

Microlocal Category

Dmitry Tamarkin

March 30, 2015

Contents

1 Closure of a dg-category	14
1.1 Generalities	14
1.1.1 dg-categories	14
1.1.2 Enriched categories	14
1.2 Various completions	14
1.3 Differential on an object	15
1.4 Kernels of projectors	15
1.4.1	15
1.5 Prefilters	15
1.5.1	15
1.5.2 Product of prefilters	16
1.5.3 Convolution of subsets	16
1.5.4 Properness	16
1.5.5 Prefilter hom	16
1.5.6 Dual prefilter	16
1.5.7 Cofilters	16
1.5.8 Formula for Hom	16
1.5.9 Product of cofilters	17
1.5.10 Families of cofilters	17
1.5.11 Product of \mathbb{A} -modules over a cofilter	17
1.6 Aggrandizement	18
1.6.1	18
1.7 Swell	19
1.7.1 Graded free \mathbb{A} -modules	19

1.7.2	Definition of swell	19
1.7.3	Properties	19
1.7.4	19
1.8	Contraction and Co-contraction of Kernels	19
1.8.1	Preliminaries	19
1.8.2	Contraction	20
1.8.3	Associativity	20
2	Category GZ	20
2.1	Explicit description of objects from GZ	20
2.2	Tensor product	20
2.3	Truncation	21
2.3.1	Categories GZ $_{\leq k}$, GZ $_{\geq k}$ etc.	21
2.3.2	Stupid truncation	21
2.3.3	The object X^k	21
2.3.4	Truncation	22
2.3.5	Lemma	22
2.3.6	Lemma	22
2.3.7	Lemma on stable truncation	23
2.3.8	Complexes of free modules	24
2.4	The category GZtrunc	24
2.4.1	The category contract	24
3	Filtered objects	25
3.1	Category filtC'	25
3.2	The category filtC	26
3.3	Filtered homotopy equivalences	26
3.3.1	Corollary	27
3.4	Derived Tensor product	27
3.4.1	Relative derived tensor product	27
3.4.2	27
3.5	Hocolim	27
3.6	Derived Hom	28
3.7	Holim	28
3.7.1	Homotopy stability	28

3.7.2	Functoriality	28
3.8	Filtered limits and colimits	28
3.8.1	Constant functor on a poset with the least element	29
3.8.2	Constant functor on a filtered poset	29
3.8.3	Reduction to the colimit over the set of all finite subsets	30
3.8.4	Nilpotent functors	31
3.9	Stability of a functor	31
3.9.1	Equivalent definition	32
3.9.2	32
3.9.3	32
3.9.4	32
4	Classical categories	32
4.1	Categories Q_ε, Q_∞	32
4.1.1	The category Q_ω	33
4.1.2	The regularized categories $\mathbf{R}_{1/2^n}, \mathbf{R}_\omega$	33
4.1.3	A Hopf algebra ℓ in \mathbf{R}_ω	33
4.1.4	ℓ -modules in \mathbf{R}_ω : the category \mathbf{R}_q	34
4.1.5	Tensor functor $\mathcal{Q}_\infty \rightarrow \mathbf{R}_q$	34
5	The category of sheaves	34
5.1	Pre-sheaves	35
5.2	Coverings	35
5.3	Various gluing conditions	35
5.3.1	Meyer-Vietoris Condition	35
5.3.2	Coverings	35
5.3.3	Finite covering condition	35
5.3.4	Direct limit condition	36
5.3.5	36
5.4	Definition of a sheaf	36
5.5	sections supported on a compact set	36
5.6	Representability	37
5.6.1	Finite coverings of K	37
5.6.2	A pre-sheaf $\mathbb{A}_{\mathcal{U}}$	37
5.6.3	Cap-product	37

5.6.4	Definition of \mathbb{A}'_K	37
5.6.5	Lemma	38
5.6.6	Proof that \mathbb{A}'_K belongs to $\text{sh}(X)$.	39
5.6.7	Lemma	43
5.6.8	Fundamental system of coverings	43
5.6.9	Definition of \mathbb{A}_K	44
5.6.10	Represenatability	44
5.6.11	The objects \mathbb{A}_K generate $\text{sh}(X)$	45
5.6.12	Meyer-Vietoris property of \mathbb{A}_K	46
5.7	Triangulations	47
5.7.1	Theorem on $\text{Hom}(\mathbb{A}_x; \mathbb{A}_y)$	48
5.8	Constructible subsets	48
5.8.1	Generalization	49
5.9	Base of topology	49
5.9.1	Product	50
5.9.2	Lemma	50
5.10	Convolution of kernels	50
5.11	Definition of \mathbb{A}_C , where C is a locally closed subset	50
5.11.1	One point compactification	50
5.11.2	Restriction of a sheaf onto an open subset	50
5.11.3	Definition of \mathbb{A}_C , C is closed	51
5.11.4	\mathbb{A}_C , general case.	51
5.12	Convolution with \mathbb{A}_C	51
5.12.1	Convolution with $U \in \text{psh}(X, Z)$	51
5.12.2	Convolution with \mathbb{A}_K	52
5.13	Direct image	52
5.13.1	Convolution with the constant sheaf on the diagonal	53
5.14	The inverse image functor	53
5.14.1		53
5.14.2	Inverse image under closed embedding	54
5.14.3	Direct image under closed embedding of \mathbb{A}_K	54
5.15	Convolutions of constant sheaves on simplices	54
5.15.1	Lemma	54
5.15.2	Corollary	55

5.16	Dualization of convolution	55
5.16.1	Projection along \mathbb{R}^n	57
5.16.2	Inverse image under closed embedding	58
5.16.3	Direct images under proper map	59
6	Quantum/Semi-classical sheaves	59
6.0.4	Definition of $\text{sh}_\varepsilon(X, C)$	59
6.0.5	The category $\text{sh}_\omega(X, C)$	60
6.0.6	A fully faithful embedding of $\text{sh}_\infty(X, C)$ into $\text{sh}(X \times \mathbb{R}, C)$	60
6.0.7	Objects in $\text{sh}_q(X)$	62
6.0.8	Object $\mathbb{A}_{[K, f]}$	62
6.0.9	Definition of $\mathbb{A}_{[K, f]}$	63
6.0.10	Functionality of $\mathbb{A}_{[K, f]}$	63
6.0.11	The functors $\text{red}_{\varepsilon_1 \varepsilon_2}$	64
6.0.12	Reduction of $\mathbb{A}_{[K, f]}$	64
6.0.13	The functor $\boxtimes : \text{sh}_\varepsilon(X, C) \otimes \text{sh}_\varepsilon(Y, C) \rightarrow \text{sh}_\varepsilon(X Y, C)$	64
6.0.14	Convolution	64
6.0.15	Convolution with the constant sheaf on a graph	64
6.0.16	Universal property of $\mathbb{A}_{[X, f]}$	66
7	Singular support	67
7.1	Lenses	67
7.1.1	67
7.1.2	The sheaf \mathbb{A}_ℓ	67
7.1.3	Sections of \mathbb{A}_ℓ	68
7.1.4	Fitlered colimits of \mathbb{A}_ℓ	68
7.1.5	Maximum of a pair of lenses	68
7.1.6	Infinite suprema of lenses	69
7.2	Localization of Ω	69
7.2.1	Convolution $\mathbb{A}_{[K, f]} \star \mathbb{A}_\ell$	70
7.3	Definition of Singular Support	70
7.3.1	Ω -stable objects	70
7.3.2	Definition of Singular Support	70
7.4	Properties of Singular support	70
7.4.1	Dual definition	70

7.4.2	Convolution with a graph	71
7.4.3	Variation of lenses	71
7.5	Singular support of $F \boxtimes G$	72
7.5.1	Singular support of $\mathbb{A}_{[X,f]}$	76
7.5.2	$\text{SSA}_{[\overline{U},0]}$, where U has a smooth boundary	76
7.5.3	$\text{SSA}_{[U,0]}$	77
7.5.4	Inverse image under closed embedding	77
7.5.5	Direct image under closed embedding	78
7.5.6	Direct image under open embedding	78
7.5.7	Proper direct image	79
7.5.8	Direct image along \mathbb{R}^n	79
7.5.9	80
7.5.10	80
7.5.11	Sheaves constant along \mathbb{R}^n	80
7.5.12	Fourier transform	80
7.5.13	Fourier transform of convolution	81
7.6	Comparison of the two inverse images	81
7.6.1	Theorem: formulation	81
7.6.2	Reduction to the flat case	82
7.6.3	Applying the Fourier transform	82
8	Action of $\text{Sp}(2N)$	83
8.1	Graph of the G -action on T^*E	83
8.1.1	The object \mathbb{S}	85
9	Objects supported on a symplectic ball	85
9.1	Projector onto the ball	85
9.1.1	The map $\alpha : T_{-\pi R^2} \mathcal{P}_R[2N] \rightarrow \mathcal{P}_R$	86
9.1.2	$\text{Hom}(T_c \mathcal{P}_R; \mathcal{P}_R)$	86
9.1.3	\mathcal{P}_R is a projector	86
9.1.4	Generalization	86
9.1.5	The object $\gamma = \text{Cone } \alpha$	87
9.1.6	Singular support of γ	87
9.1.7	Singular support of \mathcal{P}	87
9.1.8	Singular support of $\text{Cone } \mathcal{P} \rightarrow \mathbb{A}_{[\Delta_E,0]}$	88

9.1.9	Corollaries	88
9.1.10	Convolution of γ with itself	88
9.1.11	Lemma on $\nu \boxtimes \nu$	89
9.1.12	γ as an object of $\text{sh}_{\pi R^2}(E \times E)$	90
9.2	Study of the category $\text{sh}_q(F \times E \times E)[T^*F \times \text{int}B_R \times \text{int}B_R \times \mathbb{R}]$	90
9.2.1	The category \mathcal{A}_I	90
9.2.2	Study of $\mathcal{A}_{(a, \infty)}$	91
9.2.3	Study of $\mathcal{A}_{(-\infty, a)}$	91
9.2.4	Study of $\mathcal{A}_{\mathbb{R} \setminus a}$	92
9.2.5	$\text{SS}(\alpha(F))$	92
9.2.6	The category $\mathcal{A}_{\mathbb{R} \setminus a, \Delta}$	92
9.2.7	The category \mathcal{C}_I	93
9.2.8	Main Theorem	93
9.2.9	Inverse functor	94
9.2.10		94
9.2.11	Lemma on $\mathcal{P}_I, \mathcal{Q}_I$	95
9.3	Pair of consecutive families	96
9.4	Mobile families	97
9.4.1	Definition	97
9.4.2	Main proposition	98
10	Tree operads and multi-categories	99
10.1	Planar/cyclic trees	99
10.1.1	Planar trees	99
10.1.2	Cyclic trees	100
10.1.3	Inserting trees into a tree	100
10.1.4	Isomorphism classes of trees	100
10.1.5	Families parameterized by isomorphism classes of trees	100
10.2	Collections of functors	100
10.3	Schur functors	101
10.4	Tree operads	102
10.4.1	A tree operad triv	102
10.4.2	Endomorphism tree operad	102
10.4.3	Quasi-contracible tree operads	102
10.5	Pull backs from $\mathcal{F}(\mathcal{D})$ to $\mathcal{F}(\mathcal{C})$	103

PART 1: CATEGORIES

1 Closure of a dg-category

1.1 Generalities

1.1.1 dg-categories

By a *dg-category* we mean a category enriched over the category of complexes of \mathbb{A} -modules, where $\mathbb{A} = \mathbb{Z}$ or $\mathbb{A} = \mathbb{Q}$.

An arrow, or a morphism $f : X \rightarrow Y$ is a cocycle in $\text{Hom}^0(X, Y)$. We say that two arrows f, g are *homotopy equivalent*, and write $f \sim g$, if the cocycle $f - g$ is exact.

We say that $f : X \rightarrow Y$ is a *homotopy equivalence* if there exists $g : Y \rightarrow X$ such that $fg \sim \text{Id}_Y$ and $gf \sim \text{Id}_X$.

We say that an object X is *acyclic* if $0 \sim \text{Id}$ in $\text{Hom}(X, X)$.

1.1.2 Enriched categories

Let \mathcal{C}, \mathcal{D} be categories enriched over a SMC \mathcal{M} . Denote by $\mathcal{C} \otimes \mathcal{D}$ a category enriched over \mathcal{M} , where $\mathbf{Ob} \mathcal{C} \otimes \mathcal{D} = \mathbf{Ob} \mathcal{C} \times \mathbf{Ob} \mathcal{D}$ and $\text{Hom}(X_1, Y_1); (X_2, Y_2)) = \text{Hom}(X_1, X_2) \otimes \text{Hom}(Y_1, Y_2)$.

1.2 Various completions

We will now introduce several operations, namely: twisting the differential, adding a kernel of a projector, adding direct sums and direct products. We will end up with an operation **swell** so that $\text{swell}\mathcal{C}$ is closed under adding all the above listed objects.

1.3 Differential on an object

A *differential* on an object X of a dg-category \mathcal{C} is an element $D \in \text{Hom}^1(X, X)$ satisfying $dD + D^2 = 0$. Define a dg-category $D\mathcal{C}$ whose every object is a pair (X, D) , where $X \in \mathcal{C}$ and D is a differential on X ; we set

$$\text{Hom}((X, D_X), (Y, D_Y)) := (\text{Hom}(X, Y), D'),$$

where we introduce a new differential D' on $\text{Hom}(X, Y)$ as follows. Let $f \in \text{Hom}^n(X, Y)$; set:

$$D'f = df + D_Y f - (-1)^n f D_X$$

We have a natural functor $D\mathcal{C} \otimes D\mathcal{D} \rightarrow D(\mathcal{C} \otimes \mathcal{D})$. If \mathcal{C} is a SMC, then $D\mathcal{C}$ inherits the structure. If \mathcal{C} is enriched over an SMC \mathcal{M} , then $D\mathcal{C}$ is enriched over $D\mathcal{M}$. Call \mathcal{C} *D-closed* if the obvious functor $\mathcal{C} \rightarrow D\mathcal{C}$ is an equivalence of DG categories. The category $D\mathcal{C}$ is always *D-closed*.

1.4 Kernels of projectors

Let X be an object of \mathcal{C} . A *projector* is an element $P \in \text{Hom}^0(X, X)$ such that $dP = 0$ and $P^2 = P$. Define a dg-category $P\mathcal{C}$ whose every object is a pair (X, P_X) , where P_X is a projector on X . Set $\text{Hom}((X, P_X), (Y, P_Y))$ to be a sub-complex of $\text{Hom}(X, Y)$ consisting of all elements f satisfying $P_Y f = f = f P_X$.

We have a natural map $P\mathcal{C} \otimes P\mathcal{D} \rightarrow P(\mathcal{C} \otimes \mathcal{D})$. If \mathcal{C} is a SMC, then $P\mathcal{C}$ inherits the structure. If \mathcal{C} is enriched over an SMC \mathcal{M} , then $P\mathcal{C}$ is enriched over $P\mathcal{M}$. We call a dg-category P -closed if the obvious inclusion $\mathcal{C} \rightarrow P\mathcal{C}$ is an equivalence of categories. If \mathcal{C} is D -closed then so is $P\mathcal{C}$. Therefore, $P\mathcal{D}\mathcal{C}$ is both P -and D -closed.

1.4.1

Call a category $\oplus \prod$ -closed if all small direct products and direct sums exist in \mathcal{C} . It follows that $P\mathcal{D}\mathcal{C}$ is $\oplus \prod$ -closed if such is \mathcal{C} .

The goal of the subsequent subsection is to provide a tool for constructing $\oplus \prod$ -closed dg-categories.

1.5 Precofilters

Let S be a set. By definition, a *pre-cofilter* \mathcal{F} on S is a collection of subsets on S satisfying:

- if $X \in \mathcal{F}$ and $Y \subset X$, then $Y \in \mathcal{F}$;
- if $X_1, X_2 \in \mathcal{F}$, then so is $X_1 \cup X_2$.

1.5.1

Let P be any family of subsets of S . Let **precofilter**(P) be the smallest pre-cofilter containing P . We have: $U \in \text{precofilter}(P)$ iff U is contained in a finite union of subsets from P . We call **precofilter**(P) the pre-cofilter generated by P .

1.5.2 Product of precofilters

Let S_1, S_2 be sets and $\mathcal{F}_1, \mathcal{F}_2$ precofilters. Let $\mathcal{F}_1 \times \mathcal{F}_2$ be the pre-cofilter generated by all subsets $U_1 \times U_2 \subset S_1 \times S_2$, where $U_1 \in \mathcal{F}_1$ and $U_2 \in \mathcal{F}_2$.

Let $p_i : S_1 \times S_2 \rightarrow S_i$ be the projections. We see that $U \in \mathcal{F}_1 \times \mathcal{F}_2$ iff $p_i(U) \in \mathcal{F}_i$, $i = 1, 2$.

1.5.3 Convolution of subsets

Finally, for $E \subset S_1 \times S_2$ and $F \subset S_2 \times S_3$ we define $E \circ F \subset S_1 \times S_3$ to consist of all $(s_1, s_3) \in S_1 \times S_3$, where there exists $s_2 \in S_2$ such that $(s_1, s_2) \in E$ and $(s_2, s_3) \in F$.

If $U \subset S_1$, $V \subset S_1 \times S_2$, and $W \subset S_3$, we define $U \circ V \subset S_2$ and $V \circ W \subset S_1$ in a similar way.

1.5.4 Properness

As above, let $E \subset S_1 \times S_2$ and $F \subset S_2 \times S_3$. We say that the convolution $E \circ F$ is *proper* if for all $(s_1, s_3) \in S_1 \times S_3$, the set

$$\{s_2 \in S_2 \mid (s_1, s_2) \in E; (s_2, s_3) \in F\}$$

is finite.

1.5.5 Prefilter hom

Let \mathcal{F}_i be a cofilter on S_i , $i = 1, 2$. Define Hom($\mathcal{F}_1, \mathcal{F}_2$) on $S_1 \times S_2$ to consist of all $U \subset S_1 \times S_2$, where – for every $L \in \mathcal{F}_1$, $L \circ U \in \mathcal{F}_2$ and the convolution $L \circ U$ is proper.

