... < ¢V = f! such that
(g%, g'*1) are Q,,-lenses supported on K.

This follows from the following 2 particular cases.

n

Case 1. Let K C |J U; be an open cover and let §; = p1U; N Q, where m: T*X x R — X is the
i=1

projection.

Case 2. w(€;) D K for all 4.
Proof for Case 1. 1)Choose a partition of unit, i.e. smooth functions p; supported on U; such that

0<pi<land), pi(x)=1forall z € K. Let E C Q be a compact fiberwise convex subset which
conains all the points (z, —df¥(x), f%(z)), =z € K.

2)There exist a positive integer K > 0 such that

— for every ¢ and for every function ¢ (x) such that (z, —dy(z),¢(x)) € E) for all x € K, we have:
(z, —dT;p(z), Tip(x)) € Q for all z € K, where

(p1(x) + p2(x) + -+ + pil@))(f1(z) — fO(2))

Tip(z) = ¥(z) + % -

3) Consider the sequence of functions fO(z), 71 f%(z),. .., T, f%(x). It follows that (T} f°(x), Tj11f%(x))
is an );-variation. Next,
(f' =1

Tnfo(x):f0+T €L

We therefore can continue our sequence by adding

fl_fO 0 fl_f[) 0 fl—fo 0 2(f1—f0)
IR e T e ) = O e

T (f° +

By repeating this process K times we prove the statement.

Case 21t suffices to choose ¢ : (1 —k/K)f°+k/Kf!, where K is large enough and k = 0,1,2,..., K.

7.2.1 Convolution Ajg r * Ay

Let X,Y be smooth manifolds. Let ¢ : X — Y be a closed embedding. Let f be a smooth function
on X. Let I' be a graph of «. Let f be a lower continuous function on X. Denote by x : I' — X the
identification. Let £ = {fX} be a lense on Y. Let

Tit = {01+ f},

so that Tt/ is a lense on X.

Proposition 7.1 We have
A[ny] Xy Ag ~ Ang.

Sketch of the proof Follows from Sec. 6.0.15.
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7.3 Definition of Singular Support

7.3.1 (-stable objects

Denote by a : T*X x R — T*X x R the following reflection map a(z,w,t) = (z,—w,—t). Let
F € psh_(X). Call F Q-stable if F' @ Ry ~ 0 for every Q%lense /.

7.3.2 Definition of Singular Support

Let F' € sh.(X). Define an open subset U C T*X as the union of all open fiberwise open subsets
Q C T*X x R such that F' is Q2-stable. Observe that F' is )-stable iff 2 C U. Indeed, if Q2 C U, then

Qc |,
a€A

where F' is Q, stable for all a € A. Let £ be an -lense, then there exists a pre-compact firerwise
convex subset ' C Q such that £ is an {2'-lense. One then can select a finite subset B C A such that
Q C Upep - The statement now follows from Sec. 7.2.

Denote SS(F') := T*X x R\U so that F' is Q-stable iff Q N SS(F) = (.

7.4 Properties of Singular support
7.4.1 Dual definition

Proposition 7.2 Let F € sh(X,C). Then F is non-singular on an open subset Q C T*X x R iff
Hom(Ay, F) ~ 0 for any Q-lense £ supported on a compact K C X.

Sketch of the proof Let £ = {fX} be a lense. Let 0y = {—f% —6}. As follows from Theorem 6.5, we
have a zig-zag homotopy equivalence

Hom(As; F') ~ holimg o F ex Apy

The statement now follows.

7.4.2 Convolution with a graph

Let f : X — R be a smooth function. Let Ty : T*X x R — T*X Xx R be given by T¢(z,w,t) =
(x,w — dfy;t + fz). If £is an Q-lense supported on K, then Ty¢ is a T§Q-lense supported on K.

Let Ax C X x X be the diagonal. Let fao : A =X ENY
Proposition 7.3 Let F € sh.(X) and let SS(F) C C. We have

SS(F * X A[AX7fA]) C TfC
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Sketch of the proof. Let @ C T*X x R be an open fiberwise convex subset such that QN (TFC)* = 0.
Let £ be an -lense. We have

(2)

1)
(F#x Alay,fa]) @ Ae = F o (Aiay a1 *x Ar) = F o Aryy ~ 0,

where (1) follows from Sec 7.2.1 and (2) follows from T'+¢ being a T} lense, where

Tfﬂ NC* = TfQ N Tf(TfC)a = Tf(Q N (ch)a) = (.

7.4.3 Variation of lenses

Proposition 7.4 Let M be a smooth manifold and let F¥ be smooth functions on X x M such that for
every m € M, {F¥(m, —)} is an Q-lense supported on a compact K. Let { := {F¥}. Let F € sh.(X)
and SS(F)N Q% = (. Then Ay ex F ~ 0 as an object of sh(M).

Sketch of the proof. 1) It suffices to show that Ay ex F(U) ~ 0, where U C M is an arbitrary
pre-compact subset.

2) There exists a > 0 such that for every m € M and every &' € [0,6), {F¥(z,m) — §'} is an Q-lense
supported on K.

3) Let V C U be an open subset. Set

f(@)y = sup f¥(z,v), =€X.
veV

As follows from Sec. 7.1.5, {f‘lﬁ} is an -lense supported on K, and so is fy 5 = {f‘lﬁ — 0’} for all
§ €[0,9).

4) Call V ¢'-small if f(z) — f(y) > —¢' for all 7,y € V. We then have fk —§ < f on X x V.
5) For an open §’-small subset V € U, set

fV,zS’ = Agv,(s/ XAy € ShE(X X M)

Let P be the poset whose each element is a pair (V, ), where V is ¢’ small. The order is defined by
(V1,87) < (Va,d%) if Vi C Vo and 87 > §,. Then F : P — sho(X x M). We have a natural map

hocolimp F — Ay.

7) Let us show that this map induces a homotopy equivalence
hOCOlim(V’(;/)ep fV75/(W X U, CL) — Ag(W X U, (I)

for all a € Q2P and all W € Openy.
Using (7.1.3), the problem reduces to showing that the natural map

hocolim(v,snep Afpek|avev:fx(z.v)—5>ayxv (W X U) = Ago)ekxu| o ap)>ay (W x U)  (30)

is a homotopy equivalence.
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Fix a value of k. For p = (V,4") € P, denote
W;‘ ={zecK[FveV: fXuxv) -0 >a} x Ve Opengypy

and
Wk .= {(z,v) € K x U|f*(z,v) > a}.

The natural zig-zag homotopy equivalences A4 (B) ~ Ajg o Ag ~ Ap(A) show that the arrow in (30) is
zig-zag homotopy equivalent to

hocolimpep Aw v (W) = Aw v (WX). (31)
Observe that the set {W;}pe p is closed under finite intersection:

k k _ k
WV1,51 N WV2,52 - WV1ﬂV2;max(51,62)'

Therefore, {Wzlf}pe p is an open covering of
k _ 1k
Uwr=w
peP

so that the map in (31) is a homotopy equivalence by the gluing property for the sheaf Ay« .

7.5 Singular support of FFX G

Let F' € sh.(X) and G € sh.(Y'). Suppose SS(F') C A and SS(G) C B. Consider the following subset
of T*(X xY) xR

CO(F7 G) = {(x’w7y7natl + t2)|(:r,w,t1) € A? (Z/,Tlat2) € B}
Let C(F,G) be the closure of Cy(F,G).

Claim 7.5 We have SS(F K G) C C(F,G).

Sketch of the proof.
0) For a € R. Define functors

CUtt<a7R>acht2a7 Rga 1 Qe = Qe

as follows. Set:

—cuticqep = if b< a—e;

—cut;qep = Coneey, — e,[-1] ifa—e <b < q;
— cutycqep =01 b > a;

—cuti>qep = 0if b < a —¢;

—cuti>qep = €4 ifa—e <b<aq

—cuti>qep = € if b > a.

66



— Regqep =¢p if b > a;
— Regep =0if b < a;
—R<qep =0if b > a;

—R<qep = if b < a.

These functors extend to functors sh.(X) — sh.(X). One has

CUtzaA[Kyf] ~ A[K;max(a,f)]§ RSaA[KJ] = Ag'.f,

where K/ = {z € K|f(z) < a}.
We have natural transformations cut;<, — Id — cut;>,; R~, — Id = R<,. whose compositions are
0. The complexes

0= cutic ' = F = cuti> ' —0; 0= RogF' = F — R, " — 0

are acyclic for every F' € psh_(X).