1.5.6 Dual prefilter

Let \mathcal{F} be a pre-cofilter on S . Define a cofilter \mathcal{F}^\vee on S to consist of all subsets $U \subset S$, where $V \cap U$ is finite for every $V \in \mathcal{F}$.

We have $\mathcal{F}^\vee = \underline{\text{Hom}}(\mathcal{F}, \mathcal{T})$, where \mathcal{T} is a pre-cofilter on the one-element set consisting of all its subsets.

1.5.7 Cofilters

We have an inclusion $\mathcal{F} \subset (\mathcal{F}^\vee)^\vee$. Call \mathcal{F} a *cofilter* if this inclusion is an equality. Observe that any pre-cofilter of the form \mathcal{G}^\vee is a co-filter.

1.5.8 Formula for Hom

Let \mathcal{F}_i be pre-cofilters on S_i , \mathcal{F}_2 being a co-filter, we then have

$$\underline{\text{Hom}}(\mathcal{F}_1, \mathcal{F}_2) = (\mathcal{F}_1 \times \mathcal{F}_2^\vee)^\vee.$$

In particular, Hom($\mathcal{F}_1, \mathcal{F}_2$) is a co-filter.

1.5.9 Product of cofilters

Suppose that both \mathcal{F}_1 and \mathcal{F}_2 are cofilters. Then so is $\mathcal{F}_1 \times \mathcal{F}_2$.

Sketch of the proof. Denote by Π_k a co-filter on S_k consisting of all its subsets. Let also $p_k : S_1 \times S_2 \rightarrow S_1$ be the projection.

We have $(\mathcal{F}_1 \times \mathcal{F}_2)^\vee \supset (\mathcal{F}_1 \times \Pi_2)^\vee$. The latter cofilter consists of all subsets $\Sigma \subset S_1 \times S_2$ satisfying $p_1(\Sigma) \in \mathcal{F}_1^\vee$ and every fiber of the projection $p_1 : \Sigma \rightarrow S_1$ must be finite. It follows that $(\mathcal{F}_1 \times \Pi_2)^{\vee\vee} = \mathcal{F}_1 \times \Pi_2$. Indeed, if $X \subset S_1 \times S_2$ and $p_1(X) \notin \mathcal{F}_1$, then there exists a $Y \in \mathcal{F}_1^\vee$ such that $p_1(X) \cap Y = Z$ is infinite. Therefore, there exists a subset $W \subset X$ which is mapped bijectively onto Z via p_1 . It follows that $W \in (\mathcal{F}_1 \times \Pi_2)^\vee$ and $W \cap X$ is infinite.

Hence, $(\mathcal{F}_1 \times \mathcal{F}_2)^{\vee\vee} \subset \mathcal{F}_1 \times \Pi_2$. Similarly, $(\mathcal{F}_1 \times \mathcal{F}_2)^{\vee\vee} \subset \Pi_1 \times \mathcal{F}_2$, which implies

$$(\mathcal{F}_1 \times \mathcal{F}_2)^{\vee\vee} \subset \mathcal{F}_1 \times \Pi_2 \cap \Pi_1 \times \mathcal{F}_2 = \mathcal{F}_1 \times \mathcal{F}_2.$$

As $\mathcal{F}^{\vee\vee} \supset \mathcal{F}$ for any pre-cofilter \mathcal{F} , the statement follows.

1.5.10 Families of cofilters

Let $\pi : S \rightarrow T$ be a map of sets. Fix cofilters \mathcal{F} on T and \mathcal{F}_t on $S_t := \pi^{-1}t$, $t \in T$. Define a cofilter $\Phi := \prod_{t \in T}^{\mathcal{F}} \mathcal{F}_t$ to consist of all subsets $U \subset S$ such that $\pi(U) \in \mathcal{F}$ and $U \cap S_t \in \mathcal{F}_t$ for all $t \in T$.

Equivalently: given any $H \subset S$ such that $H \cap S_t \in \mathcal{F}_t^{\vee}$ and $\pi(H) \subset \mathcal{F}^{\vee}$, then $H \cap U$ is finite.

This implies:

$$\left(\prod_{t \in T}^{\mathcal{F}} \mathcal{F}_t \right)^{\vee} = \prod_{t \in T}^{\mathcal{F}^{\vee}} \mathcal{F}_t^{\vee}.$$

1.5.11 Product of \mathbb{A} -modules over a cofilter

Let S be a set and let X_s , $s \in S$ be a family of \mathbb{A} -modules. Let \mathcal{F} be a cofilter on S . Set

$$\prod_{s \in S}^{\mathcal{F}} X_s \subset \prod_{s \in S} X_s$$

to consist of all families $\{x_s\}_{s \in S}$ where the set $\{s \in S | x_s \neq 0\}$ belongs to \mathcal{F} . We have natural maps

$$\begin{aligned} \left(\prod_{s \in S}^{\mathcal{F}} X_s \right) \otimes \prod_{t \in T}^{\mathcal{G}} Y_t &\rightarrow \prod_{(s,t) \in S \times T}^{\mathcal{F} \times \mathcal{G}} X_s \otimes Y_t; \\ \prod_{(s,t) \in S \times T}^{\underline{\text{Hom}}(\mathcal{F}, \mathcal{G})} \text{Hom}(X_s, Y_t) &\rightarrow \text{Hom} \left(\prod_{s \in S}^{\mathcal{F}} X_s; \prod_{t \in T, \mathcal{G}} Y_t \right). \end{aligned}$$

1.6 Aggrandizement

Let \mathcal{C} be a category enriched over the category of \mathbb{A} -modules. Let us define a new category $\text{agg } \mathcal{C}$ enriched over the same category as follows.

- Objects of $\text{agg } \mathcal{C}$ are of the form $(S, \mathcal{F}, \{X_s\}_{s \in S})$, where S is a set, \mathcal{F} is a cofilter on S , and $X_s \in \mathcal{C}$, $s \in S$.
- Let $\mathcal{X}_i := (S_i, \mathcal{F}_i, \{(X_i)_s\}_{s \in S})$, $i = 1, 2$. Set

$$\text{Hom}_{\text{agg } \mathcal{C}}(\mathcal{X}_1, \mathcal{X}_2) := \prod_{(s_1, s_2) \in S_1 \times S_2}^{\underline{\text{Hom}}(\mathcal{F}_1, \mathcal{F}_2)} \text{Hom}(X_{s_1}, X_{s_2}).$$

We have a natural functor

$$\boxtimes : \text{agg}(\mathcal{C}_1) \otimes \text{agg}(\mathcal{C}_2) \rightarrow \text{agg}(\mathcal{C}_1 \otimes \mathcal{C}_2),$$

where

$$(S, \mathcal{F}, \{X_s\}_{s \in S}) \boxtimes (T, \mathcal{G}, \{Y_t\}_{t \in T}) := (S \times T, \mathcal{F} \times \mathcal{G}, \{X_s \otimes Y_t\}).$$

This implies that a (symmetric) monoidal structure on \mathcal{C} carries over to $\text{agg } \mathcal{C}$.

If \mathcal{C} is enriched over a monoidal category \mathcal{M} , then $\text{agg } \mathcal{C}$ is enriched over $\text{agg } \mathcal{M}$.

It follows that $\text{agg } \mathcal{C}$ is \oplus -closed.

If \mathcal{C} is a dg-category, then so is $\text{agg } \mathcal{C}$.

1.6.1

We have natural functors: $\mathcal{K} : \text{agg agg } \mathcal{C} \rightarrow \text{agg } \mathcal{C}$ and $\underline{\text{Hom}} : (\text{agg } \mathcal{C})^{\text{op}} \otimes \text{agg } \mathcal{D} \rightarrow \text{agg } (\mathcal{C}^{\text{op}} \otimes \mathcal{D})$.

— \mathcal{K} . Let $\pi : S \rightarrow T$ be a map of sets, let $S_t := \pi^{-1}t$, $t \in T$. and $X : S \rightarrow \mathcal{C}$. Let F_T be a cofilter on T and F_{S_t} on S_t . Every object Y of $\text{agg agg } \mathcal{C}$ is of the form

$$Y = \prod_{t \in T}^{F_T} \prod_{s \in S_t} X_s.$$

Let Φ be a cofilter on S , where $U \in \Phi$ iff $U \cap S_t \in F_{S_t}$ for all t and $\pi(U) \in F_T$, that is

$$\Phi = \prod_{t \in T}^{F_T} F_{S_t}.$$

Set

$$\mathcal{K}(Y) := \prod_{s \in S}^{\Phi} X_s.$$

— $\underline{\text{Hom}}$. Let $U = \prod_{s \in S}^F X_s \in \text{agg } \mathcal{C}$ and $V = \prod_{t \in T}^G Y_t \in \text{agg } \mathcal{D}$. Set

$$\underline{\text{Hom}}(U, V) := \prod_{(s,t) \in S \times T}^{\text{Hom}(F,G)} (X_s; Y_t).$$

1.7 Swell

For a dg-category \mathcal{C} denote $\mathbf{swell}_0 \mathcal{C} := PD \text{agg } \mathcal{C}$ viewed as a dg-category. The resulting category is $PD \oplus$ -closed.

1.7.1 Graded free \mathbb{A} -modules

Let **grad** be a dg-category whose objects are of the form $[n]$, $n \in \mathbb{Z}$. Set $\text{Hom}([n], [m]) = \mathbb{A}[m - n]$. Introduce a SMC on **grad** by setting $[n] \otimes [m] = [n + m]$; define the brading $B_{nm} : [n] \otimes [m] \rightarrow [m] \otimes [n]$ to be equal $(-1)^{nm}$.

1.7.2 Definition of swell

Set $\mathbf{swell}(\mathcal{C}) = \mathbf{swell}_0(\mathcal{C} \otimes \mathbf{grad})$. The advantage of $\mathbf{swell}(\mathcal{C})$ over $\mathbf{swell}_0(\mathcal{C})$ is the existence of cones and shifts.

1.7.3 Properties

There are natural functors

$$\begin{aligned} \boxtimes : \mathbf{swell}\mathcal{C} \otimes \mathbf{swell}\mathcal{D} &\rightarrow \mathbf{swell}(\mathcal{C} \otimes \mathcal{D}); \\ \underline{\mathbf{Hom}} : \mathbf{swell}\mathcal{C}^{\mathbf{op}} \otimes \mathbf{swell}\mathcal{D} &\rightarrow \mathbf{swell}(\mathcal{C}^{\mathbf{op}} \otimes \mathcal{D}). \end{aligned}$$

These functors are obtained via extension from $\mathbf{agg}\mathcal{C}, \mathbf{agg}\mathcal{D}$.

Therefore, if \mathcal{C} is an SMC, then so is $\mathbf{swell}\mathcal{C}$. If \mathcal{D} is enriched over a SMC \mathcal{C} , then $\mathbf{swell}\mathcal{D}$ is enriched over $\mathbf{swell}\mathcal{C}$. Furthermore, if \mathcal{C} is an SMC, then the tensor product is compatible with the direct products in the obvious way.

If \mathcal{C} is an SMC with an inner hom then so is $\mathbf{swell}\mathcal{C}$ and that this inner hom is compatible with the direct sums and direct products in the obvious way.

We have a natural functor $\mathbf{swell}\mathbf{swell}\mathcal{C} \rightarrow \mathbf{swell}\mathcal{C}$.

1.7.4

Let $F : \mathcal{C} \rightarrow \mathbf{swell}\mathcal{D}$ be a dg-functor. It induces a functor

$$\mathbf{swell}F : \mathbf{swell}\mathcal{C} \rightarrow \mathbf{swell}\mathbf{swell}\mathcal{D} \rightarrow \mathbf{swell}\mathcal{D}.$$

1.8 Contraction and Co-contraction of Kernels

1.8.1 Preliminaries

Let **Com** be a dg-category of complexes of free \mathbb{A} -modules. We have an obvious functor $\mathbf{Com} \otimes \mathcal{C} \rightarrow \mathbf{swell}\mathcal{C}$.

1.8.2 Contraction

Let $h : \mathcal{D} \otimes \mathcal{D}^{\mathbf{op}} \rightarrow \mathbf{Com}$ be the hom functor. Define a contraction functor

$$\begin{aligned} \circ := \circ_D : \mathbf{swell}(\mathcal{C}^{\mathbf{op}} \otimes \mathcal{D}) \otimes \mathbf{swell}(\mathcal{D}^{\mathbf{op}} \otimes \mathcal{E}) &\xrightarrow{\boxtimes} \mathbf{swell}(\mathcal{C}^{\mathbf{op}} \otimes \mathcal{D} \otimes \mathcal{D}^{\mathbf{op}} \otimes \mathcal{E}) \xrightarrow{h} \mathbf{swell}(\mathcal{C}^{\mathbf{op}} \otimes \mathbf{Com} \otimes \mathcal{E}) \\ &\rightarrow \mathbf{swell}\mathbf{swell}(\mathcal{C}^{\mathbf{op}} \otimes \mathcal{E}) \rightarrow \mathbf{swell}(\mathcal{C}^{\mathbf{op}} \otimes \mathcal{E}). \end{aligned}$$

Define a co-contraction functor:

$$\begin{aligned} \underline{\mathbf{Hom}} := \underline{\mathbf{Hom}}_{\mathcal{C}} : \mathbf{swell}(\mathcal{C} \otimes \mathcal{D})^{\mathbf{op}} \otimes \mathbf{swell}(\mathcal{C} \otimes \mathcal{E}) &\xrightarrow{\underline{\mathbf{Hom}}} \mathbf{swell}(\mathcal{C}^{\mathbf{op}} \otimes \mathcal{D}^{\mathbf{op}} \otimes \mathcal{C} \otimes \mathcal{E}) \xrightarrow{h} \mathbf{swell}(\mathcal{D}^{\mathbf{op}} \otimes \mathbf{Com} \otimes \mathcal{E}) \\ &\rightarrow \mathbf{swell}\mathbf{swell}(\mathcal{D}^{\mathbf{op}} \otimes \mathcal{E}) \rightarrow \mathbf{swell}(\mathcal{D}^{\mathbf{op}} \otimes \mathcal{E}). \end{aligned}$$

1.8.3 Associativity

The contraction functor has an obvious associativity property.

2 Category **GZ**

Let **pt** be the category with one object whose endomorphism group is \mathbb{A} . Set **GZ** := **swell(pt)**.

We have an internal Hom in **GZ** as well as a tensor functor $\|$ from **GZ** to the category of complexes of \mathbb{A} -modules.

2.1 Explicit description of objects from **GZ**

Every object in **GZ** is the following collection of data:

$$(S, \mathcal{F}, g, D, P),$$

where S is a set, \mathcal{F} is a cofilter on S , $g : S \rightarrow \mathbb{Z}$ is an arbitrary map, and

$$\begin{aligned} D &\in \text{Hom}^1\left(\prod_{s \in S}^{\mathcal{F}} [g(s)]; \prod_{s \in S}^F [g(s)]\right); \quad D^2 = 0; \\ P &\in \text{Hom}^0\left(\prod_{s \in S}^{\mathcal{F}} [g(s)]; \prod_{s \in S}^F [g(s)]\right); \quad P^2 = P; \quad DP = PD. \end{aligned}$$

2.2 Tensor product

Denote by \otimes the functor

$$\otimes : \mathbf{GZ} \otimes \mathbf{swell} \mathcal{C} \xrightarrow{\cong} \mathbf{swell}(\mathbf{pt} \otimes \mathcal{C}) = \mathbf{swell}(\mathcal{C})$$

and likewise for the isomorphic functor $\otimes : \mathbf{swell} \mathcal{C} \otimes \mathbf{GZ} \rightarrow \mathbf{swell} \mathcal{C}$.

2.3 Truncation

2.3.1 Categories $\mathbf{GZ}_{\leq k}$, $\mathbf{GZ}_{\geq k}$ etc.

Let $\mathbf{grad}_{\leq k}$ be the full subcategory of \mathbf{grad} consisting of all objects $[n]$, $n \leq k$ and $\mathbf{grad}_{\geq k}$ be the full subcategory consisting of all $[n]$, $n \geq k$. Let $\mathbf{grad}_{=k}$ be the full sub-category consisting of one object $[k]$, etc. Let $\mathbf{GZ}_{\leq k} := \mathbf{swell}_0 \mathbf{grad}_{\leq k}$; $\mathbf{GZ}_{\geq k} := \mathbf{swell}_0 \mathbf{grad}_{\geq k}$ etc.

2.3.2 Stupid truncation

Let $X := (S, \mathcal{F}, g, D, P) \in \mathbf{GZ}$, where $(S, \mathcal{F}, g, D, P)$ is as in Sec 2.1.

Let us define an object $X^{\leq k}$, where $k \in \mathbb{Z}$.

Set $S^{\leq k} := \{s \in S | g(s) \leq k\}$. Set

$$\mathcal{F}^{\leq k} := \{A | A \in \mathcal{F}; A \subset S^{\leq k}\}.$$

Set $g^{\leq k} := g|_{S^{\leq k}}$.

We have an obvious retraction in \mathbf{GZ} :

$$\prod_{s \in S^{\leq k}} [g^{\leq k}(s)] \xrightarrow{I} \prod_{s \in S} [g(s)] \xrightarrow{Q} \prod_{s \in S^{\leq k}} [g^{\leq k}(s)].$$

Set $D^{\leq k} := QDI$; $P^{\leq k} := QPI$.

Set $X^{\leq k} := (S^{\leq k}, F^{\leq k}, g^{\leq k}, D^{\leq k}, P^{\leq k})$.

We thus have constructed a functor of categories over **sets**:

$$-^{\leq k} : \mathbf{GZ} \rightarrow \mathbf{GZ}_{\leq k}.$$

It follows that this functor is the right adjoint to the embedding $\mathbf{GZ}_{\leq k} \rightarrow \mathbf{GZ}$.

Likewise one defined a functor $-^{\geq k}$ which is the left adjoint to the embedding $\mathbf{GZ}_{\geq k} \rightarrow \mathbf{GZ}$.

One has a natural map

$$\delta : X^{\leq k}[-1] \rightarrow X^{\geq k+1}$$

so that we have an isomorphism in \mathbf{GZ}

$$X \cong \text{Cone } \delta.$$

2.3.3 The object X^k

We set $X^k := (X^{\leq k})^{\geq k}$. The object X^k has zero differential.