We have cut;,F ex R<_,G ~ 0; cuti>, ¢x R~_,G ~ 0 for all F,G € psh.(X). Hence, the induced
maps
cutic Fex R G — cuti.,0x G

and
cutic,['ex Rv_,G — FeR-_,G

are homotopy equivalences. We have
cut;.,Fex G~ Fexy R._,G (32)

Similarly, we get
CuttZaF [ D' GrF [ D'e RS—QG' (33)

Whenever a < b we have a natural transformation cut., — cut.;,. Let cut,<;; := Conecut., —
cuty,.
Let us also denote T, : Q. — Q¢; Tea=a + c.

1) Let P := (z0, po, Yo, q0,t0) ¢ C(F,G). Let us show that F X G is nonsingular at P. Let f be a
smooth function on X and g on Y such that f(zo) = 0, g(yo) = —to, duy f = —P0, dyg = —qo. Let
h:X xY — R so that h(z,y) = f(x) + g(y). We then have

Aiaxifs) B AAyigal X Ald sy hal-
Let F' := Fxx Aayifal G' = G #y Aayiga)y (FRG) = (FXG) * Aay,yiha]- We then have
FRG ~(FRGY.
It now follows that SS(F') = T+SSF', SS(G’) = T4SSG, and SS(F' X G) = TpSS(FXG). It also follows

that C(F',G") = TpC(F,G). We therefore have P’ = (x0,0,y0,0,0) ¢ C(F',G’) and it suffices to
prove that P’ ¢ SS(F' X G').

Therefore, the problem reduces to showing that if P = (x0,0,yp,0,0) ¢ C(F,G), then P ¢ SS(FXG).
We assume below that P ¢ C(F, Q).
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2) There exist neighborhoods U of (z¢,0) € T*X,V of (y0,0) € T*Y, and § > 0, such that whenever
(p,t1) € SSF and (q,t2) € SSG with p € U and g € V, there must be |t; + 2] > 0.

3) Let A={t € RF3p € U: (pt) € SSF}; B={t € R|Fq € V : (q,t) € SSG}. It follows that
dist(A, —B) > 6.

4) Let t € R. It follows that either [t —§/2,t+6/2]NA =0 or [t—d,t+/2]N—B = (. In the first case
call [t —d/2,t — /2] an A-interval, and t an A-point. Otherwise, call [t —6/2,t — /2] a B-interval,
and t a B-point.

5) Let f¥(z,y) be an U x V x (—3/4,8/4)-lense, to be denoted by .
6) Let a,b € R satisfy a +b > —§/2.
Suppose [a — d/4,a + 30/4] is an A-interval. Let us show that

(Reo P X RopH) ox 5y A ~ 0 (34)

for every H € psh_(X), hence for G.

It suffices to check it for H = [W, ¢|, where W C X is an open subset and ¢ € R. The statement then
follows automatically for ¢ < b as R~y H = 0 in this case.

7) Consider the case ¢ > b. We have R~[W, c] = [W, c]. We have

(Reo FR[W,c]) o Ay = (Rso F ox T A)) (W) = (RsoF ox Apg)(W) = (F ex cut_,Aq ) (W),

where we have used (32). We have
cut< At =~ Ap,

where
¢ = {min(f¥(x) + ¢, —a)} = mint, {_,,

where /_, is the lense f! = f2 = —a. We have

—a —36/4 <b—5/4 <min(f¥(z) + ¢, —a) < —a.

Thus, ¢ is a generalized U x V x (—a — 3§/4, —a + §/4)-lense so that
F o X A@’ ~ Oa

as was required.
8) Consider now the case when (a — d/4,a + 36/4) is a B-interval.

Then we replace R~ F with [W, ¢], where ¢ > a. We are to prove
(W, c] X R, G) exxy Ap ~ 0,

where ¢ is a U x V x (—d0/4,0/4)-1lense.

Similar to above, we have

(W, e] Ry G) ox xy Ae = (RpG ox Az)(W) = (G ex cut< pAr, ) (W) ~ (G ox Ar)(W),
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where
¢ = min(f* 4 ¢, —b).

We have
a—0/4 <min(f¥+¢,—b) < —b<a+35/4.
and /' isa U XV x (a—§/4,a + 35/4)-lense.

As (a — 6/4,a + 30/4 is a B-interval, G is nonsingular on V' x (—(a — 6/4), —(a + 3J/4)) so that
G ey Ay ~ 0, as was required.

9) Let a+b< —0/2. Let ay = —b—6/4,by =b—35/4. We have by <b;a; >a+06/2—06/4>a. We
then have the following acyclic complex:

0 — R>a1F IE R>bG — R>aF XI R>bG @ R>a1F IX R>b1G — R>aF g R>b1G
— Ra<t§a1F X Rb1<t§bG — 0.

As a; + b= —4§/4, we have
(Ract<a, F' X Ry, <1<pG) @ Ag ~ 0.

Indeed, as a1 + b = —d4, the natural map

(Ra<t<a F'® Ry, <1<pG) — R<_5/4(Ra<t<a, F' X Ry, <1< G)

is a homotopy equivalence so that we have
(Ra<t<as FRRp, <1<pG) oA ~ (R<_5/4(Ra<i<a, FRRp, <1<pG) ) 0A; = (Ra<i<a, FRRy, <<pG)ocuts s 4 Ay.

, Finally, cutss/,A; =~ Ay, where (" = max(6/4, f¥) = /4 so that Ay ~ 0. which implies the
statement.

Next, a1 +b; = —d§/2 and a1 + b= —6/4 > —§/2, we have (by 7) and 8)):
(Rsa, FR R~y G) @ Ay ~ 0;
(Rsa, FRI R,G) @ Ay ~ 0.

Thus, if a +b < —§/2 and (R>oF' X RopG) @ Ay ~ 0, then (R, F X Ry, _5/,G) @ Ay ~ 0. Taking into
account 7), 8), it now follows by induction that (R, FXR~,G)eA, ~ 0, whenever a+b = —6/2—N¢§ /4,
N > 0.

9) We have
hOCOlimNHOO(R>,5/4,N5/8F X R>76/47N6/8G) :> FX G,

which implies the statement.
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7.5.1 Singular support of A(x g
Let f: X — R be a smooth function. Set L := {(z, —d.f, f(z)|r € X} C T*X xR.
Proposition 7.6 We have SSA[x s C Ly.

Sketch of the proof As follows from Sec 6.0.15, 7.4.2, it suffices to consider the case f = 0. Next, it
suffices to consider the case X = R™ which reduces to the case n = 1 by virtue of the previous section.

Let (zo,po,to) € RxRxR =T*RxR, where (pg, o) # (0,0). Choose 6 > 0 so that max(|pg|, |to|) > 20.

Let U = {(z,p,t)| |x — zol|,|p — pol, |t — to| < 6}. Let £ = {f*} be a U-lense on R supported on
|x — o] < 6.

We have

A[R,O] o Ag ~ COHGAR(K()) — AR<K1),
where Ky = {z| |z| <6, f¥(z) < 0}. Case 1. [to] > 20. As |fX(x) + to| < 6, f¥(z) are of the same
sign for all k and all z, || < ¢ so that K1 = K.

Case 2. |po| > 20. As |f¥(z) + po| < 0, fX(x)" are of the same sign for all k and all z, |z| < 4.
Therefore, Ky = [f¥(—0), f%(—9)]. So that the arrow Ar(Ko) — Ar(K1) is homotopy equivalent to
the identity arrow A — A, whence the statement.

7.5.2 SSAW 0] where U has a smooth boundary

Let U C X be a domain with a smooth boundary. Let f be a smooth function in a neighborhood of
U. For z € X set n, C T; X be defined as follows: n, =0 if z € U; n, is the closed ray consisting of
all inner normal vectors at z to U if x is a boundary point of U; n, = () otherwise. Set

Y= U M.

zeX

Proposition 7.7 We have
SSAg . C X x {0} CT"X xR.

Sketch of the proof Choose an increasing sequence of smooth functions f,(z) such that f,(z) — oo for
all 2 ¢ U and f,,(z) =0 for all z € U.
We then have

hocolimy 0o Ag(t,e) = fa(2)} — A0

Let p € T* X x R\X x 0. It follows that there for every neighborhood V' of p there exists an N such
that
SSA[van(x)] =Ly NV = 0.

This implies the statement.
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7.5.3 SSAyyg)

Proposition 7.8 We have
SSAU,O] C (Z X {0})(1 CcT*X xR.

Sketch of the proof Apply the previous Proposition to X\U.

7.5.4 Inverse image under closed embedding

Let ¢ : Y — X be a closed embedding. Let S be a closed subset of T*X x R. Define a closed
subset C}.S := S+TyX|y C T*X|y x R, where + is the Whitney sum. Let CyS C T*Y x R be the
image of C% S under the projection T*X|y — T*Y. In local coordinates: let y be coordinates on Y
and (y,z) on X. A point (yo,qo,to) € Cy S iff there exists a sequence (Yn, @n, Tn, Pn,tn) € S, where
(Yn, Gns Ty tn) — (y,¢,0,t) and |z, |p, — 0.

Let S € sho(X). Then SSi~1S € CySSS.

Sketch of the proof. 1) Let us introduce local coordinates (z,y) so that Y is given by the equation
x = 0. Suppose (0,70,%p) ¢ CySSS. We need to show that i~1S is non-singular at (0,79,t0). By
change of variable t — t — tg — (19, y) — 1, we reduce the problem to the case ny =0, tg = —1.

Thus (0,0, —1) ¢ CySSS. This implies that there exists § > 0 such that (z,w,y,n,t) ¢ SSS, whenever
x| <4, [yl <6, [l <9, [t+1] <6, |wllz| <.

Denote this set by W

2) Lemma. For each 9 > 0 there exists a smooth non-decreasing function g, : [0,00) — [0, 1] such
that

a) there exists § > 0 such that g(z) = 0 for all = € [0, J].
b) g(ro) = 1, in particular g(r) = 1 for all 7 > r,

c) [rg'(r)] < 1/2 for all 7 > 0.

d) gro(z) > gr, (x) whenever ro < rj.

3) Let fX(y) be a W'-lense on Y, where W' = {(y,n,t)||y| < J,|w| < &, |t — 1| < &, supported on the
set |y| < 4. Set

o (2,y) = (f<(y) = 1= 8)(1 = g(jal)) + 1+
. Let us show that {¢k } is a W®-lense supported on the set Ky, := {(z,y)| |z| < ro, |y| < 6}
a) it is clear that qb}qo = ¢72"0 away from K,,;
b)1+d>¢, >(1-6-1-06)+14+6=1-4;
c)
] - ldagyy | =[] - [f¥(y) — 1= 0] - |g'(lz )] <[] - |g'(|])] - 26 < &
d)
|y = Idy fX(y)] - 11— g < 6.
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We have ¢X (z,y) > ¢X (z,y) if ro < ri. Furthermore

To T1

lim ¢ (2,y) = ¥*(z,y),
7040

where 1(z,y) =144 if z # 0 and ¥*(0,y) = f(y). Let £y, == {oK }.

We therefore have a homotopy equivalence

0~ hOCOlimTO‘LO Fex AgTO ~Fex A= i'F oy Ay.

This shows the statement.

7.5.5 Direct image under closed embedding

Let i : Y — X be a closed embedding Let F' € sh.(Y'). For every y € Y, let p, : T;X — T;Y be the
projection.

Proposition 7.9 We have

SSinE C{(y,w, )|y € Y5 (y,py(w),t) € SS(F)}

Sketch of the proof Let £ = {f%} be a lense on X. We have
WF oAy~ FeA; 1y,

where i =10 = {f¥|y}.

7.5.6 Direct image under open embedding

Let U C X be a domain with a smooth boundary. Let ¥ be the same as in Sec. 7.5.2. Let F' € sh.(U).
Let 5 : U — X be the embedding.

Proposition 7.10 We have
SS(j1F) C SS(F)4+x.

Sketch of the proof By change of coordinates one reduces the case to U C R, where U is a hyperplane

2% > 0. Let us denote y := (z',2%,...,2") and 2 := 2°. Let p ¢ SS(F)+%¢, w.l.o.g. we may assume

p = (20,0,—1) € T*R™ x R. Therefore, there exists 6 > 0 such that F' is non-singular on the open
subset W C T*R™ x R conisting of all points

(y,z,a,m,t) € Reg x R 1 x Rx R"™ 1 xR,

where 5
0<y<d;lz| <d; 5>a>—§; In| < 0; |t+1] <.
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Let Q C T*R™ x R consist of all points (y, x,b,w) of the form
ly| <6, |x| < 6,|b] <6, |w| <o,|t+ 1] <.

¢ = {f¥} be an Q%lense supported on the set |y| < §,|z| < 6.
Choose smooth functions for each » > 0: o, : R — [0, 1], satisfying:
—op(x) =0, 2 <0; opy(z) =1 for z > r;
— o,(x) = 0 in a neighborhood of 0;
— o, (1) < 0py(22) if 71 > 19 and 1 < x9;
—zxol(z) <1/2 for all z and all r.
Let us define new lenses
FX(y,x) = (f*(y,2) = 1+ 8)or(y) +1 0.
Let £, := {FX}. We have
— ¢, is supported on a compact within U;

— £, is an Q-lense. Indeed:
1-6<FFE <1+0;

|du Y| = |def<|o(y) < |duf¥| < &
—6y < min(yd, f¥,0) < yd, F* < 1/2|f% —1 46| < 4.

We also have lim, o FX(y,x) = f¥(y,z) for all (y,z) € U. The statement now follows.

7.5.7 Proper direct image

let f: X — Y be a proper map of smooth manifolds. Let F' € sh.(X,C) and SSF C T. Let
f(T) € T*Y x R be the set consisting of all points (z,w,t), where there exists a y € p~!z such that
(y, ffw,t) € T.

Proposition 7.11 We have SSfiF C f(T).

7.5.8 Direct image along R"

Let p: X XxR™ — X be the projection. Let F' € sh.(X xR™) and let SSF C T' C T*X x T*R™ x R. Let
P:T"X xT*R" xR — T*X x (R™)* x R be the projection and let [ : T*X xR — T*X x (R")* xR

be the embedding onto 7*X x 0 x R. Let f(T) := I"'P(T).

Proposition 7.12 We have SSF C f(T).
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7.5.9

Let X be a smooth manifold with a marked point xzy. Let Sx C sh.(X) be the full sub-category
consisting of all objects F' such that SSF' C T*X x {0}.

We have functors sh.(X) 5 sh( X) 4 she (X)), where F(S) = S ept A>0; G(T) :=T X Ap>o.

Proposition 7.13 The functors F,G are mutually inverse equivalences of categories.

7.5.10

Let X be a simply-connected manifold with a marked point xg. Let Loc(X) C shy(X) be the full
sub-category consisting of all objects supported on 7% X x 0. Let const(X) be the full sub-category
consisting of all F' € const(X) satisfying F,, € A-mod C GZ.

Proposition 7.14 1) We have Hom(F,G) € GZ>o.

2) The through map
T<oHom(F,G) — Hom(F|z,; Glay)

s a homotopy equivalence.

7.5.11 Sheaves constant along R"

Let p: X x R™ — X be the projection. Let C C sh (X x R™) be the full sub-category of objects F,
where

SS(F) € T*X x TgaR™ x R.

Proposition 7.15 The category C consists of all objects F' homotopy equivalent to objects of the form
GXAgn, G € sh.(X).

7.5.12 Fourier transform

Let £ = R" with the standard euclidean pairing ¢ : £ x £ — R. Let F € shy(E x E), F = Ajpxg,¢)-
Let F' = Ajpxp,—gn].. Let R: T*E x R — T*E x R, where R(q,p,t) = (p¥,—¢,t + (p,q)), where
V: E* — FE is induced by the pairing. Let a : E — E be given by a(v) = —v.

Let F,F" : shy(E) — shy(E), F(GQ) := G % F; F{(G) := G g F'.

Proposition 7.16 1)We have a zig-zag termwise homotopy equivalences FF' ~ Id; F'F ~ Id; F' ~
a\F[—n];

2)8S(G +p F) C R(SS(G)).
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7.5.13 Fourier transform of convolution

Let E4, Ea, E5 be real vector spaces. Let K € sho(E1|Ey,C); L € she(Eq|Es,C). Let ag : Fy X E3 —
Ey x Es, az(v,w) = (—v,w).

Proposition 7.17 We have
F(K %, L) =~ FK * 33 agFL;

The proof is straightforward.
Let now K € sh.(E;|E2;C) and F € sh(Fs, C). Let a : E; — Ej be given by a(v) = —v.

Corollary 7.18 We have 1)
FK'F ~ a/(FK)'FF.

2) The natural map
((FK)'FF) %, FK — FF

is homopy equivalent to

((FK)'FF) #p: FK ~ afFK'F +p: FF ~ FK'F xp, K — FF.

Indeed, 1) follows from the above proposition and 2) follows from the fact that F is a homotopy
equivalence of categories, therefore preserves pairs of adjoint functors.

7.6 Comparison of the two inverse images

Let i : Y — X be a closed embedding. Let m = dimY; n+m = dim X. Let F € sh.(X). Set
Dy :=i'Ax. We have a natural map 1Dy — Ax. Let Ax : X — X x X be the diagonal embediding.
We have an induced map Axi1i1 Dy — AiAx. We now have an induced map

F *x A!igDy — F *x A!AX ~ F.
Let 0 : Y — X XY be the diagonal embedding. We have
Wl xx 6Dy ~ F xx AyiyDy,

whence induced maps
iIF XX (5!Dy — F;

F xx 6Dy — i'F. (35)
7.6.1 Theorem: formulation

Let U C T*X xR be a conic open subset containing 7y- X x R, where conic means stable under positive
dilation of fibers of the bundle 7*X x R — X x R.