2.3.4 Truncation

We say that an object $X \in \mathbf{GZ}$ *admits a truncation* if there exists a universal object $\tau_{\leq k} X \in \mathbf{GZ}_{\leq k}$ which maps into X . We say that $X \in \mathbf{GZ}$ *stably admits a truncation* if every object $Y \in \mathbf{GZ}$ which is homotopy equivalent to X , admits a truncation.

Likewise, for $X \in \mathbf{GZ}$, we denote by $\tau_{\geq k}(X)$ the universal object in $\mathbf{GZ}_{\geq k}$ (if exists) endowed with a map $X \rightarrow \tau_{\geq k} X$.

2.3.5 Lemma

Lemma 2.1 *Let $X \in \mathbf{GZ}_{\geq 0}$ and suppose it admits a truncation. Then $\tau_{\leq k} X \in \mathbf{GZ}_{=0}$.*

Sketch of the proof Let $Y := \tau_{\leq 0} X$. Let $\iota : Y \rightarrow X$ be the natural map. Let

$$C := \text{Cone}(\text{Id} : Y^{<0} \rightarrow Y^{<0})[-1],$$

in other words,

$$C = (Y^{<0} \oplus Y^{<0}[-1], D),$$

Where $D = \text{Id} : Y^{<0} \rightarrow Y^{<0}[-1]$. It follows that $D \in \mathbf{GZ}_{\leq 0}$.

We have a natural map $c : C \rightarrow Y$, where $c|_{Y^{<0}} = I$; $c|_{Y^{<0}[-1]} = -dI$, where $I : Y^{<0} \rightarrow Y$ is the embedding.

It follows that $\iota c = 0$ which implies that $c = 0$, hence $I = 0$ and $Y^{<0} = 0$, which implies the statement.

2.3.6 Lemma

Lemma 2.2 *Let $X \in \mathbf{GZ}$ be homotopy equivalent to an object $Y \in \mathbf{GZ}_{\geq 0}$. Then there exists a direct sum decomposition $X = A \oplus B$, where $A \in \mathbf{GZ}_{\geq 0}$, $B \in \mathbf{GZ}_{\leq 0}$, and B is acyclic.*

Sketch of the proof

By definition we have maps $f : X \rightarrow Y$, $g : Y \rightarrow X$, $h \in \text{Hom}^{-1}(X, X)$, where

$$\text{Id}_X = gf + dh + hd. \quad (1)$$

Set $\pi := dh|_{X^0} : X^0 \rightarrow X^0$. We have

$$\pi^2 = dhdh|_{X^0} = d(hd)|_{X^{-1}}h|_{X^0}. \quad (2)$$

Let us restrict (1) onto X^{-1} . As $Y \in \mathbf{GZ}_{\geq 0}$, $gf = 0$. Therefore, $hd|_{X^{-1}} = \text{Id}_{X^{-1}} - dh|_{X^{-1}}$. Substitute this equality into (2):

$$\pi^2 = d(hd)|_{X^{-1}}h|_{X^0} = dh|_{X^0} + ddhh|_{X^0} = \pi.$$

Thus $\pi : X^0 \rightarrow X^0$ is a projector and we can decompose $X^0 = K \oplus L$ where $\pi|_K = 0$; $\pi|_L = \text{Id}|_L$.

We have $d|_L = d\pi|_L = 0$. Denote $D_K : K \rightarrow X^0 \xrightarrow{d} X^{>0}$.

Consider $\pi d : X^{-1} \rightarrow X^0$. We have

$$\pi d = dhd|_{X^{-1}} = d(\text{Id} - dh)|_{X^{-1}} = d|_{X^{-1}}.$$

This shows that $d|_{X^{-1}}$ factorizes through L : $d|_{X^{-1}} : X^{-1} \xrightarrow{d_L} L \rightarrow X^0$. Set

$$D_L := X^{<0} \xrightarrow{p} X^{-1} \xrightarrow{d_L} L,$$

where p is the obvious projection.

Set $A := (X^{<0} \oplus L, D_L)$; $B := K \oplus X^{>0}, D_K$. The restriction of h onto B shows that B is acyclic. We see that thus chosen A and B satisfy all the conditions.

2.3.7 Lemma on stable truncation

Lemma 2.3 *Every object of $\mathbf{GZ}_{\geq 0}$ admitting a truncation admits it stably.*

Sketch of the proof Let $Y \in \mathbf{GZ}_{\geq 0}$ be an object admitting a truncation. Denote $H := \tau_{\leq 0}Y$. As follows from Lemma 2.1, $H \in \mathbf{GZ}_0$. Let $i : H \rightarrow Y$ be the structure map.

Let $X \in \mathbf{GZ}$ be an object homotopy equivalent to Y . Let us decompose $Y = A \oplus B$ according to Lemma ???. It follows that A is homotopy equivalent to Y . It now suffices to show that A admits a truncation.

Fix a homotopy equivalence $f : A \rightarrow Y$; $g : Y \rightarrow A$; $gf = \text{Id}_A + dh_A + h_A d$; $fg = \text{Id}_Y + dh_Y + h_Y d$.

Let us prove that $gi : H \rightarrow A$ is the universal map from an object from $\mathbf{GZ}_{\leq 0}$ to A . Let $f : U \rightarrow A$, where $U \in \mathbf{GZ}_{\leq 0}$. It follows that f factors through U^0 :

$$U \rightarrow U^0 \xrightarrow{\phi} A.$$

It follows that $d_A \phi = 0$. We therefore have $gf\phi = \phi + dh_A \phi + h_A d\phi = \phi$. On the other hand, the map $f\phi : U^0 \rightarrow Y$ factors uniquely through H : $f\phi = i\psi : U^0 \xrightarrow{\psi} H \rightarrow Y$ so that $\phi = gf\phi = gi\psi$. That is ϕ factors through gi . Let us check the uniqueness of this factorization which is equivalent to the following statement. Let $\chi : U^0 \rightarrow H$. Then $gi\chi = 0$ implies $\chi = 0$. Indeed, we have:

$$0 = fgi\chi = i\chi + h_Y di\chi + dh_Y i\chi = i\chi.$$

As i is a universal map, $i\chi = 0$ implies $\chi = 0$.

Corollary 2.4 *Let $X \in \mathbf{GZ}$ be an object homotopy equivalent to an object Y from $\mathbf{GZ}_{\geq 0}$. Then $\tau_{\leq 0} X \cong \tau_{\leq 0} Y \oplus B$, where $B \in \mathbf{GZ}_{\leq 0}$ is an acyclic object.*

Proof. Follows directly from the proof of Lemma.

2.3.8 Complexes of free modules

Let $\mathbb{A}\text{-freemod}$ be the category of complexes of finitely generated \mathbb{A} -modules concentrated in the non-negative degrees. One has an embedding of $\mathbb{A}\text{-freemod} \subset \mathbf{GZ}_{\geq 0}$ as a full sub-category.

Lemma 2.5 *Every object $X \in \mathbb{A}\text{-freemod}$ admits a truncation.*

Sketch of the proof Let $H := H^0(X)$. We have a short exact sequence of \mathbb{A} -modules:

$$0 \rightarrow H \rightarrow X^0 \rightarrow \text{Coker } d^0 \rightarrow 0. \quad (3)$$

The embedding $\text{Coker } d^0 \hookrightarrow X^1$ implies that $\text{Coker } d^0$ is a finitely generated free \mathbb{A} -module. Therefore, the exact sequence (3) splits and we can write $X = H \oplus Y$, where $Y \in \mathbb{A}\text{-freemod}$; $H^0(Y) = 0$.

For every $U \in \mathbb{A}_0$, the natural map $\text{Hom}(U; Y^0) \rightarrow \text{Hom}(U, Y^1)$ is an injection. Indeed, it suffices to check this statement for $U = \prod_{s \in S}^{\mathcal{F}} [0]$, in which case the statement can be checked directly. Therefore, $\tau_{\leq 0} Y = 0$, whence $\tau_{\leq 0} X = H$. This implies the statement.

2.4 The category $\mathbf{GZtrunc}$

Let $\mathbf{GZtrunc}$ be the full subcategory of \mathbf{GZ} consisting of all objects which are homotopy equivalent to an object from $\mathbb{A}\text{-freemod}$. It follows that $\mathbf{GZtrunc}$ is a full symmetric monoidal sub-category of \mathbf{GZ} .

2.4.1 The category **contract**

Let **contract** $\subset \mathbf{GZ}_{\leq 0}$ be the full sub-category whose each object is isomorphic to a direct sum $M \oplus T$, where M is a finitely generated free \mathbb{A} -module (concentrated in degree 0) and $M \in \mathbf{GZ}_{\leq 0}$ is an acyclic object. The category **contract** is a full symmetric monoidal sub-category of $\mathbf{GZ}_{\leq 0}$.

It follows that every such an object $M \oplus T \in \mathbf{GZ}_{\geq 0}$ admits a truncation $\tau_{\geq 0}$, where $\tau_{\geq 0}(M \oplus T) = M$. Therefore, we have a sequence of lax symmetric monoidal functors (enriched over **sets**):

$$\mathbf{GZtrunc} \xrightarrow{\tau_{\leq 0}} \mathbf{contract} \xrightarrow{\tau_{\geq 0}} \mathbb{A}\text{-}\mathbf{freemod}_0,$$

where $\mathbb{A}\text{-}\mathbf{freemod}_0$ is the category of finitely generated free \mathbb{A} -modules.

The lax structure on $\tau_{\leq 0}$ follows from the universal property of $\tau_{\leq 0}$. Indeed, $\tau_{\leq 0}A \otimes \tau_{\leq 0}B \in \mathbf{GZ}_{\leq 0}$, therefore, the natural map $\tau_{\leq 0}A \otimes \tau_{\leq 0}B \rightarrow A \otimes B$ factors through $\tau_{\leq 0}(A \otimes B)$.

Similarly, we have a natural map $\tau_{\geq 0}(A \otimes B) \rightarrow \tau_{\geq 0}A \otimes \tau_{\geq 0}B$ which is an isomorphism if $A, B \in \mathbf{contract}$, so that $\tau_{\geq 0}$ is a tensor functor.

We have embeddings as full sub-category $\mathbb{A}\text{-}\mathbf{freemod}_0 \xrightarrow{I} \mathbf{contract} \xrightarrow{J} \mathbf{GZtrunc}$. Each of these embeddings is a tensor functor. By definition, I is left adjoint to $\tau_{\leq 0}$ and J is right adjoint to $\tau_{\geq 0}$ so that we have natural transformations of tensor functors

$$I\tau_{\leq 0} \rightarrow \text{Id}_{\mathbf{GZtrunc}}; \quad \text{Id}_{\mathbf{contract}} \rightarrow J\tau_{\geq 0}.$$

3 Filtered objects

Let \mathcal{C} be a symmetric monoidal category enriched over $\mathbb{A}\text{-mod}$. Suppose \mathcal{C} is $PD \oplus \prod$ -closed. Finally, we assume that the tensor product in \mathcal{C} commutes with direct sums.

3.1 Category **filt** \mathcal{C}'

Let **filt** \mathcal{C}' be a dg category whose each object X is by definition a collection of objects $\mathbf{gr}^i X \in \mathcal{C}$, $i \in \mathbb{Z}$. We set

$$\text{Hom}_{\mathbf{filt}\mathcal{C}'}(X, Y) = \prod_{n \leq m} \text{Hom}_{\mathcal{C}}(X_n, Y_m).$$

One has a SMC structure on **filt** \mathcal{C}' , where

$$\mathbf{gr}^n(X \otimes Y) = \bigoplus_{p=0}^n X^p \otimes Y^{n-p}.$$

Let us define a functor $|| : \mathbf{filt}\mathcal{C}' \rightarrow \mathcal{C}$, where

$$|X| = \bigoplus_{n < 0} \mathbf{gr}^n X \oplus \prod_{n \geq 0} \mathbf{gr}^n X.$$

We call $|X|$ the total of X .

We have a lax tensor structure on $|X|$, that is we have a natural transformation

$$|X| \otimes |Y| \rightarrow |X \otimes Y|.$$

Indeed (we set $X_n = \mathbf{gr}^n X$; $Y_m = \mathbf{gr}^m Y$):

$$\begin{aligned} |X| \otimes |Y| &= \left(\bigoplus_{m \leq 0} X_m \otimes \bigoplus_{n \leq 0} Y_m \right) \bigoplus \left(\bigoplus_{m \leq 0} X_m \otimes \prod_{n \geq 0} Y_m \right) \bigoplus \left(\prod_{m \geq 0} X_m \otimes \bigoplus_{n \leq 0} Y_m \right) \bigoplus \left(\prod_{m \geq 0} X_m \otimes \prod_{n \geq 0} Y_m \right) \\ &\rightarrow \left(\bigoplus_{m, n \leq 0} X_m \otimes Y_n \right) \bigoplus \bigoplus_{m < 0} \prod_{n \geq 0} (X_m \otimes Y_n) \bigoplus \bigoplus_{n < 0} \prod_{m \geq 0} X_m \otimes Y_m \bigoplus \prod_{n, m \geq 0} X_n \otimes Y_m \\ &= \bigoplus_m \prod_{n \geq m} X_m \otimes Y_n \bigoplus_n \end{aligned}$$

Next, for every $m \in \mathbb{Z}$ we have a map

$$\prod_{n \geq m} X_m \otimes Y_n = \prod_{n+m \geq 2m} X_m \otimes Y_n \rightarrow \prod_{n+k \geq 2m} \bigoplus_{k \leq m} X_k \otimes Y_n \rightarrow |X \otimes Y|.$$

Likewise we have a map

$$\prod_{m > n} X_m \otimes Y_n \rightarrow |X| \otimes |Y|,$$

which finishes the construction.

Let $\mathbf{filt}\mathcal{C}'_- \subset \mathbf{filt}\mathcal{C}$ be the full sub-category of objects X satisfying: there exists an $M \in \mathbb{Z}$ such that $\mathbf{gr}^m X = 0$ for all $m > M$. The restriction of $||$ onto this sub-category is then a strict tensor functor.

For $X \in \mathbf{filt}\mathcal{C}'$ define an object $F^{\geq k} X$, where

$$\mathbf{gr}^l F^{\geq k} X = \mathbf{gr}^l X \text{ if } l \geq k;$$

$$\mathbf{gr}^l F^{\geq k} X = 0 \text{ if } l < k.$$

Define $F^{\leq k}$ in a similar way. We have natural transformations

$$F^{\leq k} X \rightarrow X \rightarrow F^{\geq k} X. \tag{4}$$

3.2 The category $\mathbf{filt}\mathcal{C}$

Set $\mathbf{filt}\mathcal{C} := D\mathbf{filt}\mathcal{C}'$; $\mathbf{filt}\mathcal{C}_- := D\mathbf{filt}\mathcal{C}'_-$ etc. The functors $F^{\geq k}, F^{\leq k}$ and the natural transformations (4) carry over to $\mathbf{filt}\mathcal{C}$. Let $(X, D) \in \mathbf{filt}\mathcal{C}$. The component of the differential D which maps X_{k-1} to X_k defines a natural transformation $\delta : F^{\leq k-1} X \rightarrow F^k X[1]$ so that we have an isomorphism

$$(X, D) = \text{Cone } \delta.$$

3.3 Filtered homotopy equivalences

For $(X, D) \in \mathbf{filt}\mathcal{C}$ set $\mathbf{Gr}^k X := |F^{\geq k} F^{\leq k} X| \in \mathcal{C}$. We have $\mathbf{Gr}^k X = (\mathbf{gr}^k, D_{kk})$, where $D_{kk} : X_k \rightarrow X_k$ is the component of D .

Proposition 3.1 *Suppose $\mathbf{Gr}^k X$ are acyclic. Then both X and $|X|$ are acyclic.*

Sketch of the proof Set $X_n = \mathbf{gr}^n X$; $X_m = \mathbf{gr}^m X$. By definition

$$D \in \prod_{n \geq m} \mathrm{Hom}^1(X_n, X_m) = \prod_{s \geq 0} H_s$$

where $H_s = \prod_n \mathrm{Hom}^1(X_n, X_{n+s})$. Thus we can write $D = \sum_{s \geq 0} D_s$, where $D_s \in H_s$. We are given that the object (X, D_0) is acyclic.

We are to solve an equation

$$Dh + hD = \mathrm{Id},$$

where $h \in \mathrm{Hom}^{-1}(X, X)$. Or, in the components,

$$dh_s + D_0 h_s + h_s D_0 = u_s$$

where $u_0 = \mathrm{Id}$ and for $s > 0$, $u_s = \sum_{0 < i \leq s} D_i h_{s-i} + h_{s-i} D_i$. One can resolve this system recursively by s , using the acyclicity of (X, D_0) .

3.3.1 Corollary

Corollary 3.2 *Let $f : X \rightarrow Y$ be an arrow in $\mathbf{filt}\mathcal{C}$ such that all the induced maps $\mathbf{Gr}^k f : \mathbf{Gr}^k X \rightarrow \mathbf{Gr}^k Y$ are homotopy equivalences. Then f and $|f| : |X| \rightarrow |Y|$ are homotopy equivalences.*

Set $|X| = (\bigoplus_{n \geq 0} \mathbf{gr}^n X, D)$ We have thereby a strict symmetric monoidal functor $\mathbf{filt}\mathcal{C} \rightarrow \mathcal{C}$.

3.4 Derived Tensor product

Let $F : \mathcal{C} \rightarrow \mathbf{swell}\mathcal{U}$ and $G : \mathcal{C}^{\mathrm{op}} \rightarrow \mathbf{swell}\mathcal{V}$ be functors between **GZ**- categories (that is categories enriched over **GZ**). \mathcal{C} may be a non-unital category.

Define an object $F \otimes^L G \in \mathbf{swell}(\mathcal{U} \otimes \mathcal{V})$ as follows.

For $N \geq 0$, set

$$\mathbf{gr}^{-N} \otimes^L (F, G) := \bigoplus_{C_0, C_1, \dots, C_N} F(C_0) \otimes \mathrm{Hom}(C_0, C_1) \otimes \dots \otimes \mathrm{Hom}(C_{N-1}, C_N) \boxtimes G(C_N) \in \mathbf{swell}(\mathcal{U} \otimes \mathcal{V}).$$

We have the standard bar-differential on $\otimes^L(F, G)$ which gives rise to an object $(\otimes^L(F, G), D) \in \mathbf{filt} \mathbf{swell}(\mathcal{U} \otimes \mathcal{V})$. Set $F \otimes^L G := (\otimes^L(F, G), D)$.

3.4.1 Relative derived tensor product

Let $F : \mathcal{D} \otimes \mathcal{C} \rightarrow \mathbf{swell}\mathcal{U}$, $G : \mathcal{C}^{\mathbf{op}} \otimes \mathcal{E} \rightarrow \mathbf{swell}\mathcal{V}$. Let $d \in \mathcal{D}$; $e \in \mathcal{E}$. Let $F_d : \mathcal{C} \rightarrow \mathbf{swell}\mathcal{U}$; $G_e : \mathcal{C}^{\mathbf{op}} \rightarrow \mathbf{swell}\mathcal{V}$ be the restrictions. Let us define a functor $F \otimes_{\mathcal{C}}^L G : \mathcal{D} \otimes \mathcal{E} \rightarrow \mathbf{swell}(\mathcal{U} \otimes \mathcal{V})$, where

$$F \otimes_{\mathcal{C}}^L G(d, e) := F_d \otimes^L G_e.$$

3.4.2

Let I be a poset. Denote by the same symbol I a non-unital category, where $\text{Hom}_I(i, j) = \mathbb{Z}$ if $i < j$, and $\text{Hom}_I(i, j) = 0$ otherwise. Let I be a finite poset and let $F : I \rightarrow \mathbf{swell}\mathcal{U}$; $G : I^{\mathbf{op}} \rightarrow \mathbf{swell}\mathcal{V}$. Then we have $\mathbf{gr}^{-N} \otimes^L (F, G) = 0$ if N exceeds the number of elements in I .

3.5 Hocolim

Let \mathcal{C} be a **GZ**-category and I be a small category. Let J be the \mathbb{A} -span of I . Let $\mathbf{const} : J^{\mathbf{op}} \rightarrow \mathbf{GZ}$ be the constant functor, $\mathbf{const}^{\mathbf{op}}(j) = \mathbb{Z}$. Let $F : I \rightarrow \mathbf{swell}(\mathcal{C})$ be a functor. Still denote by F its extension $F : J \rightarrow \mathbf{swell}(\mathcal{C})$.

Set

$$\text{hocolim}_I F := F \otimes^L \mathbf{const}.$$

3.6 Derived Hom

Let $F : \mathcal{C} \rightarrow \mathbf{swell}\mathcal{U}$ and $G : \mathcal{C} \rightarrow \mathbf{swell}\mathcal{V}$ be dg functors between **GZ**-categories.

Define an object $\text{RHom}_{\mathcal{C}}(F, G) \in \mathbf{swell}(\mathcal{U}^{\mathbf{op}} \otimes \mathcal{V})$ as follows. For $N \geq 0$, set

$$\mathbf{gr}^N \text{RHom}(F, G) := \bigoplus_{C_0, C_1, \dots, C_N} \underline{\text{Hom}}(F(C_0) \otimes \text{Hom}(C_0, C_1) \otimes \dots \otimes \text{Hom}(C_{N-1}, C_N); G(C_N)) \in \mathbf{swell}(\mathcal{U}^{\mathbf{op}} \otimes \mathcal{V})$$

We have the standard bar-differential D on $\text{RHom}(F, G)$. Still denote

$$\text{RHom}(F, G) := |\text{RHom}(F, G)| \in \mathbf{swell}(\mathcal{U}^{\mathbf{op}}; \mathcal{V}).$$

3.7 Holim

Let \mathcal{C} be a **GZ**-category and I be a small category. Let J be the \mathbb{A} -span of I . Let $C : J \rightarrow \mathbf{GZ}$ be the constant functor, $C(j) = \mathbb{Z}$. Let $F : I \rightarrow \mathbf{swell}(\mathcal{C})$ be a functor. Denote by the same letter the extension of F onto J . Set

$$\text{holim}_I F := \text{RHom}(C, F) \in \mathbf{swell}\mathcal{C}.$$

3.7.1 Homotopy stability

Let $F, H : \mathcal{C} \rightarrow \mathcal{U}$; $G : \mathcal{C}^{\text{op}} \rightarrow \mathcal{V}$.

Proposition 3.3 *Suppose $F(c)$ is acyclic for all $c \in \mathcal{C}$. Then $F \otimes^L G$, $\text{RHom}(F, H)$, and $\text{RHom}(H, F)$ are acyclic.*

The Proposition follows from Prop. 3.1.

Corollary 3.4 *If $F(i)$ is acyclic for all $i \in I$, then so are $\text{holim } F$ and $\text{hocolim } F$.*

3.7.2 Functoriality

Let $f : I \rightarrow J$, $F : J \rightarrow \mathcal{C}$ be functors. We have natural maps

$$f^* : \text{holim}(F) \rightarrow \text{holim}(Ff); \quad f_! : \text{hocolim}(Ff) \rightarrow \text{hocolim}(F).$$

Suppose $g : J \rightarrow I$ is a right (or left) adjoint to f . Then $f_!$ and $g_!$ are quasi-inverse to each other, same for f^* and g^* .

3.8 Filtered limits and colimits

Recall that a poset I is called *filtered* if for every finite subset $S \subset I$ there exists an $i \in I$ such that $i \geq s$ for all $s \in S$, such an i is called *an upper bound of S* . A subset $J \subset I$ is called *co-final* if every finite subset $S \subset I$ has an upper bound from J .

Let $\iota : J \rightarrow I$ be the embedding and let $F : I \rightarrow \mathcal{C}$ be a functor. We have a natural map

$$\iota_! : \text{hocolim}_I F \circ i \rightarrow \text{hocolim}_J F.$$

Proposition 3.5 *The map $\iota_!$ is a homotopy equivalence.*

Sketch of the proof. Still denote by J, I the \mathbb{A} -spans of J, I . 1. Let $h : J \otimes I^{\text{op}} \rightarrow \mathbf{GZ}$; $h(j, i) = \text{Hom}_I(i, j)$. We have a term-wise quasi-isomorphism of functors $J \rightarrow \mathcal{C}$

$$F \otimes_I^L h \rightarrow F \circ \iota.$$

2) We have natural map

$$h \otimes_J^L \text{const}_J \rightarrow \text{const}_I.$$

This map is a quasi-isomorphism of functors. Indeed, for each $i \in I$, we need to prove that the natural map

$$h(i, -) \otimes_J^L \text{const}_J \rightarrow \mathbb{A} \tag{5}$$

is a homotopy equivalence.

2.1) We have an obvious embedding $I : \mathbf{Ab} \rightarrow \mathbf{GZ}$, where \mathbf{Ab} is the category of complexes of free abelian groups bounded from above.

The map in (5) can be obtained from a similar map in **Ab** under I . The corresponding map in **Ab** is known to be a homotopy equivalence because it is isomorphic to the natural map

$$\text{hocolim}_{j \in J; j \geq i} \mathbb{A} \rightarrow \mathbb{A}.$$

2.2) We have a commutative diagram

$$\begin{array}{ccc} F \circ i \otimes_J^L \text{const}_J & \xrightarrow{i_!} & F \otimes_I^L \text{const}_I \\ \sim \uparrow & \nearrow \sim & \\ F \otimes_I^L h \otimes_J^L \text{const}_J & & \end{array}$$

which implies that the horizontal arrow is a homotopy equivalence.

3.8.1 Constant functor on a poset with the least element

Proposition 3.6 *Let I be a poset with the least element. Then the natural map $\text{hocolim}_I \mathbb{A} \rightarrow \mathbb{A}$ is a homotopy equivalence.*

Sketch of the proof We have an isomorphism $\text{const}_I(-) = \text{Hom}_I(x, -)$. Therefore, we have a homotopy equivalence

$$\text{Hom}_I(x, -) \otimes^L \text{const}_{I^{\text{op}}} \xrightarrow{\sim} \mathbb{A}(x) = \mathbb{A}.$$

3.8.2 Constant functor on a filtered poset

Proposition 3.7 *Let I be a filtered poset. Then the natural map*

$$\text{hocolim}_{i \in I} \mathbb{A} \rightarrow \mathbb{A}$$

is a homotopy equivalence.

Sketch of the proof Let $x \in I$ and let $I_{\geq x} \subset I$ consist of all $y \in I$, $y \geq x$. The subset $I_{\geq x}$ is cofinal. Consider the through map

$$\text{hocolim}_{i \in I_x} \mathbb{A} \xrightarrow{\sim} \text{hocolim}_{i \in I} \mathbb{A} \rightarrow \mathbb{A}.$$

It is a homotopy equivalence by the previous subsection. This implies the statement.

3.8.3 Reduction to the colimit over the set of all finite subsets

Let I be a poset. Let $P(I)$ be the poset of all non-empty finite subsets of I ordered with respect to the inclusion.

Let $F : I \rightarrow \mathcal{C}$ be a functor. Let $PF : P(I) \rightarrow \mathcal{C}$ be defined by

$$PF(S) := \text{hocolim}_{s \in S} F(s)$$

Let $Q(I) \subset P(I)$ consist of all subsets S possessing the greatest element. Denote by $\mu(S)$ the greatest element of S . We then have a monotone map

$$\mu : Q(I) \rightarrow I.$$

We have a natural transformation $\varepsilon : PF|_{Q(I)} \rightarrow \mu^{-1}F$ of functors $Q(I) \rightarrow \mathcal{C}$. For every $S \in Q(I)$, μ induces a homotopy equivalence in \mathcal{C}

$$PF(\mu(S)) \xrightarrow{\sim} \mu^{-1}F(S) = F(\mu(S)). \quad (6)$$

The map μ induces maps

$$\text{hocolim}_{Q(I)} PF \rightarrow \text{hocolim}_{Q(I)} \mu^{-1}F \rightarrow \text{hocolim}_I F. \quad (7)$$

The left arrow is a homotopy equivalence by (6). Let us show that the right arrow is a homotopy equivalence. It suffices to check it for $F(-) = \mathbb{A}[\text{Hom}_I(i, -)]$, $i \in I$. Let $Z \subset Q(I)$ consist of all S with $\mu(S) \geq i$. The problem reduces to showing that the following map

$$\text{hocolim}_Z \mathbb{A} \rightarrow \text{hocolim}_{I \geq i} \mathbb{A}$$

induced by μ is a homotopy equivalence which follows from the fact that Z is filtered and $I \geq i$ has the least element so that both the natural map

$$\text{hocolim}_{I \geq i} \mathbb{A} \rightarrow \mathbb{A}$$

and the through map

$$\text{hocolim}_Z \mathbb{A} \rightarrow \text{hocolim}_{I \geq i} \mathbb{A} \rightarrow \mathbb{A}$$

is a homotopy equivalence, whence the statement.

Thus, *the through map (7) is a homotopy equivalence*.

3.8.4 Nilpotent functors

Let I be a filtered poset and $F : I \rightarrow \mathcal{C}$ a functor. Call F *nilpotent* if for every $x \in I$ there exists a $y \in I$, $y \geq x$ such that the map $F(x) \rightarrow F(y)$ is homotopy equivalent to 0.

Theorem 3.8 *Let F be nilpotent. Then $\text{hocolim}_I F$ is acyclic.*

Sketch of the proof

A. According to the previous subsection it suffices to show that $\text{hocolim}_{Q(I)} PF$ is acyclic. It follows that $PF : Q(I) \rightarrow \mathcal{C}$ is nilpotent. Thus, replacing I with $Q(I)$ and F with PF allows us to assume without loss of generality that for every element $x \in I$ the set $I_{\leq x} := \{y | y \leq x\}$ is finite.

B. Using induction by $\#I_{\leq x}$, one can show that there exists a monotone map $\phi : I \rightarrow I$ such that $\phi(x) \geq x$ for all x and the natural map $F(x) \rightarrow F(\phi(x))$ is homotopy equivalent to 0 for all $x \in I$.

C. Let $G : I \rightarrow \mathcal{C}$ be an arbitrary functor. Show that the natural map

$$\text{hocolim}_{x \in I} F(x) \rightarrow \text{hocolim}_{x \in I} F(\phi(x))$$

is a homotopy equivalence.

It suffices to prove the statement for $F(x) = \text{Hom}(i, x)$, $i \in I$. One can replace I with a cofinal subset $I_{\geq i}$, in which case all the maps $F(x) \rightarrow F(\phi(x))$ are isomorphisms, whence the statement.

D. Set $F^n : I \rightarrow \mathcal{C}$,

$$F^n(x) = F(\underbrace{\phi \circ \phi \circ \cdots \circ \phi}_{n \text{ times}}(x)).$$

We have natural maps

$$i_n : F^n \rightarrow F^{n+1}, \quad n \geq 0.$$

It follows that the induced map

$$\text{hocolim}_I F^n \rightarrow \text{hocolim} F^{n+1}$$

is a homotopy equivalence. Therefore, $\text{hocolim}_I F$ is homotopy equivalent to

$$\text{hocolim}_n \text{hocolim}_I F^n = \text{hocolim}_I \text{hocolim}_n F^n.$$

It also follows that the induced map $F^n(x) \rightarrow F^{n+1}(x)$ is homotopy equivalent to 0. This implies that $\text{hocolim}_n F^n(x)$ is acyclic for every x . Therefore, the natural map

$$\text{hocolim}_I \text{hocolim}_n F^n \rightarrow \text{hocolim}_I 0 = 0$$

is a homotopy equivalence, as we wanted.

3.9 Stability of a functor

Let $I_{\mathcal{C}} : \mathcal{C} \rightarrow \mathbf{swell}(\mathcal{C})$ and $J_{\mathcal{C}} : \mathcal{C}^{\text{op}} \rightarrow \mathbf{swell}(\mathcal{C}^{\text{op}})$ be the embedding functors. Set

$$\Delta_{\mathcal{C}} := J_{\mathcal{C}} \otimes_{\mathcal{C}}^L I_{\mathcal{C}} \in \mathbf{swell}(\mathcal{C}^{\text{op}} \otimes \mathcal{C}).$$

For every $S \in \mathbf{swell}(\mathcal{C})$ we have a natural map

$$S \circ \Delta_{\mathcal{C}} \rightarrow S.$$

Call S *stable* if this map is a homotopy equivalence.

3.9.1 Equivalent definition

The hom-functor $\text{Hom} : \mathcal{C}^{\text{op}} \times \mathcal{C} \rightarrow \mathbf{GZ}$ extends naturally to a functor

$$\text{Hom} : \mathcal{C}^{\text{op}} \otimes \mathbf{swell}(\mathcal{C}) \rightarrow \mathbf{GZ}.$$

For $S \in \mathbf{swell}(\mathcal{C})$ we thus get a functor $h_S : \mathcal{C}^{\text{op}} \rightarrow \mathbf{GZ}$. Let $\text{Id}_{\mathcal{C}} : \mathcal{C} \rightarrow \mathcal{C}$ be the identity functor. Set $R(S) := h_S \otimes^L \text{Id}_{\mathcal{C}} \in \mathbf{swell}(\mathcal{C})$.

We have a natural map $R(S) \rightarrow S$. S is stable iff this map is a homotopy equivalence.

3.9.2

Let $F : \mathcal{C}^{\text{op}} \rightarrow \mathbf{GZ}$ be a **GZ**-functor. Set

$$\mathcal{R}(F) := F \otimes^L \text{Id}_{\mathcal{C}}. \quad (8)$$

We have $S \circ \Delta_{\mathcal{C}} = \mathcal{R}(h_S)$ for any $S \in \mathbf{swell}(\mathcal{C})$.

Proposition 3.9 *Every object of the form $\mathcal{R}(F)$ is stable.*

Follows from the associativity of \otimes .

3.9.3

Let $X \in \mathbf{swell}(C^{\text{op}} \otimes D)$ and $Y \in \mathbf{swell}(D^{\text{op}} \otimes E)$ be stable, then so is $X \circ Y$.

3.9.4

Let $F : C \rightarrow D$ be a functor. Let $X \in \mathbf{swell}(C)$ be a stable functor. Then the functor $\mathbf{swell}(F)X$ is stable.

Indeed, we have $\mathbf{swell}(F)(X \circ \Delta_C) = (X \circ J_C) \otimes_C^L (\mathbf{swell}(F)I_C)$. The natural transformation

$$(\mathbf{swell}(F)I_C) \circ \Delta_D \rightarrow \mathbf{swell}(F)I_C$$

of functors $C \rightarrow \mathbf{swell} D$ is a term-wise weak equivalence. This implies the statement.

4 Classical categories

4.1 Categories $Q_{\varepsilon}, Q_{\infty}$

Let ε be a positive real number or ∞ . Let Q_{ε} be the following category enriched over the category **A-freemod**. Set $\mathbf{Ob} Q_{\varepsilon} := \mathbb{R}$. Denote by \mathbf{e}_a the object of Q_{ε} corresponding to a real number a . Set $\text{Hom}(\mathbf{e}_a, \mathbf{e}_b) = \mathbb{Z}$ if $a \leq b < a + \varepsilon$. Set $\text{Hom}(\mathbf{e}_a, \mathbf{e}_b) = 0$ otherwise.

We have an SMC structure on Q_{ε} via $e_a \otimes e_b = e_{a+b}$. The categories Q_{ε} have internal hom. We have strict tensor functors $\mathbf{red} : Q_{\varepsilon_1} \rightarrow Q_{\varepsilon_2}$, $\varepsilon_1 \geq \varepsilon_2$.