Theorem 7.19 Suppose SS(F)NU C T*X xR is proper over X xR. Then the map (35) is a homotopy
equivalence.

The rest of the subsection is devoted to the proof.
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7.6.2 Reduction to the flat case

The statement is local in Y. Let ¢y € Y. Choose a pre-compact neighborhood V' of yg endowed with
a diffeomorphism ¢ : V = B, x B,, C R® x R™, where B,, C R" is the unit ball centered at 0 and
#(Y NV) =0 x By,. We have an identification T*X |y = U x R™ x R™. It follows that there exist an
open cone C' C R” x R™ | C D R™ x 0, and a compact subset K C R” x R™ such that

dpUNT*V xR) DV xC xR

and
SS(F)NT*V xC)CT*V x K.

One can choose diffeomorphisms h : R™ 2 intB,; h,, : R™ 2 intB,, and an open cone A C R” x R™,
R™ x 0 C A, satisfying: (h, X hy)*(intB, x intB,, x C) D R x R™ x A, where (h, X hy)* :
T*(intB,, x intB,,,) — T*(R™ x R™) is the induced map.

3) The problem reduces to the case X = R®* x R™, Y = 0 x R™, SSFNR™ x R™ x A is compact, where
A C R™ x R™ is an open cone, 0 x R™ C A.

Let (x,y) be local coordinates on R™ x R™. Let (x,w,y,n) be coordinates on T*(R™ x R™). There
exists a C' > 0 such that
A D {(w, )]0 < Clnl < |wl}-

There exists a D > 0 such that F' is non-singular on the set
{(z,w,y,n)[max(D, Cln]) < |w|}.
Denote H := {(w,n)|n # 0;max(D, C|n|) < w}. Let
¥ :=R"xR™\H,
% ={(w,n)l gl <max(D,Cln)}

7.6.3 Applying the Fourier tranform

Let us apply Fourier transform (7.5.12).
1) We have FF is supported on 3.
2) The properties of Fourier transform imply that the map

Féy1Dy xx F — FF

is homotopy equivalent to the following map

Al{(@1y1.@2.92)ler=22},0) *RoxR™ FE = Aty g1 s ) 01 =22 51 =y2},0] ¥R xRm FE
which is homotopy equivalent to the natural map
p 'pFF — FF,
same as in Sec. 5.16.3. The map (35) is then equivalent to the induced map
pFF — p.FF.

which is a homotopy equivalence because p is proper on the support of FF.
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8 Action of Sp(2N)

Let G be the universal cover of Sp(2N). Let V = R2Y be the standard symplectic vector space with
the coordinates (¢, p) and let E = R" so that V = T*E. The group Sp(2N), hence G, acts on V.

8.1 Graph of the G-action on T*F

. Let a : T*"E — T*E be the antipode map (¢,p) — (¢q,—p). Let I' C G x V x V consist of all
points of the form {(g,v,gv?)| g € Sp(2N);v € V'}. It follows that there exists a unique Legendrian
sub-manifold £ C T*(G x E x E) x R which — diffeomorphically projects onto I" under the projection

T*(GxExE)xR—GxT*"(ExE)xR.

— contains all the points of the form (e, v,v%,0), where e is the unit of G and v € V.

Let C be the full sub-category of shoo (G X E x E) consisting of all objects F satisfying:

— there exists a homotopy equivalence F|c.xpxp ~ A[AE},Ov where Ag C E x FE is the diagonal.
— SS(F) C L.

We have a functor C — A-mod, F'+— F'[(g0,)
Theorem 8.1 This functor is a weak equivalence.

Sketch of the proof. Part 1: Let us construct at least one object S of C satisfying F'|g 0,0 = A.

1) For an open subset U C G, let Ly C T*(U x E x E) x R) be the restriction of £. Let Cyy be the
full sub-category of shy(U x E x E) consisting of all objects F' such that SS(F') C Ly and there exists
a homotopy equivalence F|cxpxp ~ A[A 2.0]-

2) Let U be a small enough geodesically convex neighborhood of unit in Sp(2/N) satisfying: for each
g € U we have: (q,p’) is a non-degenerate system of coordinates, where (¢',p") = g(q,p). U lifts
uniquely to G, to be denoted by the same letter.

3) We will freely use the notation from Sec. 7.5.12. Let
R :T"EXT*ExR—T'ExT*E xR,
be defined by Rj(u1,us2,t) = (u1, R~ (u2,t)), where R as in Sec 7.5.12. Let Cj; C shy(U x E x E)
consist of all objects F' such that
— there exists a homotopy equivalence F|.xpxp ~ F'.
— SSF C Ry (EU)
It follows that the functor G +— G *g F induces a homotopy equivalence of categories Cj; — Cy.

4) The Legendrian manifold R1Ly C T*(G x E x E) x R projects uniquely onto the base G X E x E,
therefore, R1Ly is of the form Ly for some smooth function f on G x E x E.

Let A C shy(G x E x E) be the full sub-category of objects F' satisfying:
— SS(F) C T}y pypU X Ex E x0;
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— there exists a homotopy equivalence F|expxp ~ ApxE-
It follows that A is the category consisting of all objects homotopy equivalent to Ay gx g o-

According to Sec. 7.4.2, the convolution with Aa, ; gives a homotopy equivalence of categories
A— (.

Fix an object Sy € Cyy along with a homotopy equivalence

SuloxExE ~ Ajag,0-

5) For h € L{, set Sh = Su|h><E><E- EVery g = G can be written as g =9192 " Gn, where 91,9;1 cu.
Set 591,...,gn = Sgl *g Sg2 Xp oo Xp S -

For each g, choose an object Sy which is homotopy equivalent to one of Sy, ... 4, %Sy for g1--- g, = g.
Observe that the objects S, ... g, and Sy where g1 -+ gn = g} - - - g}, = g are homotopy equivalent.
It suffices to show that

/
7"'797717

S

G120 g (g) =L ()L ™ Aag,0]

that is Sy, gy-..g, = Aap,0 Whenever gigs---g, = e. As U is geodesically closed, there is a unique
shortest geodesic line joining g; - - - gr and g; - - - gx+1. We will thus get a broken geodesic line starting
and terminating at e. As G is simply connected, this line can be contracted to a point. By possibly
adding intermediate points, one can reduce the problem to the case when there exist smooth paths
hi : [0,1] — U such that hi(t)--- hy(t) =€, h(1) = e, hg(0) = g, for all k. Let Si € sh([0,1] x E x E),
S = h;lSu. Consider

Y:=S1%p Soxp - xg Sy €shy(I" X E X E)|a,xExE,

where Ay C I"™ is the diagonal.
It follows that
YixExE ~ AAg s ZoxExE ~ Sgiga, gn-

Next, the singular support estimate shows that X is locally constant along Aj, which implies the
statement.

6) Choose a covering G = |J,, gnld. Let I € Covg be the poset consisting of all non-empty inter-
sections g;, U N ---g; U. Each element of I is geodesically convex. It follows that all the restictions
SgilU’giluﬁmﬁgikU are homotopy equivalent. Indeed, choose a point h € g;, U N --- N g;, U; 4) implies
that there is a homotopy equivalence of restrictions S ¢ZU| hx ExE With Sy,. The statement now follows
from 4).

For every Ae I, A= g;,UNg;,Ud N---Ng; U, choose an object Sy € C4 to be homotopy equivalent
to each of the restrictions SgilZ/{|A><E><E-

7) For each V € I let j : V — G be the embedding. Let Ty := jy1Sy.

8) Whenever A C B, A, B € I, we have a homotopy equivalence A ~ Hom(7'4,T5). Let rap : T4 — Tr
be the image of 1 € A.

9) We have rgcrap is homotopy equivalent to Expcrac for some Eqpo € A*.

10) Eapc is a 2-cocycle on I. Since H?(G,AX) = 0, Eapc is exact. Therefore, wlog we can assume
that Eapc = 1.
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11) Denote J (A, B) := 7<oHom(7T'4,Tg). We have a functor J — I which is a homotopy equivalence
of categories so that we have the constant functor Z : J°P — [°P — GZ, Z(A) = A for all A.

Finally, we set S:= Sg := 2 ®§op S.

Part 2. Uniqueness The convolution with S gives a pair of quasi-inverse maps between Cg and the
full sub-category of objects S € shy(G x E x E) with SSS C TG x T;(E x E) x {0}, where there
exists an isomorphism

S|e><E><E ~ A{(e,e,O)\eEE}'

The latter category, hence the initial one, satisfies Hom(F,G) € GZs>q for every pair of objects.
Passing to 7>( yields the statement.