4.1.1 The category Q_{ω}

Let Q_{ω} be the union of all Q_{ε} , $\varepsilon \in \{1, 1/2, 1/4, \dots, 1/2^n, \dots\} \cup \{\infty\}$. Let us define hom. Let $\mathbf{e}_a^{\varepsilon_1} \in Q_{\varepsilon_1}$ and $\mathbf{e}_b^{\varepsilon_2} \in Q_{\varepsilon_2}$. Set $\text{Hom}(\mathbf{e}_a^{\varepsilon_1}, \mathbf{e}_b^{\varepsilon_2}) = 0$ if $\varepsilon_1 < \varepsilon_2$. Otherwise, set

$$\text{Hom}(\mathbf{e}_a^{\varepsilon_1}, \mathbf{e}_b^{\varepsilon_2}) = \text{Hom}_{Q_{\varepsilon_2}}(\mathbf{e}_a, \mathbf{e}_b).$$

We also have an SMC structure on Q_{ω} , where

$$e_a^{\varepsilon_1} \otimes e_b^{\varepsilon_2} := e_{a+b}^{\min(\varepsilon_1, \varepsilon_2)}.$$

We also have an internal hom

$$\underline{\text{Hom}}(\mathbf{e}_a^{\varepsilon_1}; \mathbf{e}_b^{\varepsilon_2}) = 0$$

if $\varepsilon_1 \leq \varepsilon_2$. Otherwise,

$$\underline{\text{Hom}}(\mathbf{e}_a^{\varepsilon_1}; \mathbf{e}_b^{\varepsilon_2}) = \mathbf{e}_{b-a}^{\varepsilon_2}.$$

4.1.2 The regularized categories $\mathbf{R}_{1/2^n}$, \mathbf{R}_ω

Let $R_{1/2^n} \subset Q_{1/2^n}$ be the full sub-category consisting of all objects of the form $e_{m/2^n}$, $m \in \mathbb{Z}$. The sub-category $R_{1/2^n}$ is discrete and closed under the tensor product. The embedding $I_{1/2^n} : R_{1/2^n} \rightarrow Q_{1/2^n}$ has a right adjoint, to be denoted by $\mathbf{pr}_{1/2^n}$, where $\mathbf{pr}_{1/2^n} e_a = e_{m/2^n}$, where m is the largest integer satisfying $m/2^n \leq a$. Let $\mathbf{R}_{1/2^n} := \mathbf{swell} R_{1/2^n}$, the functors I, \mathbf{pr} extend to functors $I_{1/2^n} : \mathbf{R}_{1/2^n} \rightarrow Q_{1/2^n}$, $\mathbf{pr}_{1/2^n} : Q_{1/2^n} \rightarrow \mathbf{R}_{1/2^n}$.

Let us define a full sub-category of $R_\omega \subset Q_\omega$ consisting of all objects of the form $e_{m/2^n}^{1/2^n}$, $n = 0, 1, 2, \dots$, $m \in \mathbb{Z}$. R_ω is closed under the tensor product so that the embedding $I : R_\omega \rightarrow Q_\omega$ is a tensor functor.

The functor I has a right adjoint, to be denoted by \mathbf{pr} , where $\mathbf{pr}(e_a^{1/2^n}) = e_{m/2^n}^{1/2^n}$, where m is the largest integer satisfying $m/2^n \leq a$. We have a lax tensor structure on \mathbf{pr} i.e. a natural transformation

$$\mathbf{pr}(X) \otimes \mathbf{pr}(Y) \rightarrow \mathbf{pr}(X \otimes Y)$$

satisfying the associativity condition.

Let $\mathbf{R}_\omega := \mathbf{swell} R_\omega$. The functor \mathbf{pr} extends to a lax tensor functor $\mathbf{pr} : Q_\omega \rightarrow \mathbf{R}_\omega$. Via \mathbf{pr} , the SMC Q_ω^+ is enriched over the category Q_ω .

4.1.3 A Hopf algebra ℓ in \mathbf{R}_ω

Let P be the set of all numbers of the form $m/2^n$, $m > 0$, $n \geq 0$. For $a \in P$ let $\mathbf{den}(a) := 1/2^n$, where n is the smallest non-negative integer such that $2^n a \in \mathbb{Z}$. Let $\mathcal{V} \in Q_\omega$ be defined by $\mathcal{V} := \prod_{a \in P} \lambda_a$,

where $\lambda_a := e_a^{\mathbf{den}(a)}$. Let $p_a : \mathcal{V} \rightarrow f_a$ be the projection. Let

$$D_{b,a-b}^a : f_a \rightarrow f_b \otimes f_{a-b}, \quad 0 < a < b$$

be the natural map.

Let $D : \mathcal{V} \rightarrow \mathcal{V} \otimes \mathcal{V}$ be defined as $D = \sum_{0 < a < b} D_a^{b,a-b} \mathbf{pr}_a$.

Let

$$\ell := \bigoplus_{k=0}^{\infty} (\mathcal{V}[-1])^{\otimes k}.$$

We have an obvious Hopf algebra structure on ℓ , where the product is the concatenation and the co-product is given by requiring that $\mathcal{V}[-1]$ is primitive.

4.1.4 ℓ -modules in \mathbf{R}_ω : the category \mathbf{R}_q

Let R_q be the following category: its objects are of the form $f_{m/2^n}^{1/2^n}$, $m, n \in \mathbb{Z}, n \geq 0$. and $\text{Hom}(f_{m/2^n}^{1/2^n}, f_{M/2^N}^{1/2^N}) = \mathbb{A}$ whenever $n \leq N$ and $m/2^n \leq M/2^N$; $\text{Hom}(f_{m/2^n}^{1/2^n}, f_{M/2^N}^{1/2^N}) = 0$ otherwise.

It is clear that every ℓ -module X in \mathbf{R}_ω gives rise to an object of $\mathbf{swell} R_q$, to be denoted by $[X]$.

Let \mathbf{R}_q be the category, enriched over \mathbf{GZ} , whose every object is a ℓ -module in \mathbf{R}_ω and we set

$$\text{Hom}_{\mathbf{R}_q}(X, Y) := \text{Hom}_{\mathbf{swell} R_q}([X], [Y]).$$

We have a tensor structure on \mathbf{R}_q , where we let $X \otimes Y$ to be the same as in the category \mathbf{R}_ω with the induced ℓ -module structure (coming from the co-product on ℓ). This tensor structure admits an inner hom, again borrowed from \mathbf{R}_ω .

4.1.5 Tensor functor $\mathcal{Q}_\infty \rightarrow \mathbf{R}_q$

Let $Q_\infty^{1/2^n} \subset Q_\infty$ be the full sub-category formed by all objects of the form $e_{m/2^n}$, $m \in \mathbb{Z}$. We have a right adjoint functor to the embedding $p_n : Q_\infty \rightarrow Q_\infty^{1/2^n}$, where $p_n(e_a) = e_{m/2^n}$ and m is the largest integer such that $m/2^n \leq a$. We have an embedding $i_n : Q_\infty^{1/2^n} \rightarrow R_q$, $i_n(e_{m/2^n}) = f_{m/2^n}^{1/2^n}$. Let $\pi_n : \mathcal{Q}_\infty \rightarrow \mathbf{R}_q$ be induced by $i_n p_n$. We have a tensor structure on π_n .

We have a natural transformation of tensor functors $\pi_n \rightarrow \pi_{n+1}$. Set $\pi(X) = \text{hocolim}_n \pi_n(X)$. We have an induced tensor structure on π . Via π , every category enriched over \mathcal{Q}_∞ is enriched over \mathbf{R}_q .

PART 2. SHEAVES

5 The category of sheaves

We fix a ground SMC C enriched over the category of finite complexes of finitely generated free \mathbb{A} -modules.

Let X be a locally compact topological space. Let Open_X be the category whose objects are open sub-sets of X and we have a unique arrow $U \rightarrow V$ iff $U \subset V$. We denote by the same symbol the \mathbb{A} -span of Open_X .

Similarly, denote by precompact_X the poset of all open precompact sets in X .

5.1 Pre-sheaves

Denote $\text{psh}(X, C) := \mathbf{swell}(\text{Open}_X^{\text{op}} \otimes C)$; $\text{psh}(X) := \mathbf{swell}(\text{Open}_X^{\text{op}})$.

5.2 Coverings

Let $U \in \text{Open}_X$. A *covering* of U is a subset $\mathcal{U} \subset \text{Open}_U$ satisfying:

- \mathcal{U} is closed under finite intersections;
- the union of all elements in \mathcal{U} is U .

5.3 Various gluing conditions

5.3.1 Meyer-Vietoris Condition

Let $F : \text{Open}_X \rightarrow \mathbf{swell} C$ be a functor. Say that F satisfies the Meyer-Vietoris condition if, given a pair of open subsets U, V of X , the total of the complex

$$0 \rightarrow F(U \cap V) \rightarrow F(U) \oplus F(V) \rightarrow F(U \cap V) \rightarrow 0 \quad (9)$$

is homotopy equivalent to 0.

5.3.2 Coverings

Let U be an open subset of X . Let \mathcal{U} be a family of open subsets of U whose union is U and which is closed under finite intersections.

We have an induced poset structure on \mathcal{U} as well as an embedding $I_{\mathcal{U}} : \mathcal{U} \rightarrow \text{Open}_X$. Call \mathcal{U} a finite covering if \mathcal{U} is a finite set.

5.3.3 Finite covering condition

Let $F : \text{Open}_X \rightarrow \mathbf{swell} C$ be a functor. Let U be an open subset and \mathcal{U} be its covering. We say that F satisfies the gluing condition with respect to \mathcal{U} if the natural map

$$\text{hocolim}_{\mathcal{U}} F \rightarrow F(U)$$

is a homotopy equivalence. The Meyer-Vietoris condition (9) is equivalent to the gluing condition with respect to the covering $\{U, V, U \cap V\}$ of the set $U \cup V$ (where some of the sets $U, V, U \cap V$ may coincide).

Proposition 5.1 *Suppose F satisfies the Meyer-Vietoris condition and $F(\emptyset) \sim 0$. Then F satisfies the gluing condition for any finite covering \mathcal{U} .*

Sketch of the proof Let \mathcal{U} be a covering of U . Say that a subset $M \subset \mathcal{U}$ generates \mathcal{U} if every element of \mathcal{U} is a finite intersection of a finite number of elements from M .

Let us use induction by the number of elements in M . If M consists of one element, the statement is obvious.

Let now $M = \{U_1, U_2, \dots, U_{N-1}\}$. Let $V := U_1 \cup U_2 \cup \dots \cup U_{N-1}$. Let \mathcal{V} be the covering of V generated by U_1, U_2, \dots, U_{N-1} . Let \mathcal{W} be the covering of $V \cap U_N$ generated by $U_1 \cap U_N, U_2 \cap U_N, \dots, U_{N-1} \cap U_N$.

We have a complex:

$$0 \rightarrow \text{hocolim}_{\mathcal{W}} F \rightarrow \text{hocolim}_{\mathcal{V}} F \oplus F(U_N) \rightarrow \text{hocolim}_{\mathcal{U}} F \rightarrow 0$$

whose totalization is acyclic for any functor $F : \text{Open}_X \rightarrow \mathbf{swell} C$. We also have a map of complexes

$$\begin{array}{ccccccc} 0 & \longrightarrow & \text{hocolim}_{\mathcal{W}} F & \longrightarrow & \text{hocolim}_{\mathcal{V}} F \oplus F(U_N) & \longrightarrow & \text{hocolim}_{\mathcal{U}} F \longrightarrow 0 \\ & & \downarrow & & \downarrow & & \downarrow \\ 0 & \longrightarrow & F(V \cap U_N) & \longrightarrow & F(V) \oplus F(U_N) & \longrightarrow & F(U) \longrightarrow 0 \end{array}$$

By the induction assumption all the vertical arrows except the rightmost one are homotopy equivalences. The bottom line is an acyclic complex by Meyer-Vietoris. Hence, the rightmost vertical arrow is a homotopy equivalence, which prove the induction transition.

5.3.4 Direct limit condition

We say that a functor $F : \text{Open}_X \rightarrow \mathbf{swell} C$ satisfies the direct limit condition if given any filtered poset I and any monotone map $U : I \rightarrow \text{Open}_X$, the natural map

$$\text{hocolim}_{i \in I} F(U_i) \rightarrow F\left(\bigcup_{i \in I} U_i\right)$$

is a homotopy equivalence.

5.3.5

$F : \text{Open}_X \rightarrow \mathbf{swell} C$ satisfies the gluing condition for any covering \mathcal{U} iff $F(\emptyset) \sim 0$, F satisfies the Meyer-Vietoris condition and the direct limit condition.

5.4 Definition of a sheaf

Let $\text{sh}(X, C) \subset \text{psh}(X, C)$ be the full sub-category consisting of all objects F satisfying:

- F is stable;
- h_F satisfies the gluing condition for all coverings of all open subsets of X .

5.5 sections supported on a compact set

Let $K \in \text{compact}_X$. Denote

$$\Gamma_K(F) := \text{holim}_{U \in \text{Open}_X; K \subset U} h_F(U).$$

We have

$$\Gamma_K(F) = \text{Hom}_{\text{psh}(X)}(\text{hocolim}_{U \in \text{Open}_X; K \subset U} U; F).$$

5.6 Representability

Let us define an object $\mathbb{A}_K \in \text{sh}(X)$, for every $K \in \text{compact}_X$, with the property that we have a natural transformation of functors $\text{psh}(X, C) \rightarrow \mathbf{swell} C$:

$$\text{Hom}(\mathbb{A}_K; -) \rightarrow \Gamma_K(-).$$

which induces a homotopy equivalence

$$\text{Hom}(\mathbb{A}_K; F) \rightarrow \Gamma_K(F)$$

whenever $F \in \text{sh}(X, C)$.

5.6.1 Finite coverings of K

A *finite covering of K* is a finite subset $\mathcal{U} \subset \text{Open}_X$ satisfying:

- every element of \mathcal{U} is a precompact subset of X ;
- the union of all elements in \mathcal{U} contains K ;
- \mathcal{U} is closed under intersection.

Denote by \mathbf{Cov}_K the set of all finite coverings of K .

5.6.2 A pre-sheaf $\mathbb{A}_{\mathcal{U}}$

For $\mathcal{U} \in \mathbf{Cov}_K$ set

$$\mathbb{A}_{\mathcal{U}} := \text{holim}_{U \in \mathcal{U}} \mathbb{A}_U \in \text{psh}(X).$$

denote by $\iota_X : X \rightarrow \mathbb{A}_{\mathcal{U}}$ the natural map.

5.6.3 Cap-product

Denote by $\cap : \text{Open}_X \times \text{Open}_X \rightarrow \text{Open}_X$ the following functor: $\cap(U, V) = U \cap V$. This functor extends naturally to a functor

$$\cap : \text{psh}(X) \otimes \text{psh}(X) \rightarrow \text{psh}(X).$$

This functor gives a tensor structure on $\text{psh}(X)$. The unit of this structure is X .

5.6.4 Definition of \mathbb{A}'_K .

Let $S(K)$ be the poset of finite subsets of \mathbf{Cov}_X . For $I \in S(K)$, set

$$\mathbb{A}_I := \bigcap_{\mathcal{U} \in I} \mathbb{A}_{\mathcal{U}}$$

Let $I \subset J$. We then have an induced map $k_{IJ} : \mathbb{A}_I \rightarrow \mathbb{A}_J$ given by

$$\mathbb{A}_I = \bigcap_{\mathcal{U} \in I} \mathbb{A}_{\mathcal{U}} \cap \bigcap_{\mathcal{U} \in J \setminus I} X \rightarrow \bigcap_{\mathcal{U} \in J} \mathbb{A}_{\mathcal{U}},$$

which is induced by the maps $\iota_{\mathcal{U}} : X \rightarrow \mathbb{A}_{\mathcal{U}}$, $\mathcal{U} \in J \setminus I$.

It is clear that $k_{JK}k_{IJ} = k_{IK}$, $I \subset J \subset K$. Therefore, $\mathbb{A}_- : S(K) \rightarrow \text{psh}(X)$ is a functor.

Set

$$\mathbb{A}'_K := \text{hocolim}_{I \in S(K)} \mathbb{A}_I. \quad (10)$$

5.6.5 Lemma

Let $\mathcal{U}, \mathcal{V} \in \mathbf{Cov}_K$. Write $\mathcal{U} \leq \mathcal{V}$ if for every $U \in \mathcal{U}$ there exists a $V \in \mathcal{V}$ such that $U \subset V$.

Lemma 5.2 *Suppose $\mathcal{U} \leq \mathcal{V}$. Then the natural map*

$$\mathbb{A}_{\mathcal{U}} \rightarrow \mathbb{A}_{\mathcal{U}} \cap \mathbb{A}_{\mathcal{V}}$$

is a homotopy equivalence in $\text{psh}(X)$.

Sketch of the proof The above map reads as

$$\text{holim}_{U \in \mathcal{U}} U \rightarrow \text{holim}_{U \in \mathcal{U}} \text{holim}_{V \in \mathcal{V}} U \rightarrow \text{holim}_{U \in \mathcal{U}} \text{holim}_{V \in \mathcal{V}} U \cap V$$

Therefore, it suffices to show that for every $U \in \mathcal{U}$ the natural map

$$U \rightarrow \text{hocolim}_{V \in \mathcal{V}} U \cap V$$

is a homotopy equivalence.

Denote by $\mathcal{W} \subset \text{Open}_U$ the sub-set consisting of all subsets of the form $U \cap V$. We have a functor $\psi : \mathcal{V} \rightarrow \mathcal{W}$, $\psi(V) = U \cap V$. Let $I : \mathcal{W}^{\text{op}} \rightarrow \text{Open}_X^{\text{op}}$ be the embedding.

Let $\Psi : \mathcal{W}^{\text{op}} \times \mathcal{V} \rightarrow \mathbf{GZ}$ be given by $\Psi(W, V) = \text{Hom}_{\mathcal{W}}(W; \psi(V))$. We have

$$I \circ \psi = \text{Hom}_W(\Psi; I).$$

Whence a homotopy equivalence

$$\text{holim}_{V \in \mathcal{V}} U \cap V = \text{RHom}_{\mathcal{V}^{\text{op}}}(\mathbb{A}; \text{Hom}_W(\Psi; I)) \xrightarrow{\sim} \text{RHom}_{\mathcal{W}^{\text{op}}}(\mathbb{A}_{\mathcal{V}} \otimes_{\mathcal{V}}^L \Psi; I).$$

The natural map $\mathbb{A}_{\mathcal{V}} \otimes_{\mathcal{V}}^L \Psi \rightarrow \mathbb{A}_{\mathcal{W}}$ is a homotopy equivalence, because for every $W \in \mathcal{W}$ we have

$$\mathbb{A}_{\mathcal{V}} \otimes_{\mathcal{V}}^L \Psi(W) = \text{hocolim}_{V \in \mathcal{V}; V \cap U \supseteq W} \xrightarrow{\sim} \mathbb{A},$$

and there exists the least element in \mathcal{V} containing W . Thus, we have a homotopy equivalence

$$I(U) \xrightarrow{\sim} \text{RHom}_{\mathcal{W}^{\text{op}}}(\mathbb{A}_{\mathcal{W}}; I) \xrightarrow{\sim} \text{RHom}_{\mathcal{W}^{\text{op}}}(\mathbb{A}_{\mathcal{V}} \otimes_{\mathcal{V}}^L \Psi; I)$$

because $U \in \mathcal{W}$ is the greatest element.

Corollary 5.3 *Let $S \in S(K)$ and let $\mathcal{V} \in S$ satisfy $\mathcal{V} \leq \mathcal{U}$ for all $\mathcal{U} \in S$. Then the natural map*

$$\mathbb{A}_{\mathcal{V}} \rightarrow \mathbb{A}_S$$

is a homotopy equivalence.

Lemma 5.4 *Let $I \in \mathbf{Cov}_X$. The two maps $i_1 : \mathbb{A}_I = \mathbb{A}_I \cap X \rightarrow \mathbb{A}_I \cap \mathbb{A}_I$ and $i_2 : \mathbb{A}_I = X \cap \mathbb{A}_I \rightarrow \mathbb{A}_I \cap \mathbb{A}_I$ are homotopy equivalent.*

Sketch of the proof We have a map

$$m : \mathbb{A}_I \cap \mathbb{A}_I = \text{holim}_{(U_1, U_2) \in I \times I} U_1 \cap U_2 \rightarrow \text{holim}_{(U, U) \in I \times I} U \cap U = \mathbb{A}_I.$$

We have $mi_1 = mi_2 = \text{Id}$. As i_1, i_2 are homotopy equivalences, so is m . As $mi_1 = mi_2$, the statement follows.

5.6.6 Proof that \mathbb{A}'_K belongs to $\text{sh}(X)$.

Let us check the conditions from Sec 5.4.

A. Stability is stable under direct limits, so we are to check the stability of $\mathbb{A}_{\mathcal{U}}$, which is a finite complex of objects of the form U , $U \in \mathcal{U}$, which implies the statement.

B. Direct limit condition. Let $A \in \text{Open}_X$ and let \mathcal{A} be a family of open subsets of A which forms a filtered poset. We will show that the natural map

$$\text{hocolim}_{B \in \mathcal{A}} \mathbb{A}'_K(B) \rightarrow \mathbb{A}'_K(A)$$

is a homotopy equivalence. Equivalently, we are to prove:

$$\text{hocolim}_{I \in S(K)} \text{Cone}((\text{hocolim}_{B \in \mathcal{A}} \mathbb{A}_I(B)) \rightarrow \mathbb{A}_I(A))$$

is acyclic. To this end we will show that for every $I \in S(K)$ there exists a $J \in S(K)$, $J \geq I$, such that the map

$$\text{Cone}((\text{hocolim}_{B \in \mathcal{A}} \mathbb{A}_I(B)) \rightarrow \mathbb{A}_I(A)) \rightarrow \text{Cone}((\text{hocolim}_{B \in \mathcal{A}} \mathbb{A}_J(B)) \rightarrow \mathbb{A}_J(A)) \quad (11)$$

is homotopy equivalent to 0.

B1. Let $I = \{\mathcal{U}_1, \mathcal{U}_2, \dots, \mathcal{U}_n\}$. Let us construct a covering $\mathcal{V} \in \mathbf{Cov}_K$ with the following properties:

— there exist poset maps $\phi_k : \mathcal{V} \rightarrow \mathcal{U}_k$ such that every $V \in \mathcal{V}$ satisfies $\bar{V} \subset \phi_k(V)$ for all k .

Let $\mathcal{U} = \bigcup_k \mathcal{U}_k$. One can choose an open subset $U' \subset U$ for every $U \in \mathcal{U}$ such that $\bar{U'} \subset U$. Let \mathcal{V} consist of all finite intersections of the sets U' . For every $V \in \mathcal{V}$, let $S_k(V) = \{U \in \mathcal{U}_k \mid V \subset U\}$. Set $\phi_k(V) := \bigcap_{U \in S_k(V)} U$.

B2. Set $\mathcal{I} := \prod_k \mathcal{U}_k$. Set $\phi := \prod_k \phi_k : \mathcal{V} \rightarrow \mathcal{I}$. For $i = (U_1, U_2, \dots, U_n) \in \mathcal{I}$, set $\mathcal{U}_i := U_1 \cap U_2 \cap \dots \cap U_n$.

B3. Set $J = I \cup \{\mathcal{V}\}$.

It follows that $\mathcal{V} \leq \mathcal{U}_k$, $k = 1, 2, \dots, n$.

Therefore, the natural map

$$\mathbb{A}_{\mathcal{V}} \rightarrow \mathbb{A}_J = \mathbb{A}_{\mathcal{V}} \cap \mathbb{A}_I$$

is a homotopy equivalence.

The maps ϕ_k induce a map

$$\pi : \mathbb{A}_{\mathcal{I}} \rightarrow \mathbb{A}_{\mathcal{V}} \cap \mathbb{A}_{\mathcal{V}} \cap \dots \cap \mathbb{A}_{\mathcal{V}} \xrightarrow{m} \mathbb{A}_{\mathcal{V}}.$$

We have a diagram

$$\begin{array}{ccc} \mathbb{A}_{\mathcal{V}} & \xrightarrow{\sim} & \mathbb{A}_{\mathcal{V}} \cap \mathbb{A}_I \\ \pi \uparrow & \nearrow j & \uparrow \sim \\ \mathbb{A}_I & \xrightarrow{i_1} & \mathbb{A}_I \cap \mathbb{A}_I \\ & \xrightarrow{i_2} & \end{array}$$

Here i_1, i_2 are as in Lemma 5.4 so that $i_1 \sim i_2$ and both i_1 and i_2 are homotopy equivalences. We have $j\pi = \sigma i_1$. Therefore $j\pi \sim \sigma i_2$, where σi_2 is the natural map $\mathbb{A}_I \rightarrow \mathbb{A}_J$. Therefore, one can replace in

(11) the natural map $\mathbb{A}_I \rightarrow \mathbb{A}_J$ by the map $j\pi$. As j is a homotopy equivalence, we can replace $j\pi$ with π , so that the problem now reduces to showing that the map

$$\text{Cone}((\text{hocolim}_{B \in \mathcal{A}} \mathbb{A}_I(B)) \rightarrow \mathbb{A}_I(A)) \rightarrow \text{Cone}((\text{hocolim}_{B \in \mathcal{A}} \mathbb{A}_V(B)) \rightarrow \mathbb{A}_V(A))$$

is homotopy equivalent to 0. This map factorizes as

$$\begin{aligned} & \text{Cone}((\text{hocolim}_{B \in \mathcal{A}} \text{holim}_{i \in \mathcal{I}} \text{Hom}(\mathcal{U}_i, B)) \rightarrow \text{holim}_{i \in \mathcal{I}} \text{Hom}(\mathcal{U}_i, A)) \\ & \rightarrow \text{Cone}((\text{hocolim}_{B \in \mathcal{A}} \text{holim}_{V \in \mathcal{V}} \text{Hom}(\mathcal{U}_{\phi(V)}, B)) \rightarrow \text{holim}_{V \in \mathcal{V}} \text{Hom}(\mathcal{U}_{\phi(V)}, A)) \\ & \xrightarrow{G} \text{Cone}((\text{hocolim}_{B \in \mathcal{A}} \text{holim}_{V \in \mathcal{V}} \text{Hom}(V, B)) \rightarrow \text{holim}_{V \in \mathcal{V}} \text{Hom}(V, A)) \end{aligned}$$

Let us show that the arrow G is homotopy equivalent to 0.

We have a homotopy equivalence

$$\begin{aligned} & \text{Cone}((\text{hocolim}_{B \in \mathcal{A}} \text{holim}_{V \in \mathcal{V}} \text{Hom}(\mathcal{U}_{\phi(V)}, B)) \rightarrow \text{holim}_{V \in \mathcal{V}} \text{Hom}(\mathcal{U}_{\phi(V)}, A)) \\ & \rightarrow \text{Cone}(\text{hocolim}_{B \in \mathcal{A}} \text{holim}_{V \in \mathcal{V}} \text{Hom}(\mathcal{U}_{\phi(V)}, B) \rightarrow \text{hocolim}_{B \in \mathcal{A}} \text{holim}_{V \in \mathcal{V}} \text{Hom}(\mathcal{U}_{\phi(V)}, A)) \\ & = \text{hocolim}_{B \in \mathcal{A}} \text{holim}_{V \in \mathcal{V}} (\text{Hom}(\mathcal{U}_{\phi(V)}, B) \rightarrow \text{Hom}(\mathcal{U}_{\phi(V)}, A)). \end{aligned}$$

Similarly, we have a homotopy equivalence

$$\begin{aligned} & \text{Cone}(\text{hocolim}_{B \in \mathcal{A}} \text{holim}_{V \in \mathcal{V}} \text{Hom}(V, B) \rightarrow \text{holim}_{V \in \mathcal{V}} \text{Hom}(V, A)) \\ & \xrightarrow{\sim} \text{hocolim}_{B \in \mathcal{A}} \text{holim}_{V \in \mathcal{V}} \text{Cone}(\text{Hom}(V, B) \rightarrow \text{Hom}(V, A)). \end{aligned}$$

The arrow G is then homotopy equivalent to the arrow

$$\begin{aligned} G_1 : & \text{hocolim}_{B \in \mathcal{A}} \text{holim}_{V \in \mathcal{V}} \text{Cone}(\text{Hom}(\mathcal{U}_{\phi(V)}, B) \rightarrow \text{Hom}(\mathcal{U}_{\phi(V)}, A)) \\ & \rightarrow \text{hocolim}_{B \in \mathcal{A}} \text{holim}_{V \in \mathcal{V}} \text{Cone}(\text{Hom}(V, B) \rightarrow \text{Hom}(V, A)) \end{aligned}$$

induced by the embedding $V \subset \mathcal{U}_{\phi(V)}$.

Let $\mathcal{V}_A \subset \mathcal{V}$ consist of all those $V \in \mathcal{V}$ satisfying $\mathcal{U}_{\phi(V)} \subset A$. It follows that $\overline{V} \subset A$ for all $V \in \mathcal{V}_A$. Hence, there exists $B_0 \in \mathcal{A}$ such that $\overline{V} \subset B_0$ for all $V \in \mathcal{V}_A$ because all \overline{V} are compact.

Let $\delta_A : \mathcal{V}^{\text{op}} \rightarrow \mathbf{GZ}$ be defined by $\delta_A(U) = \mathbb{A}$ if $U \in \mathcal{V}_A$ and $\delta_A(U) = 0$ otherwise. We have a natural transformation $\delta_A \rightarrow \mathbb{A}_{\mathcal{V}^{\text{op}}}$.

The map G_1 factorizes as follows:

$$\begin{aligned} & \text{hocolim}_{B \in \mathcal{A}} \text{holim}_{V \in \mathcal{V}} \text{Cone}(\text{Hom}(\mathcal{U}_{\phi(V)}, B) \rightarrow \text{Hom}(\mathcal{U}_{\phi(V)}, A)) \\ & = \text{hocolim}_{B \in \mathcal{A}} \text{holim}_{V \in \mathcal{V}} \delta_A(V) \otimes \text{Cone}(\text{Hom}(\mathcal{U}_{\phi(V)}, B) \rightarrow \text{Hom}(\mathcal{U}_{\phi(V)}, A)) \\ & \rightarrow \text{hocolim}_{B \in \mathcal{A}} \text{holim}_{V \in \mathcal{V}} \delta_A(V) \otimes \text{Cone}(\text{Hom}(V, B) \rightarrow \text{Hom}(V, A)) \\ & \rightarrow \text{hocolim}_{B \in \mathcal{A}} \text{holim}_{V \in \mathcal{V}} \text{Cone}(\text{Hom}(V, B) \rightarrow \text{Hom}(V, A)). \end{aligned}$$

It therefore suffices to show that the object

$$\text{hocolim}_{B \in \mathcal{A}} \text{holim}_{V \in \mathcal{V}} \delta_A(V) \otimes \text{Cone}(\text{Hom}(V, B) \rightarrow \text{Hom}(V, A))$$

is acyclic.

The set of all $B \in \mathcal{A}$, where $B \supset B_0$, is cofinal in \mathcal{A} . Therefore, the above written object is homotopy equivalent to

$$\text{hocolim}_{B \in \mathcal{A}, B \supset B_0} \text{holim}_{V \in \mathcal{V}} \delta_A(V) \otimes \text{Cone}(\text{Hom}(V, B) \rightarrow \text{Hom}(V, A))$$

But the map $\text{Hom}(V, B) \rightarrow \text{Hom}(V, A)$ is an isomorphism whenever $B \in \mathcal{A}$, $B \supset B_0$, $V \in \mathcal{V}_A$. This implies the statement.

C. Finite covering condition. Let $A \in \text{Open}_X$ and let \mathcal{T} be a finite covering of A . Show that the map

$$\text{hocolim}_{B \in \mathcal{T}} \mathbb{A}'_K(B) \rightarrow \mathbb{A}'_K(A) \quad (12)$$

is a homotopy equivalence.

C1) Choose a finite subset $S \subset A$ such that $X, Y \in \mathcal{T}$, $X \cap S = Y \cap S$ implies $X = Y$. Consider the set \mathcal{X} consisting of all open sets $U \in \text{Open}_X$ such that $\overline{U} \subset A$ and $S \subset U$. The poset \mathcal{X} is closed under union, hence, it is filtered.

C2) For each $U \in \mathcal{X}$, we have a natural map

$$\text{hocolim}_{B \in \mathcal{T}} \mathbb{A}'_K(B \cap U) \rightarrow \text{hocolim}_{B \in \mathcal{T}} \mathbb{A}'_K(B).$$

As follows from B), the natural map

$$\text{hocolim}_{U \in \mathcal{X}} \text{hocolim}_{B \in \mathcal{T}} \mathbb{A}'_K(B \cap U) \rightarrow \text{hocolim}_{B \in \mathcal{T}} \mathbb{A}'_K(B)$$

is a homotopy equivalence.

We have a commutative diagram

$$\begin{array}{ccc} \text{hocolim}_{U \in \mathcal{X}} \text{hocolim}_{B \in \mathcal{T}} \mathbb{A}'_K(B \cap U) & \xrightarrow{\sim} & \text{hocolim}_{B \in \mathcal{T}} \mathbb{A}'_K(B) \\ \downarrow & & \downarrow \\ \text{hocolim}_{U \in \mathcal{X}} \mathbb{A}'_K(U) & \xrightarrow{\sim} & \mathbb{A}'_K(A) \end{array}$$

It therefore suffices to show that the left vertical arrow is a homotopy equivalence, which follows from

$$\text{hocolim}_{B \in \mathcal{T}} \mathbb{A}'_K(B \cap U) \rightarrow \mathbb{A}'_K(U)$$

being a homotopy equivalence.

Observe that the open sets $B \cap U$ form an open covering of U , to be denoted by \mathcal{T}_U . It also follows that if $B_1, B_2 \in \mathcal{T}$ and $B_1 \cap U = B_2 \cap U$ implies $B_1 = B_2$. Therefore, the rule $B \mapsto B \cap U$ is an isomorphism of posets $\mathcal{T} \rightarrow \mathcal{T}_U$ and we have an isomorphism

$$\text{hocolim}_{B \in \mathcal{T}} \mathbb{A}'_K(B \cap U) = \text{hocolim}_{B' \in \mathcal{T}_U} \mathbb{A}'_K(B').$$

C3) Call a subset $V \in \text{Open}_X$ *small* if $V \cap U$ is contained in some element of \mathcal{T}_U . Every point $x \in X$ has a small neighborhood U_x . Indeed, if $x \notin A$, then choose U_x so that it does not intersect U ; if $x \in A$, then there exists a $B \in \mathcal{T}$ such that $x \in B$ and we can choose U_x so that $U_x \subset B$.

Call a covering $\mathcal{U} \in \mathbf{Cov}_K$ *small* if so is every element of \mathcal{U} . As the intersection of small sets is small, such coverings exist.

Let $\Sigma \subset S(K)$ be a subset, where $\{\mathcal{U}_1, \mathcal{U}_2, \dots, \mathcal{U}_n\} \in \Sigma$ iff at least one of \mathcal{U}_i is small. The subset Σ is cofinal, therefore, the map

$$\mathrm{hocolim}_{I \in \Sigma} \mathbb{A}_I \rightarrow \mathbb{A}'_K$$

is a homotopy equivalence. The problem now reduces to showing that the natural map

$$\mathrm{hocolim}_{B \in \mathcal{T}} \mathbb{A}_I(B \cap U) \rightarrow \mathbb{A}_I(U)$$

is a homotopy equivalence for every $I \in \Sigma$.

It follows that every \mathbb{A}_I is a finite complex whose every term is of the form

$$Z := W \cap A_1 \cap A_2 \cap \dots \cap A_n$$

where W is a small open set. Therefore, \mathbb{A}_I is a finite complex whose every term is of the form Z , where Z is small.

It therefore suffices to show that the map

$$\mathrm{hocolim}_{B \in \mathcal{T}_U} \mathrm{Hom}(Z, B) \rightarrow \mathrm{Hom}(Z, U) \quad (13)$$

is a homotopy equivalence.

If Z is not contained in U , both sides are 0. If $Z \subset U$, then let $R \subset \mathcal{T}_U$ consist of all those B containing Z . R is non-empty because Z is small. R has the least element (the intersection of all its elements).

The map (13) is isomorphic to the natural map

$$\mathrm{hocolim}_{B \in R} \mathbb{A} \rightarrow \mathbb{A}$$

which is a homotopy equivalence as R has the least element.

5.6.7 Lemma

Lemma 5.5 *Let $U \in \mathrm{Open}_X$ be a neighborhood of K . Then the natural map $\mathbb{A}'_K = X \cap \mathbb{A}'_K \rightarrow U \cap \mathbb{A}'_K$ is a homotopy equivalence.*

Sketch of the proof Let $\delta := \mathrm{Cone} X \rightarrow U$. We are to show that $\delta \cap \mathbb{A}'_K \sim 0$.

Choose $V \in \mathrm{Open}_X$, $K \subset V$; $\overline{V} \subset U$.