8.1.1 The object S

Fix an object S € C endowed with a homotopy equivalence S| 0 — A.

9 Objects supported on a symplectic ball

9.1 Projector onto the ball

Let i : R/27Z — Sp(2N) be a one-parametric subgroup consisting of all transformations

q' = qcos(2a) + psin(2a);

/ p—

p' = —gsin(2a) + pcos(2a).

Let i : R — G be the lifting. Denote A := i(R). Let T &€ shy(A x E x E) be the restriction of S. The
object T is microsupported within the set

2 = SoU{(a, —(¢*+p%). ¢, —p, ¢, 0. —S(q,p,a))|(¢;p) € V;a € R,sin(2a) # 0} C T*AxT*ExT*ExR
(36)
where

1
Yo = {(mn, —(¢*+p*), ¢, —p, ¢, p,0)|(q,p) € V,n € A{(m(5+n); —(@*+p%), 4, —p, —q, —,0)|(q,p) € V,n € A};

cos(2a) (¢ + (¢')?) + 2q¢
2sin(2a) .

S(g,p,a) =
Let B = R with the coordinate b. Let pg : B X E x E — E X E be the projection. Set
Pr = pBIT *a4 A(ap)eaxBib<Rr2},—at) [1] € she(E x E).

Let
Ag<o :={(a,a)la <0} C Ax A.
We have
Pr ~paT *aAA,co,-aR?)>
where pg: A X E x E — E x E is the projection.
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9.1.1 The map o :7T_,z2Pr[2N] — Pr

We have a homotopy equivalence
T T|-2N|~T,

where T _ is the translation along A by —m units.

Thus, we have a map

Pr~pa((T2:T) ¥4 Ala, co—ar2)[=2N]) ~ pai(T * 4 Al(ay,a2)a2<0,a1=ap-+7},—azr2]) [~ 2N]
~ PAT *4 Aff(ar,a2)|a1 <miar—as},r R2—ay R2]) [~ 2N]
~ TrrepAl(T * 4 A{(ay,a9)|ar <miar—as},—ay B2]) [~ 2]
= TrrzPa(T * A Al(ar,a2)a1 <0:a1=as},—ay R2]) [~ 2N] ~ T g2 Pr[—2N].

This map can be rewritten as
a:T_ pPr[2N] — Pg.
9.1.2 Hom(T.Pg;Pr)
Let (v — 1)7R? < ¢ < v R?, where v € Z. Let G, := Hom(T,.Pr; Pr). Then

Ge~Z[-2Nv]ifv >0, G.=0ifv>0.

The natural map G, g2 — G, is a homotopy equivalence. The generator of G, g2, ¥ < 0 is given by
o™,

The map Pr — Aja 0] induces a homotopy equivalence

Hom (T Pr; Pr) — Hom(T:Pr; Aja . 0))-

9.1.3 Ppr is a projector

We have a natural map
pr: Pr — A[AE,O}’ (37)

Let Cr C shy(E) be the full subcategory of objects supported away from ER xR C T*E x R.

Let shq[j%R] C shy(E) be the left orthogonal complement to Cr. We have Pr xp F € shq[éR];
Cone Pr xg ' — F € Cg so that Pg gives a semi-orthogonal decomposition.

9.1.4 Generalization

Denote by sh [T*X x ]?} r X R] C she(X X E) be the left orthogonal complement to the full category

o
of objects supported away from T*X x Br x R. The convolution with Pgr gives a semi-orthogonal
decomposition.
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9.1.5 The object v = Conea
Let v := Cone a. We have

Y ~ T %4 A{(a1,a2)|a1=a2;— 7 R? <a, <0},—aR?]
We have a homotopy equivalence

E.:= Hom(T677 PR) = H0m<T07;A[AE,eo]>

We have
E. = (ConeGe — G._ p2|—2N])[—1],

where the map is incuced by the multiplication by «.
Therefore,
—E.=A[-2N -1],0 < c < R%
—F. = 0 otherwise.
9.1.6 Singular support of ~
We have

SST *4 Al{(a1,a9)|ar —az,—m R2<a1 <0}, —ar2] < {(a R*+k,q,—p,¢,p/,t—aR) €% -1 <a<0}US,
where ¥ is as in (36) and

S = {(=m, R* + k,q,—p,¢,p, —7R?)|k < —p> — ¢} U{(0, R* + k, ¢, —p, ¢, p, 0) |k < —p” — ¢*}.

Therefore, we have

$Sy C {(g, —p.d', V', —aR*=S(a,q,))[p*+4" = R* -7 < a < 0}U{(¢, —p,¢,p, —7R?)|¢’+p* < R’}
U {(q7 —-p,4,D, 0)’(12 +p2 S RZ}

It follows that 0 < —aR? — S(a,q,¢') < TR%if —7 < a < 0.

9.1.7 Singular support of P

Similarly, one can find

SSP C {(q,—p.d.p,—aR* — S(a,q,¢)|p* + ¢ = R*a < 0} U {(¢q,—p,q.p,0)|¢° + p* < R*}.
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9.1.8 Singular support of ConeP — Aja g

We have
Cone(P = Aja0) = PAT *4 Al{(a1,a9)|ar =as,a1<0},—a 2]
so that

SST *A Ajf(a1,a2)ar=az,a1<0},—aR?] C {(a,R* + k,q,—p,¢,p/;t — aR?) € %ja < 0} U S,
where ¥ is as in (36) and
S ={(0, R* + k. q, —p,q,p, 0) [k > —p* — ¢*}.
Therefore,

SS Cone(P — AaL.0)) C {(q, —p, .0/, —aR*~S(a,q,¢)|[p°+¢* = R*a < 0}U{(q, —p, 4. p,0)|l¢*+p* > R*}.

9.1.9 Corollaries

Corollary 9.1 We have
Cone(P — A[AE7O}) ° A[pt,c] ~ 0,

Cone(PX P — Alapxag,0) ® Apt,g = 0.

for all ¢ <0.
Corollary 9.2 Let F' € sh(E x E). Then the natural maps
Hom(Aapxag; F) = Hom(PXRP; F X Alpt,0));

Hom(Aapxag; F) = Hom(Torpey X y[—4N]; F K Apto))

are homotopy equivalences.

9.1.10 Convolution of v with itself
We have a homotopy equivalence
Vg Y ~ 7T _rpey[2N].
Denote by p : v *g v — v the projection.
We now have the following homotopy equivalence
Hom(Ty, Aa o) = Hom(Tey %5 7: Aja0))s

for all ¢ except those in (7R?, 27 R2].

In particular, for 0 < ¢ < 7R?, we have:

Hom(Tey *g v; Ajag,0) ~ A[-2N — 1J;
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For ¢ < 0, the above expresssion is homotopy equivalent to 0.
Let A € shy(pt); A = Cone(Ajp,—rr2) — Alpt,0))-

We have a chain of homotopy equivalences
Hom(v;Aa, K A) & Hom(y #5 v; Aa, B A) ~ A[—2N].
In particular, we have a homotopy equivalence
Hom(y, A X Ax,[2N]) ~ A.

Let
v:y— AKAA,[2N] (38)
be the generator.

One also has a map ¢ : AKX Ax, — ~ which has a homotopy unit property with respect to p, the
through map

Y~Aap ¥EY = AR AN By = Y xE Y =Y
is homotopy equivalent to the Identity.

The induced map
Hom(y, A K Ax,) — Hom(y,7) (39)

is a homotopy equivalence. The map v on the LHS corresponds to Id on the RHS.

9.1.11 Lemma on v X v

Consider the following maps

V&VVEVA&AAE&AXAAEHN]HA&AAEXAE[ZIN]; (40)
YRy L prly Bpyg Aay, 2 AR pAs, B pyd Aay[BN] — Aayxa,[4N]. (41)

Here the maps [z is obtained from u by conjugation. The last arrow is the generator of
Hom(pQ_SIAAE ® p1_41AAE; ArpxAg [ND
Lemma 9.3 The maps (40) and (41) are homotopy equivalent.

Sketch of the proof One reformulates the statement as follows:

By the conjugacy, the map v correponds to a homotopy equivalence
1A = yxpe Aagn o [1]
The problem reduces to showing that the map

A— A= (7&7)*E4AAXA[2H] — (’yxf}/)*E4A(’U1,UQ,’U3,’U4)€E4|U1:U4;’02:’U3 [n} ~ (7*E7)*E2AA [TL] — V*EZAA [n]
(42)
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is homotopy equivalent to
AN = A — v xp2 Aa[n]. (43)

According to Sec. 35 we have a homotopy equivalence,

7 *B, Aa[n] = Hom(Aa; 7).
The map & rewrites as &' : A — Hom(Aa;~y)] which produces a map e : A ® Ax — 7.
The map (42) rewrites as

A® A — Hom(Aa;v) ® Hom(Aa;v) — Hom(Aa; v *g v) — Hom(Aa; 7).