Let $[V] \in \mathbf{Cov}_K$ be the covering consisting of a unique element V . It follows that $\delta \cap \mathbb{A}_V \sim 0$. Let $S_V \subset S(K)$ consist of all subsets containing $[V]$. Then it follows that

$$\delta \circ \mathrm{hocolim}_{I \in S_V} \mathbb{A}_I \sim 0.$$

As $S_V \subset S(K)$ is cofinal, the natural map

$$\mathrm{hocolim}_{I \in S_V} \mathbb{A}_I \rightarrow \mathrm{hocolim}_{I \in S(K)} \mathbb{A}_I = \mathbb{A}'_K$$

is a homotopy equivalence, hence $\delta \cap \mathbb{A}'_K \sim 0$.

5.6.8 Fundamental system of coverings

A subset $\mathbf{T} \subset \mathbf{Cov}_K$ is called the fundamental system of coverings of K if for every $\mathcal{V} \in \mathbf{Cov}_K$ there exists $\mathcal{U} \in \mathbf{T}$ such that $\mathcal{U} \leq \mathcal{V}$. Let $S(\mathbf{T}) \subset S(K)$ consist of all finite subsets of \mathbf{T} . We have a natural map

$$\mathrm{hocolim}_{I \in S(\mathbf{T})} \mathbb{A}_I \rightarrow \mathrm{hocolim}_{I \in S(K)} \mathbb{A}_I = \mathbb{A}'_K.$$

Proposition 5.6 *This map is a homotopy equivalence.*

Sketch of the proof Define a subset $\Sigma \subset S(K)$ to consist of all $I \in S(K)$ such that for every $\mathcal{U} \in I$ there exists a $\mathcal{V} \in I \cap \mathbf{T}$ such that $\mathcal{V} \leq \mathcal{U}$. Observe that Σ is a cofinal subset of $S(K)$ so that we have a homotopy equivalence

$$\mathrm{hocolim}_{I \in \Sigma} \mathbb{A}_I \xrightarrow{\sim} \mathrm{hocolim}_{I \in S(K)} \mathbb{A}_I = \mathbb{A}'_K.$$

The problem reduces to showing that the natural map

$$\mathrm{hocolim}_{I \in S(\mathbf{T})} \mathbb{A}_I \rightarrow \mathrm{hocolim}_{I \in \Sigma} \mathbb{A}_I \tag{14}$$

is a homotopy equivalence.

For $I \in S(K)$ denote $r(I) := I \cap \mathbf{T} \in S(\mathbf{T})$. We have a natural map

$$\mathbb{A}_{r(I)} \rightarrow \mathbb{A}_I$$

which is a homotopy equivalence for all $I \in \Sigma$.

Let $i : S(\mathbf{T}) \subset \Sigma$ be the embedding of posets. Let $h : S(\mathbf{T})^{\text{op}} \times \Sigma \rightarrow \mathbf{GZ}$ be defined by $h(x, y) = \mathrm{Hom}_{\Sigma}(i(x); y)$. We have $\mathrm{Hom}_{\Sigma}(i(x); y) = \mathrm{Hom}_{S(\mathbf{T})}(x; r(y))$.

We therefore have a commutative diagram

$$\begin{array}{ccc} \mathbb{A}_- \otimes_{S(\mathbf{T})}^L \mathrm{Hom}_{S(\mathbf{T})}(-; x) & \xrightarrow{\sim} & \mathbb{A}_- \otimes_{\Sigma}^L \mathrm{Hom}_{\Sigma}(i(-); y) \\ \downarrow \sim & & \downarrow \\ \mathbb{A}_{r(y)} & \xrightarrow{\sim} & \mathbb{A}_y \end{array}$$

This diagram proves that the natural map

$$\mathbb{A}_- \otimes_{S(\mathbf{T})}^L \mathrm{Hom}_{\Sigma}(i(-); y) \rightarrow \mathbb{A}_y.$$

is a homotopy equivalence

In order to prove that (14) is a homotopy equivalence, it now remains to show that the natural map

$$\mathrm{hocolim}_{y \in S(\mathbf{T})} \mathrm{Hom}_{\Sigma}(i(x); i(y)) \rightarrow \mathrm{hocolim}_{z \in \Sigma} \mathrm{Hom}_{\Sigma}(i(x); z)$$

is a homotopy equivalence for every $x \in S(\mathbf{T})$, which is obvious because we have an isomorphism $\mathrm{Hom}_{S(\mathbf{T})}(x, y) \rightarrow \mathrm{Hom}_{\Sigma}(i(x), i(y))$.

5.6.9 Definition of \mathbb{A}_K

Let \mathcal{K} be the poset of all neighborhoods of K . Set

$$\mathbb{A}_K := \text{hocolim}_{U \in \mathcal{K}} U \cap \mathbb{A}'_K.$$

We have a natural map $\mathbb{A}'_K \rightarrow \mathbb{A}_K$ which is a homotopy equivalence by Sec 5.6.7.

5.6.10 Represenatability

The map $X \rightarrow \mathbb{A}'_K$ induces a map

$$\text{hocolim}_{U \in \mathcal{K}} U \rightarrow \mathbb{A}_K$$

Let $F \in \text{sh}(X)$. We have an induced map

$$\text{Hom}(\mathbb{A}_K; F) \rightarrow \text{Hom}(\text{hocolim}_{U \in \mathcal{K}} U; F) = \Gamma_K(F).$$

Theorem 5.7 *The above map is a homotopy equivalence.*

Sketch of the proof. Let us rewrite the map:

$$\text{Hom}(\text{hocolim}_{(U,I) \in \mathcal{K} \times S(K)} U \cap \mathbb{A}_I; F) \rightarrow \text{Hom}(\text{hocolim}_{U \in \mathcal{K}} U; F).$$

For $\mathcal{U} \in \mathbf{Cov}_K$, let $|\mathcal{U}|$ be the union of all elements in \mathcal{U} . For $I = \{\mathcal{U}_1, \mathcal{U}_2, \dots, \mathcal{U}_n\} \in S(K)$, set

$$|I| = |\mathcal{U}_1| \cap |\mathcal{U}_2| \cap \dots \cap |\mathcal{U}_n|.$$

The above map factors as:

$$\begin{aligned} & \text{Hom}(\text{hocolim}_{(U,I) \in \mathcal{K} \times S(K)} U \cap \mathbb{A}_I; F) \\ & \quad \xrightarrow{\sim} \text{Hom}(\text{hocolim}_{I \in S(K); U \in \mathcal{K}, U \subset |I|} U \cap \mathbb{A}_I; F) \xrightarrow{u} \text{Hom}(\text{hocolim}_{U \in \mathcal{K}} U; F) \end{aligned}$$

The first arrow in this sequence is a homotopy equivalence because the subset $\{(U, I) \in \mathcal{K} \times S(K) \mid U \subset |I|\} \subset \mathcal{K} \times S(K)$ is cofinal. Therefore, the problem reduces to showing that the second arrow u is a homotopy equivalence. Let us rewrite u as

$$\text{holim}_{U \in \mathcal{K}} \text{holim}_{I \in S(K)_U} \text{Hom}(U \cap \mathbb{A}_I; F) \rightarrow \text{holim}_{U \in \mathcal{K}} \text{Hom}(U, F).$$

It suffices to show that for every $U \in \mathcal{K}$, the map

$$\text{hocolim}_{I \in S(K)_U} \text{Hom}(U \cap \mathbb{A}_I; F) \rightarrow \text{hocolim}_{I \in S(K)_U} \text{Hom}(U, F) \rightarrow \text{Hom}(U, F)$$

is a homotopy equivalence. The right arrow is a homotopy equivalence because the poset $S(K)_U$ is filtered. Let us show that the left arrow is a homotopy equivalence, which reduces to showing that for every $I \in S(K)_U$, the map

$$\text{Hom}(U \cap \mathbb{A}_I; F) \rightarrow \text{Hom}(U, F)$$

is a homotopy equivalence.

Let $I = \{\mathcal{U}_1, \mathcal{U}_2, \dots, \mathcal{U}_n\}$. Let $\mathcal{I} := \mathcal{U}_1 \times \mathcal{U}_2 \times \dots \times \mathcal{U}_n$. For $i = (U_1, U_2, \dots, U_n) \in \mathcal{I}$, denote $V_i := U_1 \cap U_2 \cap \dots \cap U_n$. We have

$$\mathrm{Hom}(U \cap \mathbb{A}_I; F) = \mathrm{hocolim}_{i \in \mathcal{I}} F(V_i \cap U).$$

It now follows that the natural map

$$\mathrm{hocolim}_{i \in \mathcal{I}} F(V_i \cap U) \rightarrow F(|I| \cap U) = F(U)$$

is a homotopy equivalence by the finite covering gluing property of F . This finishes the proof.

5.6.11 The objects \mathbb{A}_K generate $\mathrm{sh}(X)$

For $U \in \mathrm{precompact}_X$ denote $R_U := \mathbb{A}_{\overline{U}}$, $R : \mathrm{precompact}_X^{\mathrm{op}} \rightarrow \mathrm{sh}(X)$.

We have natural transformations

$$\mathbb{A}_{\overline{U}} \xleftarrow{\iota} \mathrm{hocolim}_{V \supseteq \overline{U}} V \xrightarrow{r} U. \quad (15)$$

For $U \in \mathrm{precompact}_X$ set

$$\mathbf{C}_U := \mathrm{hocolim}_{V \supseteq \overline{U}} V \in \mathrm{psh}(X),$$

$\mathbf{C} : \mathrm{precompact}_X^{\mathrm{op}} \rightarrow \mathrm{psh}(X)$. Let also $I : \mathrm{precompact}_X^{\mathrm{op}} \rightarrow \mathrm{psh}(X)$ be given by $I(U) = U$. so that $\iota : R \rightarrow I$. We can now rewrite (15) as a diagram of natural transformations of functors $\mathrm{precompact}_X \rightarrow \mathrm{psh}(X)$:

$$R \leftarrow \mathbf{C} \rightarrow I.$$

Let $F \in \mathrm{psh}(X, C)$. Denote

$$\mathcal{R}(F) := F \otimes_{\mathrm{precompact}_X}^L R \in \mathrm{sh}(X, C).$$

We then have an induced diagram

$$F \otimes_{\mathrm{precompact}_X}^L R \leftarrow F \otimes_{\mathrm{precompact}_X}^L \mathbf{C} \rightarrow F \otimes_{\mathrm{precompact}_X}^L I \rightarrow F. \quad (16)$$

Theorem 5.8 *Let $F \in \mathrm{sh}(X, C)$. Then every arrow in (16) is a homotopy equivalence.*

Sketch of the proof

Let us show that the arrow

$$F \otimes_{\mathrm{precompact}_X}^L \mathbf{C} \rightarrow F \otimes_{\mathrm{precompact}_X}^L R \quad (17)$$

is a homotopy equivalence.

Indeed, Let $G \in \mathrm{sh}(X)$, and consider the induced map

$$\mathrm{Hom}(F \otimes_{\mathrm{precompact}_X}^L R; G) \rightarrow \mathrm{Hom}(F \otimes_{\mathrm{precompact}_X}^L \mathbf{C}; G). \quad (18)$$

Denote $G', G'' : \mathrm{precompact}_X^{\mathrm{op}} \rightarrow \mathbf{swell} C$, where $G'(U) = \mathrm{Hom}(\mathbf{C}_U; G)$; $G''(U) = \mathrm{Hom}(R_U; G)$. We have a natural transformation $G'' \rightarrow G'$ induced by the natural transformation $\mathbf{C} \rightarrow R$. Then the map (18) is homotopy equivalent to

$$R\mathrm{Hom}(F, G') \rightarrow R\mathrm{Hom}(F, G''). \quad (19)$$

The Representability theorem implies that $G'(U) \rightarrow G''(U)$ is a homotopy equivalence for all U , therefore, (19) is a homotopy equivalence. Hence so is (18) and (17).

Let us switch to the remaining arrows in (16). Let $U \in \text{Open}_X$ and consider the induced sequence:

$$F \otimes_{\text{precompact}_X}^L \mathbf{C}(U) \rightarrow F \otimes_{\text{precompact}_X}^L I(U) \rightarrow F(U). \quad (20)$$

Rewrite:

$$\text{hocolim}_{V \in \text{precompact}_X | V \subset U} F(V) \rightarrow \text{hocolim}_{V \in \text{precompact}_X; V \subset U} F(V) \rightarrow F(U)$$

both arrows are homotopy equivalences by the covering axiom for F .

As F is a stable object, it follows that both arrows in (20) are homotopy equivalences. This proves the theorem.

5.6.12 Meyer-Vietoris property of \mathbb{A}_K

Let $K, L \subset X$ be compact subsets. We then have a complex

$$MV(K, L) := [0 \rightarrow \mathbb{A}_{K \cup L} \rightarrow \mathbb{A}_K \oplus \mathbb{A}_L \rightarrow \mathbb{A}_{K \cap L} \rightarrow 0]$$

Proposition 5.9 *This complex is acyclic*

Sketch of the proof A. It suffices to prove that $\text{Hom}(MV(K, L), G) \sim 0$ for any $G \in \text{sh}(X)$. As follows from the Representability theorem, the complex $\text{Hom}(MV(K, L), G)$ is homotopy equivalent to the complex

$$0 \rightarrow \Gamma_{K \cap L} G \rightarrow \Gamma_K(G) \oplus \Gamma_L(G) \rightarrow \Gamma(K \cup L) \rightarrow 0.$$

B. Let us show that the natural map

$$f : \text{hocolim}_{U \supset K; V \supset L} U \cap V \rightarrow \text{hocolim}_{W \supset K \cap L} W$$

is a homotopy equivalence in $\text{psh}(X)$.

Let $A \in \text{Open}_X^{\text{op}}$. Consider

$$\text{Hom}(A, \text{Cone } f) = \text{Cone}(\text{hocolim}_{U \supset K; V \supset L; U \cap V \subset A} \mathbb{A} \rightarrow \text{hocolim}_{W \supset K \cap L; W \subset A} \mathbb{A}).$$

Both colimits are filtered, therefore, $\text{Hom}(A, \text{Cone } f) \sim 0$, whence $\text{Hom}(\text{Cone } f; \text{Cone } f) \sim 0$ as we wanted.

C. Similarly, one checks that the natural map

$$\text{hocolim}_{U \supset K; V \supset L} U \cup V \rightarrow \text{hocolim}_{W \supset K \cup L} W$$

is a homotopy equivalence in $\text{psh}(X, C)$.

D. The natural map

$$\text{hocolim}_{U \supset K; V \supset L} U \rightarrow \text{hocolim}_{U \supset K} U$$

is a homotopy equivalence because the set $\{V \in \text{Open}_X | V \supset L\}$ is filtered.

E. B,C,D imply that the natural maps

$$\Gamma_{K \cap L} G \rightarrow \text{holim}_{U \supset K; V \supset L} G(U \cap V);$$

$$\Gamma_{K \cup L} G \rightarrow \text{holim}_{U \supset K; V \supset L} G(U \cup V);$$

$$\Gamma_K G \rightarrow \text{holim}_{U \supset K; V \supset L} G(U);$$

$$\Gamma_L G \rightarrow \text{holim}_{U \supset K; V \supset L} G(V)$$

are homotopy equivalences.

Hence, $\text{Hom}(MV(K, L); G)$ is homotopy equivalent to

$$\text{holim}_{U \supset K; V \supset L} [0 \rightarrow G(U \cap V) \rightarrow G(U) \oplus G(V) \rightarrow G(U \cup V) \rightarrow 0]$$

which is acyclic because G satisfies Meyer-Vietoris.

5.7 Triangulations

We assume that X is a manifold with corners.

Fix a triangulation \mathcal{T} of X . Denote by the same symbol \mathcal{T} the poset of simplices of \mathcal{T} . Let \mathcal{T}_n be the n -th baricentric subdivision of \mathcal{T} .

Let us identify each $x \in \mathcal{T}_n$ with the corresponding compact subset of X . Denote by $\mathbf{Star}_n(x) \in \text{precompact}_X$ the star of x , which is by definition the interior of the union of all closed simplices of \mathcal{T}_n containing x .

5.7.1 Theorem on $\text{Hom}(\mathbb{A}_x; \mathbb{A}_y)$

Theorem 5.10 *Let $x, y \in \mathcal{T}$. If $x \subset y$, then the natural map $\mathbb{A} \rightarrow \text{Hom}(\mathbb{A}_y; \mathbb{A}_x)$ is a homotopy equivalence. Otherwise, $\text{Hom}(\mathbb{A}_y; \mathbb{A}_x) \sim 0$.*

Sketch of the proof

Denote by $U_n(y)$ the union of all $\mathbf{Star}_n(z)$ where $z \subset y$, $z \in \mathcal{T}_n$. The open sets $U_n(y)$ form a fundamental system of neighborhoods of y . Therefore we have a homotopy equivalence

$$\text{Hom}(\mathbb{A}_y; \mathbb{A}_x) \xrightarrow{\sim} \text{holim}_n \mathbb{A}_x(U_n(y)) \xrightarrow{\sim} \text{holim}_n \mathbb{A}'_x(U_n(y)).$$

In the case $x \subset y$, the map $\mathbb{A} \rightarrow \text{Hom}(\mathbb{A}_y; \mathbb{A}_x)$ gives rise to a map $\mathbb{A} \rightarrow \text{holim}_n \mathbb{A}'_x(U_n(y))$. This map coincides with the map determined by the natural maps $\iota_n : \mathbb{A} \rightarrow \mathbb{A}'_x(U_n(y))$ coming from the inclusion $x \subset U_n(y)$.

Let $\mathcal{U}_n \in \mathbf{cov}_x$ be the covering formed by the stars of all simplices of \mathcal{T}_n contained in x . Let $\mathcal{E} \subset \mathbf{cov}_x$ consist of all \mathcal{U}_n . \mathcal{E} is a fundamental system of coverings of x .