The map (43) rewrites as
A® A — A — Hom(Aa;7).

Homotopy equivalence of the two maps follows from the following maps being homotopy equivalent:
ARAA*g ARAA T yxpy — v

and
ARA—A—~.

The latter statement follows from Sec. 9.1.10.
9.1.12 + as an object of sh p2(E X E)

It follows that v is supported within the set F x E x [-wR?;0]. Therefore, v determines an object of
sh,p2(E x E), to be denoted by I'.

Using the bar-resolution for I' xg T, we see that it is glued of v xg A*E xg . We therefore have the
following homotopy equivalences (all the hom’s are in sh,p2(E X E):

Hom(T';Aa, ) & Hom(T %5 T; Aa, ) ~ A[—2N].

9.2 Study of the cateory sh,(F x E x E)[T*F x intBp x int B x R]
9.2.1 The category A;
Let I C R be an open subset. Denote by Aj the full sub-category of

shy(F x E x E)[T*F x intBg X intBr x R]
consisting of all objects X, where

SS(X)NT*F x intBg x intBr x I = ().
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9.2.2 Study of A, )

Let F' € A(a,oo)'

We have a natural map
F % (PR X PR) — (RSaF) * (PR X PR),

where R<, is as in the proof of Claim 7.5.
Lemma 9.4 The above map is a homotopy equivalence.
Sketch of the proof Equivalently, we are to show

(R>oF) * (Pr X Pg) ~ 0.

We have
hocolim,|, R~cF = R, F,

therefore, it suffices to show that
Ro.F x (PRX Pgr)~0, c¢>a.
As Ppg is supported within B x Bg x [0,00), we further reformulate:
(R>cF) * (PrX Pgr) ~ 0. (44)
Let us study SSR~.F. As F' € A;, F is non-singular on the set
Q{(f,m,v1, (1,02, G, t)| > a; |1, |va| < R}.

Let ¢{f*} be an Q%lense. According to (32), we have

(RscF)eAy~Ferc_Ay~FehA |

where /_, = {min(—c, f¥)}. This implies that R.F is non-singular on ©, which implies (44).

9.2.3 Study of A(_oo,a)
Lemma 9.5 Let I’ € A_oq)- Then 7<oF ~ 0.

Sketch of the proof It suffices to show that R<.F' ~ 0 for all ¢ < a. Similar to the previous Lemma,
we deduce that R<.F' is non-singular on the set

T*F x intBr x intBr x R.

Next, we have homotopy equivalences
R~ R<.(F % (PR X PR)) = R<c(R<.F % (Pr ¥ Pg)) ~ 0.

This proves the statement.
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9.2.4 Study of Ar\,

Let bp C E be the open ball of radius R centered at 0. We have functors
(e Sh(F X b X bR) — AR\a,

where

a(S) = (SgA[pt,a]) * (PR & PR);
ﬂ : -AR\a — Sh(F X bR X bR),
B(T) :TOAptﬂ.

Proposition 9.6 The functors «, 8 establish homotopy inverse homotopy equivalences of categories.

Sketch of the proof Let S € Ag\,. According to the two previous subsections we have homotopy
equivalences:

S ~ RSaS * (PR X PR) ~ (TzaRgaS) * (PR X PR) ] ((S .Atza) &A[pt,a}) * (PR X PR),

which implies the statement.

9.2.5 SS(a(F))

Proposition 9.7 Let C' be a closed conic subset of T*F x T*bg x T*bg. F € Ar\, and suppose
SS(F)NT*F x Bgr x Bg x a C C. Then SS(a(F) X Aptq) C C X a.

9.2.6 The category Ag\,a

Let « : B — Bp be the antipode map, a(q,p) = (¢, —p). Let
A% = {(a(v),v)|v € int Bg} C intBr X intBp.
Let Ar\q,a C Ag)\q be the full sub-category of objects X where
SS(X)NT*F x intBr X intBp x R C T F X Tha(intBr X int Bg) X a.
Let Ap C sh(F x bg x br) be the full sub-category of objects T" where
SS(T' W Apeq)) C T,’}XAbR(F X bp X bp X a). (45)

According to the previous subsection, we have a homotopy equivalence

B:Ar = ARaa-
Furthermore, let Loc(F) C sh(F') be the full sub-category of objects T' where

SS(T R Apt ) C TrF x a.

Let v : Loc(F) — Ap be given by

Y(S) =S NWAa,,-
Lemma 9.8 ~ is a homotopy equivalence of categories.

Therefore,

Proposition 9.9 the functor ¢ := v : Loc(F) = Ag\q,a is a homotopy equivalence of categories.
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9.2.7 The category Cr

Let shy(F x R" x R")[T*F x int Bg x T*R™ x R] be the full sub-category of shy(F x R™ x R") consisting
of all objects F' which are left orthogonal to all objects non-singular on T*F x int Bg x T*R"™ x R,
same as in Sec 9.1.4.

Below we will study the full sub-category
Cz Cshy(F x R" x R")[T*F x intBr x T*R" x R]

consisting of all objects T satisfying SS(T) N T*F x intBr x T*R™ x R C L.

9.2.8 Main Theorem

Let Ar be a category as in (45).

Theorem 9.10 We have a homotopy equivalence between the categories Cz and Ap.
The proof of this theorem occupies the rest of the subsection.

1) Extend I to F' x [—1,1] x Bp as follows. For t € [-1,1]\0, set

I(f,tl‘)-[(f,())

; + I(f,0).

J(f,t,x) =

This map extends uniquely to a smooth map J : F' x [—1,1] x B — T*R"™. The grading of I extends
uniquely to a grading J of J.

Let K = J|pxo. It follows that K is a family of linear symplectomorphisms of T*R" restricted to Bp.
The grading J determines uniquely a map

p: F — Sp(2N) x R. (46)

/ t). Let H(f,t)

be a smooth function on B correpsonding to this vector field and satisfying H ;) (0) = 0. It follows
that H : ' x I x Bp — R is a smooth function. It extends to a smooth function on F' x I x T*E
whose support projects properly onto F' x I.

2) For every (f,t) € F x Br we have a Hamiltonian vecor field on Bg, namely

3) Let x : R — [—1,1] be a non-decreasing smooth function such that x(t) = —1 for all t < —1,
x(t) =1 for all t > 1, and x(0) = 0. Let K(f,t) = J(f,x(t)) and h(f,t,v) = H(f,x(t),v)x (t) so

dK(f,t
that h(f,t,—) is the Hamiltonian function of the vector field (‘tf’) It follows that there exists a

unique family of symplectomorphisms M : F x R x E — FE such that

a) M|pxo is the family of linear symplectomorphisms coinciding with J|pxo = Kpxo;

dM(f,t
b) dM(f,t) is the Hamiltonian vector field of A(f,t, —).
dt

It also follows that M|pxrx B, = K

4) The family M defines a Legendrian sub-manifold £y C T*(F x E x E x R) such that £y NT*F X
BRXT*EXRZ,CK.
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5) According to the theorem of Guillermou-Kaschiwara-Schapira, there exists a quantization of Ly;:
an object Q € shy(F x E x E) such that SSQ C L and Qli—o = 1S, where p is as in (46).

6) Similarly, one defines a quantization @’ of the family M ! of inverse symplectomorphisms.

NNLet A:FxEXE— FxIxFxIxE xFE be the following embedding

A(f,Ul,UQ) = (f: 17f> 17”17”2)-

We have endofunctors
S Sxpxp AIQ; S Sxpyp AQ

of shy(F x E x E) which descends to homotopy inverse homotopy equivalences between Co and Cy,
where O : F x Br — Br — F is the constant family, where ¢ is the standard embedding.

By definition, Co = Ag\p,a- By Proposition 9.9 we have a homotopy equivalence ¢ : Loc(F) — Co.
We thus have constructed a zig-zag homotopy equivalence between Loc(F') and C;. Denote by Pr € C;
the object corresponding to Ap € Loc(F).

9.2.9 Inverse functor

We have Py € shy(F x br x E).

Let I' : F x B — T*E be given by I'(f,v) = al(f,a(v)), where « : T*E — T*E, a(q,p) = a(q, —p).
Let Qr := 1Py € shy(F X E x bgr), where 0 : bgp x E — E X bp is the permutation.

Let Ap : FF— F x F be the diagonal embedding.

Proposition 9.11 We have

Qr*pxp ApPr =~ Ap K Pg € Shq(F X bp X bR).

9.2.10

Let m : T*F — F be the projection. Let Gy C T*F x T*E be an open subset defined as follows
Gr={(¢,v)|v € I(n(f) x int Br)}.

Let us also define functors

P :shy(F x b)[T*F x int Bg] — shy(F x E)[G1]; Q:shy(F x E)[Gr] = shq(F x bg)[T*F x intBg],

where
P(S) = S *pxpp ArPr; Q(T) =T *pxe ApQr.

Proposition 9.12 The functors P,Q establish homotopy mutually inverse homotopy equivalences be-
tween the categories shy(F x br)[T*F x int Bg| and shy(F x E)[Gy].
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9.2.11 Lemma on P;, Oy

We abbeviate P := Py, Q := Q.

We have natural maps
Qa AEI(Q Obg P) = Arxagy:

B AEI(P op Q) — AFXAE-
We therefore have a pair of induced maps

Idoa,Bold:Pog Qog P — P. (47)

which are homotopy equivalent and likewise for the pair:

a0 Arxay,Arxayldo: QoPoQ — Q. (48)

One gets the following corollary from (47), (48).

A. Let
p,p2: FXEXEXEXE—>FXxEXE

be projections, where

pi(¢,e1, f1,e2, f2) = (b, €, fi).
The maps «, 8 induce, by the conjugacy, maps
A:pi'PRpyt = Q= Agjy—eny [IN];
B:piQ@py' =P = A —e,y[N].
Let p;'- 1 (F x (E x E)})? - F x E x E be projections, where
PN L b T 26 ) = (61, ).
We have the following maps

_ _ _ _ AXB
A (p%) 'p ® (p%) 1Q & (p%) 'p ® (p%) IQ — A{f1:ez,61:f27f3:e4,63:f4}[2N]

- A{f1=627€1=f2=€3=f47f3=e4} [2N]

_ — _ _ AXB
B:(p) P @) Q® ()P @ (03) QT A cgnfimenser=fu,fames o=z} [2IV]
= Al fi=es,e1=f1, fames,ca=fs} 2V ][2IN]

We also have a map

0: A{f1:€27€1=f2:€3=f4,f3=€4}[2N] - A{fl264761:f4,f2=€3,€2=f3}[2N] [2N]
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As follows from (?7), we have a homotopy equivalence:

B ~ JA.

This can be rewritten as follows: we have an object
Por Qopxp Por Q € shy(EP)
The map A induces a map
A:Pop QopxpPor Q — Aci—cqer=es,ea=es [ —3N];
The map B induces a map
B:PopQopxpPor Q— Acj=cger=es,ea=es[—2N]

we also have a map

01 1 Acy=eq ea=es,cames > Aer=eg ea=es,es=es V]
and we have a homotopy equivalence
B~ 81 A. (49)
Let v € sh g2 (E X E) and 7 — Ac =, ® A[2N]. be as in Sec. 9.1.5.
Let F € shp2(E X E) be such that SSF C V x V.
We then have the following maps

Por Qopyxp Por Qops (P37 ® piay ®pigF)

~ A61166,€2:€3,64:es [_3N] Ops (p2_31’)/ ® p2517 ® pl_Glf)
~A® (Ae1:ea OFExE f)[—?)N + 4N — 2]\7] (50)

Pop Qopxp Por Qogs (pa3 ¥ ® pigy @ prg F)
:> A€1:667€2:€5153:e4 [_QN] Ofs (p2_31'7 ® pZE)lV ® pl_ﬁl"r)
— A€1:64,€2:€3 Op4 (p2_317 ®p1_41‘7)[_2N]
— Agi_ga op2 (F)[-2N +2N — N] (51)
As follows from (49) and Sec 9.1.11

Lemma 9.13 the maps (50) and (51) are homotopy equivalent.

9.3 Pair of consequitive families

Let u: F x B, — Br, v : F x B = FE be graded families of symplectic embeddings. Let w :
F x B, — E be defined by w(f,b) = v(f,u(f,b)). The gradings define liftings g, : F' x B, — Sp(2N);
gv : F' x Br — Sp(2N) of the corresponding differential maps.

Let g : F x B, — Sp(2N) be given by g, (f,b) = go(f,u(f,b))gu(f,b). It follows that g, lifts the
differential map F' X B, — E determined by w. Therefore, g,, is a grading of w.
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Proposition 9.14 We have a homotopy equivalence P, o Py = Py,.

Sketch of the proof As above, let us extend the family v to a family
ve: Fx[-1,1] x Bg —» E,

where
U(f7 tb) B U(fv 0)

Ut(fvt)b) = t

+v(f,0).

Let wy : F x [—=1,1] X B, — E, where w(f,t,b) = v.(f,t,u(f,b)). The gradings from v and w extend
to v, wy. We will show that there exists a homotopy equivalence

Py, 0Py = Py, (52)

Restriction to ¢ = 1 will then show the Proposition.

To show the existence of (52), it suffices to establish the homotopy equivalence of the restriction to
t = 0. Observe that vy comes from a family of linear symplectomorphisms F' — Sp(2N) whose grading
defines a lifting Vg : ' — Sp(2N). Let V € shoo(F x xE x E) be the corresponding object. We have
a homotopy equivalence

Py 0Py ~VoP,

so the problem reduces to establishing a homotopy equivalence V o P, = Py,

In a similar way (via considering the family w;), one reduces the problem to the case when the family
w is linear. The grading then defines an object U € shoo(F' X E X E). Similarly, the linear family vgu,
along with its grading, defines an object W € shoo(F x E X E).

Next, we have homotopy equivalences U o Pg_ = P,; W oPg_ = P, so that the problem reduces to
establishing a homotopy equivalence
VoUSW,

which follows from Sec 8.

9.4 Mobile families
9.4.1 Definition

Let U C T*E be an open subset let j : U — T*E be the corresponding open embedding. Let
I:U x Bgp — T*E be a family of symplectic embeddings, where we assume I|yxo = j.

The family I defines a Lagrangian sub-manifold
L; CT'U x intBr x T*E.

Set F = E @ E*.

We have a natural identification T*U = U x F. For each £ € U let L¢ := TgU XintBr x T*ENL; C
F xintBr x T*E. Let P; C F' x int B be the image of L¢ under the projection along T*E Call I
mobile if for every &, P is a graph of an embedding intBr — F'.
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9.4.2 Main proposition

We have objects Pr, Qr € shy(U x E x E). Let p1,ps : U Xx Ex ExExE — U x E x E be the
projections
pi(u, et f1,e2, f2) = (u,e1, f1);  p2(u,e1, f1,e2, f2) = (u, ez, fo).

Consider
Ry :=p;'Prop;'Qr.

Let i : B3 — E*p: E3 — E? be given by i(a,b,c) = (a,b,b,c); p(a,b,c) = (a,c). According to the
previous subsection, we have a map

pi 'Rp — A xA g0

where Ap C F x E is the diagonal.

By the conjugacy, we have a map
RI — A[UXA14><A23,O] [N]’

where N = dim F which, in turn, gives rise to a map
a 7TU1R[ — A[A14><A23,0}[_N]7

where 7y : U x E* — E* is the projection along U.
Let V C U be an open subset satisfying: for every u € U, if I(u x BR) NV # 0, then I(u x Bg) C U.
Let p; : T*E* — T*FE be the projections i = 1,2, 3,4. Let Dij = Di X Pj T*E* — T*E?.

Proposition 9.15 Let A, B € shy(E x E) and assume that SSA C Bgr X Br x R; SSB C V.. Then
H := (Cone ) #ps (pgz Ao py B) ~ 0.

Sketch of the proof. Let us define a family of symplectic embeddings
J:Ux(-1,1) x B = T*E
by means of dilations, same as above. One then defines an object w1 Ry € shy((—1,1) x E*), a map

g TRy = A1) x A xAss,0 [— N

and an object
Hj := (Coneay) #p1 (py3 A® pyy B) € shy((~1,1)).

Singular support estimate (see below) shows that

SSH; C T} I x R.

Therefore, it suffices to show that Hy|p ~ 0, in other words, the problem reduces to the case when I
is a family of linear symplectic embeddings. The latter case can be reduced to the case when every
embedding is a parallel transfer which is straightforward.
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Estimate of SSH ;. It suffices to show that
SS(mnRyxpe (AKX B)) C T(*_Ll)(—l, 1).

Let us identify
T*(UxRx EY) xR= (U xR) x (F®R) x F* xR.

We have

SS(RJ) C {(7-7 77J(7'; Ul) - 77J(T7 1}2),7)(11,1](7, U1)7vga J('UQ))|T e U x R7vi € F7 ‘U’L‘ < R} x R
UA{(7, ¢, v1, wi, v, w2) o], |v2] < Rymax(|vil, [va2]) = R} x R.

Consider now SS(Rj *xgxg A). As SS(A) C {(v1,v2)l||v1], |v2] < R}, it follows that
SS(Ry *xpxe A) C{(7,05(7,01) =0y (7, 02), J (7, 01), J (7, 02))[[0n], |v2] < R} X R.

Let us estimate
SS((RJ XExE A) *ExE B)

It follows that there exists a compact subset K C U such that

SS((Ry *xpxg A) xpxe B) C {(t,n;(1,v1) — ns(1,v2))|T € K x (—=1,1),|v1|, |v2] < R} x R.

Namely, one can choose K = {u € U|I(u, Bg) NV # 0}.

Let now 7 = (u,x) € U x (—1,1). We have n;(r,v) € F &R. Let f(7,v) be the F-component and
x(7,v) be the R-component. Let us now estimate

SS(mn(Ry *xpa (AKX B))).

As 7y is proper on the support of Ry xpa (AKX B), the singular support in question is determined by
the condition f(7,v1) — f(7,v2) = 0. As the family I is mobile, this condition implies v; = vy, which
implies n(7,v1) — ns(7,v2) = 0 and

10 Tree operads and multi-categories

10.1 Planar/cyclic trees

Let us introduce a notation for a tree t. Denote by inp(t) the set of inputs of t, V4 the set of inner
vertices of t, for v € V4, denote by FE, the set of inputs of v. Let py be the principal vertex of t.

10.1.1 Planar trees

Define a planar tree as a tree with a total order on every set E,; we then have an induced total order
on inp(t).

We have a unique identification of ordered sets E, = {1,2,...,n,}, where n, = #FE,; inp, =
{1,2,...,n¢}, where ny = #inp;.
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10.1.2 Cyclic trees

Define a cyclic tree as a tree with a total order on every set F,, v # pt, and a cylic order on pg. We
then have an induced cycic order on inpy, in particular, we assume inpp; 7# 0.

A rigid cyclic tree s a cyclic tree along with identifications Ep, = {1,2,...,n,}; inp,, = {1,2,...,n¢}
which agree with the cyclic order on both sets.

10.1.3 Inserting trees into a tree

Let t be a planar tree. Let t,, v € V; be planar trees where ng, = n,. One then can insert the trees
t, into t. Denote the resulting tree by t{t,},ecv;.

Similarly, let t be a rigid cyclic tree. Let t,, v € V;\p¢ be planar trees with ng, = n,; let t,, be a rigid
cyclic tree with ng,, = np,. One then can define a similar insertion, to be denoted by t{t, }vev; -

10.1.4 Isomorphism classes of trees

Let trees be the set of isomorphism classes of planar trees and trees®° be the set of isomorphism
classes of rigid cyclic trees. Let A be a SMC enriched over ground. 7 (A) be the ground-category
of all families of objects in A parameterized by trees LI cyctrees.

Let also trees, C trees be the subset consisting of all isomorphism classes of trees with ny = n and
likewies for cyctrees,. The above defined insertions are defined on the level of isomorphism classes.

10.1.5 Famililes parameterized by isomorphism classes of trees

Let A be a @-closed SMC. Let T (A) be a category, enriched over sets, whose every object is a family
of objects Xt € A, t € treeslUcyctrees. Let X, Y € T(A). Let us define a new family X oY € T (A)

as follows:
XoY(T)= P Xt QY(t).
T:t{tv}vevt veVy

This way, 7 (A) becomes a monoidal category. The unit object unit € 7(A) is defined by setting
unit(t) = unit4 for all isomorphism classes of planar trees with one vertex (corollas) and all iso-
morphism classes t of rigid cyclic trees with one vertex and matching numberings of E, and inpy.
Otherwise, unit(t) = 0.

10.2 Collections of functors

Let C be a GZ-category tensored over A.

Let us define a category over Sets, F(C), as follows

F(C) = H swell(C" @ C°P) x H c"
n=0 n=1

94



so that an object F' € F(C) is a collection of objects F[" € swell(C®" @ C°P), n > 0, and F™ ¢
swell(C®"), n > 1.

Let t be a planar tree. Define an object

F(t) € swell(C®™ @ C°P).

A) Let h: C°P ® C — ground be the hom functor.

B) We have an equivalence of categories

®(C®n” Q Cop) ~ ® CoCP | ® (C®nt ® Cop),

veWg veVi\pt

coming from the bijection

| | Bo = Vi Uinp,\p.
vEVR

which associates to an edge its target.

As a result we have a through map

ot : ® swell(C®™ ® C°P) — swell ® CRCP | ® (C®™ @ C°P) — swell(C®™ @ C°P).
veVy vEVE\pt

C) Set F(t) := ot( Q Flml,
veVy

Let now t be a rigid cyclic tree. Define a functor F'(t) € swell(C™) in a similar way. Let

o : &My @ ® (C@nv ® COP) — oot
vEVE\pe

be defined similar to above and set

F(t) := Ot(F(npt) ® ® Flno]
veV\pe

10.3 Schur functors

Suppose C is tensored over A. Let X € T(A) and F € F(C). Define an object Sx(F) € F(C) as

follows
sx()M= P tF); sx(P)W= P &)

tetrees, tecyctrees,,

We have natural isomorphisms
SxSyF = SxoyF; Sunitl = F.

In fact, we have a T (A)-action on F(C).
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10.4 Tree operads

A tree operad in T (A) is the same as a unital monoid in T (A).

10.4.1 A tree operad triv

Let triv € T (A) be given by triv(t) = unit 4 for all t.

10.4.2 Endomorphism tree operad

Let C be enriched and tensored over A. Let F,G € F(C). Consider a functor Hpg : T (swell A) —
Sets,
HR(;(X) = Hom(SXF; G)

The functor Hp g is representable. Denote the representing object by Hp . We have (t is planar):
HF7G(t) = Homsweu(C@;nt@Cop) (F(t), G[nt})’
if t is a rigid cyclic tree, we have:
HF,G(t) = 7H0mswellc®”t (F(t)7 G(nt))

Set Endr := Hpr. We have a natural tree operad structure on Endp. Furthermore, we have an
Endp — Endg-bi-module structure on Hp g (where we interpret tree operads Endp, Endg as monoids

in T (swell A).

10.4.3 Quasi-contracible tree operads

Let now A = pt so that swell A = GZ. Call a tree operad O € T(GZ) pseudo-contractible if

1) O(t) € GZ admits a truncation for every O(t). We therefore have an induced tree operad structure
on 7<0O and a map of tree operads T<oO — O.

2) Every object T<0O admits a trunctation T>o, to be denoted H°O(t) which is a finitely generated
free A-module; we have an induced map of tree operads T<o©O — H°O. We require this map to be a
term-wise homotopy equivalence.

A quasi-contractible tree operad is a pseudo-contractible operad O endowed with a map of tree operads
triv — HY(0).

In this case there exists a splitting of the map T<oO(t) — HO(t), hence a pull-back of the diagram
triv — H°(0) < 700,
to be denoted by trivp so that we have a diagram
triv < trivp — O.

Let 01,04 be quasi-contractible operads and M a O — Os-bi-module. Call M pseudo-contractible
if there exist truncations T<oM(t) and T>oT<oM(t) =1 HOM(t), where each HOM(t) is a finitely
generated free A-module.
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A quasi-contractible @7 — Os-bi-module M is a pseudo-contractible @1 — Os-bi-module M endowed
with a map
(triv, triv, triv) — (H°Oy, HOM, H°0,)

of triples: a pair of tree-operads and their bi-module.

Similar to above, we have a pull-back of the diagram
(triv, tI‘iV, tI‘iV) — (Tgool, TSQM, TSOOQ) — (HOOl, HOM, HOOQ),
to be denoted by (trive,, trivag; trive,) so that we have a diagram

(triv, triv, triv) < (trive,, trivy, trive,) — (01, M, O3).

10.5 Pull backs from F(D) to F(C)

Let A have internal hom. Let C, D be categories enriched over A. Let G € F(D). Let L € swell(C°P®
D).

Consider the following functor H : F(C)°P — Sets as follows.

1) We have functors
er, 1 C¥" ®CP @ (C°P @ D)®" — D" @ C°P,

via using the hom-functor C®" @ (C°P)®" — GZ, as well as
fr : D®" @ D°P @ C°P? @ D — D®" ® C°P.

via the hom functor D°P @ D — GZ.

Similarly, one defines a cyclic version:

1)
e C¥" @ (COP @ D)®" — D"
2) Set
H"(F) := Hom (e (F™ @ L& GM).
Set

H(F) =[] H#"(F) x [TE™(@F).

n>0 n>0
It follows that the functor H is representable. Denote the representing object by L~1G.
Let X € T(A). We have a natural map SyL™'G — L™!SxG.
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