Consider $\mathbb{A}_{\mathcal{U}_N}(U_n(y))$, $N > n$. In the case $x \subset y$, we have $\mathcal{U}_N \subset U_n(y)$, whence an isomorphism

$$\mathbb{A}_{\mathcal{U}_N}(U_n(y)) = \text{holim}_{\mathcal{U}_N} \mathbb{A},$$

in which case we have a homotopy equivalence $\mathbb{A} \rightarrow \text{holim}_{\mathcal{U}_N} \mathbb{A} = \mathbb{A}_{\mathcal{U}_N}(U_n(y))$. Likewise all the maps

$$\mathbb{A} \xrightarrow{\sim} \mathbb{A}_{\mathcal{U}_{N_k}}(U_n(y)) \xrightarrow{\sim} \mathbb{A}_{\{\mathcal{U}_{N_1}, \mathcal{U}_{N_2}, \dots, \mathcal{U}_{N_k}\}}(U_n(y)).$$

are homotopy equivalences, this proves that $\mathbb{A} \rightarrow \text{Hom}(\mathbb{A}_y; \mathbb{A}_x)$ is a homotopy equivalence.

Suppose that x is not contained in y .

In this case we have

$$\text{Cone}(\text{holim}_{u \in \mathcal{U}_N | u \cap (x \setminus U_n(y)) \neq \emptyset} \mathbb{A} \rightarrow \text{holim}_{u \in \mathcal{U}_N} \mathbb{A}) \xrightarrow{\sim} \mathbb{A}_{\mathcal{U}_N}(U_n(y)).$$

Let us show that the LHS is acyclic, which would imply the statement.

Indeed, $\text{holim}_{u \in \mathcal{U}_N | u \cap (x \setminus U_n(y)) \neq \emptyset} \mathbb{A}$ computes Chech cohomology of

$$\bigcup_{u \in \mathcal{U}_N | u \cap (x \setminus U_n(y)) \neq \emptyset} u$$

with respect to the covering by the elements of \mathcal{U}_N , which is contractible.

Likewise, $\text{holim}_{u \in \mathcal{U}_N} \mathbb{A}$ computes Chech cohomology of $U_n(x)$, which is contractible as well.

5.8 Constructible subsets

Let \mathcal{T} be a triangulation of X , call a closed subset $K \subset X$ \mathcal{T} -constructible if it is a finite union of closed simplices from \mathcal{T} . A locally closed subset $Z \subset X$ is called \mathcal{T} -constructible if it can be represented as a difference of two \mathcal{T} -constructible subsets of X .

Let Z_1, Z_2 be \mathcal{T} -constructible locally closed subsets of X . Denote $dZ_1 := \overline{Z_1} \setminus Z_1$.

Theorem 5.11 1) $\text{Hom}(\mathbb{A}_{Z_1}, \mathbb{A}_{Z_2})$ is homotopy equivalence to a finite complex of finitely generated free \mathbb{A} -modules concentrated in the positive degrees, in particular it admits a truncation.

2) We have a homotopy equivalence $\tau_{\leq 0} \text{Hom}(\mathbb{A}_{Z_1}, \mathbb{A}_{Z_2}) \rightarrow H$, where H is a finitely generated free \mathbb{A} -module of locally constant \mathbb{A} -valued functions on $\overline{Z_2} \setminus dZ_1$ supported on $Z_2 \cap Z_1$.

5.8.1 Generalization

Let $X \subset X'$ be an open embedding and \mathcal{T} a triangulation of X' . A locally closed subset $Z_1 \subset X$ is called \mathcal{T} -constructible if it is such as a subset of X' . The above theorem still holds true in $\text{sh}(X)$.

5.9 Base of topology

Let $\mathcal{B} \subset \text{Open}_X$ be a poset which is a base of the topology on X . Let us define a full sub-category $\text{sh}(\mathcal{B}, C) \subset \text{swell}(\mathcal{B}^{\text{op}} \otimes C)$ satisfying the same axioms as in Sec. 5.4 when all the open sets involved are in \mathcal{B} .

We have a functor

$$I_B : \text{sh}(\mathcal{B}, C) \rightarrow \text{swell}(\mathcal{B}^{\text{op}} \otimes C) \rightarrow \text{psh}(X, C).$$

Theorem 5.12 *The functor I_B establishes a quasi-equivalence $\text{sh}(\mathcal{B}, C) \rightarrow \text{sh}(X, C)$.*

Sketch of the proof

1) Let us show that the functor I_B takes values in $\text{sh}(X, C)$. Let $F \in \text{sh}(\mathcal{B}, C)$. The stability of $I_B(F)$ follows from Sec. 3.9.4. Let us check the covering axiom. Let U be an open subset of X and let \mathcal{U} be an open covering of U . Let us inscribe a \mathcal{B} -covering \mathcal{V} into \mathcal{U} so that $\mathcal{V} \leq \mathcal{U}$.

We have

$$\text{hocolim}_{A \in \mathcal{U}} F(A) \xleftarrow{\sim} \text{hocolim}_{(A, B) \in \mathcal{U} \times \mathcal{V}, B \subset A} F(B) \xrightarrow{\sim} \text{hocolim}_{B \in \mathcal{V}} F(B) \xrightarrow{\sim} F(U),$$

which implies the covering axiom.

2) It follows readily that I_B is a fully faithful functor. Therefore, it now remains to show that I_B is essentially surjective. Indeed, for every compact $K \subset X$ let $\text{cov}_{\mathcal{B}}(K) \subset \text{cov}_K$ consist of all coverings \mathcal{U} whose every element in in \mathcal{B} . It follows that $\text{cov}_{\mathcal{B}}(K) \subset \text{cov}_K$ is a fundamental system of coverings. Let $S_{\mathcal{B}}(K) \subset S(K)$ consist of all subsets of $\text{cov}_{\mathcal{B}}(K)$.

Let

$$\mathbb{A}_K^{\mathcal{B}} := \text{hocolim}_{I \in S_{\mathcal{B}}(K)} \mathbb{A}_I.$$

We have a homotopy equivalence $\mathbb{A}_K^{\mathcal{B}} \rightarrow \mathbb{A}_K'$.

Therefore, we have a homotopy equivalence

$$F(U) \otimes_{\text{precompact}_X} \mathbb{A}_{\overline{U}}^{\mathcal{B}} \xrightarrow{\sim} F(U) \otimes_{\text{precompact}_X} \mathbb{A}_{\overline{U}} \xrightarrow{\sim} F$$

in $\text{sh}(X, C)$. Finally,

$$F(U) \otimes_{\text{precompact}_X} \mathbb{A}_{\overline{U}}^{\mathcal{B}} \in \text{sh}(\mathcal{B}, C).$$

5.9.1 Product

In particular, let $Z = X \times Y$. Let \mathcal{B} be the base consisting of all open sets of the form $U \times V$, where $U \in \text{Open}_X$, $V \in \text{Open}_Y$. Denote $\text{sh}(X|Y, C) := \text{sh}(\mathcal{B}, C)$.

5.9.2 Lemma

Lemma 5.13 *Let $K \subset X$, $L \subset Y$ be compact subsets. We have a zig-zag homotopy equivalence between $\mathbb{A}_K \boxtimes \mathbb{A}_L$ and $\mathbb{A}_{K \times L}$.*

Sketch of the proof Both objects homotopically represent the same functor.

5.10 Convolution of kernels

Let $\Delta : \text{Open}_X^{\text{op}} \times \text{Open}_X^{\text{op}} \rightarrow \mathbf{GZ}$ be given by $\Delta(U, V) = \mathbb{Z}$ if $U \cap V \neq \emptyset$ and $\Delta(U, V) = 0$ otherwise.

Let us define the convolution functor as follows:

$$\circ_Y : \text{psh}(X|Y, C) \otimes \text{psh}(Y|Z, C) \rightarrow \text{psh}(X|Y|Z, C) \xrightarrow{\Delta} \text{psh}(X|Z, C).$$

One checks that this functor induces a functor

$$\circ_Y : \text{sh}(X|Y, C) \otimes \text{sh}(Y|Z, C) \rightarrow \text{sh}(X, Z).$$

This way we get a non-unital 2-category **kernels** whose 0-objects are locally compact spaces and $\text{kernels}(X, Y) = \text{sh}(X, Y)$.

5.11 Definition of \mathbb{A}_C , where C is a locally closed subset

5.11.1 One point compactification

Let $\overline{X} = X \cup \infty$ be the one point compactification of X . The topology on \overline{X} is defined as follows: a subset $U \subset \overline{X}$ not containing ∞ is open iff it is an open subset of X . A subset $U \subset \overline{X}$ containing ∞ is open iff $X \setminus U$ is compact. The space \overline{X} is compact and Hausdorff as long as X is locally compact.

5.11.2 Restriction of a sheaf onto an open subset

Let $U \subset X$ be an open subset. Let $|_U : \text{Open}_X^{\text{op}} \rightarrow \text{Open}_U^{\text{op}}$, where $V|_U = V$ if $V \subset U$ and $V|_U = 0$ otherwise. This functor extends to a functor $|_U : \text{psh}(X, C) \rightarrow \text{psh}(U, C)$. It follows easily that this functor transforms sheaves into sheaves so that we have a functor

$$|_U : \text{sh}(X, C) \rightarrow \text{sh}(U, C).$$

5.11.3 Definition of \mathbb{A}_C , C is closed

Let $C \subset X$ be a closed subset. Let $\overline{C} \subset \overline{X}$ be the closure of C in \overline{X} . $\overline{C} = C$ if C is compact and $\overline{C} = C \cup \infty$ otherwise. The set \overline{C} is compact.

Set

$$\mathbb{A}_C'' := \mathbb{A}_{\overline{C}}|_X.$$

If C is compact, we have an isomorphism $\mathbb{A}_C'' = \mathbb{A}_C$, therefore, we denote \mathbb{A}_C'' by \mathbb{A}_C .

5.11.4 \mathbb{A}_C , general case.

If $C \subset X$ is a locally closed subset, then let $dC := \overline{C} \setminus C \subset \overline{X}$ and set

$$\mathbb{A}_C := \text{Cone } \mathbb{A}_{\overline{X}} \rightarrow \mathbb{A}_{dC}.$$

Let $L \subset K$ be closed subsets of X . Let $C = K \setminus L$. We have $\overline{C} \subset K$; $dC \subset L$, $dC = K \cap L$. Whence an induced map

$$\text{Cone}(\mathbb{A}_K \rightarrow \mathbb{A}_L) \rightarrow \text{Cone}(\mathbb{A}_{\overline{C}} \rightarrow \mathbb{A}_{dC})$$

which is a homotopy equivalence. Indeed, let K', L', C' be the closures of K, L, C in \overline{X} . Let $dC' = C' \setminus C$. By definition, we have

$$\mathbb{A}_K = \mathbb{A}_{K'}|_X; \quad \mathbb{A}_L = \mathbb{A}_{L'}|_X; \quad \mathbb{A}_C = \mathbb{A}_{C'}|_X; \quad \mathbb{A}_{dC'} = \mathbb{A}_{dC}|_X.$$

Therefore, it suffices to show that the natural map

$$\text{Cone}(\mathbb{A}_{K'} \rightarrow \mathbb{A}_{L'}) \rightarrow \text{Cone}(\mathbb{A}_{C'} \rightarrow \mathbb{A}_{dC'})$$

is a homotopy equivalence.

We have $dC' = C' \cap L'$ and $K' = L' \cup C'$, whence the statement.

5.12 Convolution with \mathbb{A}_C

5.12.1 Convolution with $U \in \text{psh}(X, Z)$

For $H : \text{Open}_X \rightarrow \mathbf{swell} C$ and $K \in \text{compact}_X$, set

$$H(K) := \text{Cone}(H(X \setminus K) \rightarrow H(X)).$$

The rule $K \mapsto H(K)$ determines a functor $\text{compact}_X^{\text{op}} \rightarrow \mathbf{swell} C$.

Consider the following complex of functors $\text{Open}_X^{\text{op}} \times \text{Open}_X^{\text{op}} \rightarrow \mathbf{GZ}$:

$$0 \rightarrow h \rightarrow \mathbb{A}_{\text{Open}_X^{\text{op}} \times \text{Open}_X^{\text{op}}} \rightarrow \delta \rightarrow 0,$$

where $h(U, V) = \mathbb{A}$ if $V \subset X \setminus \overline{U}$, $h(U, V) = 0$ otherwise. This complex is termwise acyclic. Let $F \in \text{psh}(X, C)$ and $U \in \text{precompact}_X$. We have the following acyclic complex in $\mathbf{swell} C$:

$$0 \rightarrow h([U], F) \rightarrow \mathbb{A}_{\text{Open}_X^{\text{op}} \times \text{Open}_X^{\text{op}}}([U], F) \rightarrow 0.$$

This complex is isomorphic to

$$0 \rightarrow F(X \setminus \overline{U}) \rightarrow F(X) \rightarrow U \circ F \rightarrow 0.$$

This can be reinterpreted as a term-wise homotopy equivalence of functors $\text{precompact}_X^{\text{op}} \rightarrow \mathbf{swell} C$:

$$F(\overline{U}) \xrightarrow{\sim} U \circ F.$$

5.12.2 Convolution with \mathbb{A}_K

Theorem 5.14 *We have a term-wise zig-zag homotopy equivalence of functors $\text{sh}(X, C) \times \text{compact}_X^{\text{op}} \rightarrow \mathbf{swell} C$: $(F, K) \mapsto F(K)$ and $(F, K) \mapsto \mathbb{A}_K \circ F$.*

Sketch of the proof A. According to Sec. 5.6.10, we have a map $\text{hocolim}_{U \in \text{precompact}_X | K \subset U} U \rightarrow \mathbb{A}_K$ in $\text{psh}(X)$. Consider the induced map

$$\text{hocolim}_{U \in \text{precompact}_X | K \subset U} U \circ F \rightarrow \mathbb{A}_K \circ F.$$

Using the argument similar to those from Sec. 5.6.10, one can show that this map is a homotopy equivalence whenever $F \in \text{sh}(X, C)$.

Next, we have homotopy equivalences

$$F(K) \xleftarrow{\sim} \text{hocolim}_{U \in \text{precompact}_X | K \subset U} U \circ F(\overline{U}) \xrightarrow{\sim} \text{hocolim}_{U \in \text{precompact}_X | K \subset U} U \circ F.$$

This finishes the proof.

Corollary 5.15 *Let $F \in \text{sh}(X, C)$. We have a zig-zag homotopy equivalence of functors $\text{sh}(X, C) : \text{Open}_X \rightarrow \mathbf{swell} C$ between $(F, U) \mapsto F(U)$ and $(F, U) \mapsto \mathbb{A}_U \circ F$.*

5.13 Direct image

Let $f : X \rightarrow Y$ be a continuous map of locally compact topological spaces. We then have a functor $f^{-1} : \text{Open}_Y \rightarrow \text{Open}_X$. Let $F : \text{sh}(X, C)$. Set $f_!F \in \text{sh}(Y, C)$ to be defined by

$$f_!F = F(f^{-1}U) \otimes_{U \in \text{Open}_X}^L U \in \text{psh}(Y, C).$$

It follows that we have a term-wise homotopy equivalence

$$h_{f_!F}(U) \xrightarrow{\sim} h_F(f^{-1}U).$$

It now follows easily that $h_{f_!F}$ satisfies all the sheaf axioms so that $f_!F \in \text{sh}(Y, C)$.

Theorem 5.16 1) *There exists a kernel $K_f \in \text{sh}(Y|X)$ and a zig-zag term-wise homotopy equivalence of functors $\text{sh}(X) \rightarrow \text{sh}(Y)$ between $f_!$ and $F \mapsto K_f \circ_X F$.*

2) One can choose $K_f = \mathbb{A}_{\Gamma_f}$, where $\Gamma_f \subset Y \times X$ is the graph of f .

Sketch of the proof 1) The functor $f_!$ is homotopy equivalent to $\mathcal{R}f_!$. We have to

$$\mathcal{R}f_!F = h_{f_!F}(U) \otimes_{U \in \text{precompact}_Y}^L \mathbb{A}_{\overline{U}} \xrightarrow{\sim} F(f^{-1}U) \otimes_{U \in \text{precompact}_Y}^L \mathbb{A}_{\overline{U}}.$$

According to Corollary 5.15 the latter functor is term-wise homotopy equivalent to

$$\begin{aligned} F \mapsto \mathbb{A}_{\overline{U}} \otimes_{U \in \text{precompact}_X}^L \mathbb{A}_{f^{-1}U} \circ F \\ \xleftarrow{\sim} \text{hocolim}_{(T,U) \in \text{compact}_X^{\text{op}} \times \text{precompact}_X | T \supset U} \mathbb{A}_T \otimes (\mathbb{A}_{f^{-1}U} \circ F) \\ \cong \left(\text{hocolim}_{\{(T,U) \in \text{compact}_X^{\text{op}} \times \text{precompact}_X | T \supset U\}} \mathbb{A}_T \boxtimes \mathbb{A}_{f^{-1}U} \right) \circ F \end{aligned}$$

Thus, we can set

$$K_f := \text{hocolim}_{\{(T,U) \in \text{compact}_X^{\text{op}} \times \text{precompact}_Y | T \supset U\}} \mathbb{A}_T \boxtimes \mathbb{A}_{f^{-1}U}. \quad (21)$$

2) If X is compact, the statement follows from the fact that K_f represents the functor Γ_{Γ_f} . The general case reduces to this one via passage to the compactifications: let $\overline{Y}, \overline{X}$ be the one point compactification and let X' be the closure of Γ_f in $\overline{Y} \times \overline{X}$. The projection onto \overline{Y} determines a map $f' : X' \rightarrow \overline{Y}$. We also have an open embedding $i : X = \Gamma_f \hookrightarrow X'$ such that $f'i = f$.

5.13.1 Convolution with the constant sheaf on the diagonal

Corollary 5.17 *We have a zig-zag homotopy equivalence of the endofunctors on $\text{sh}(X, C)$: Id and $F \mapsto \mathbb{A}_{\Delta_X} \circ F$, where $\Delta_X \subset X \times X$ is the diagonal.*

Set $f = \text{Id}_X$ in the above theorem.

5.14 The inverse image functor

Let $f : X \rightarrow Y$ be a continuous map of locally compact topological spaces. Let $F \in \text{sh}(Y)$. Set $f^{-1} : \text{sh}(Y, C) \rightarrow \text{sh}(X, C)$: $f^{-1}F = F \circ \mathbb{A}_{\Gamma_f}$, where $\Gamma_f \subset Y \times X$ is the graph of f .

We have a zig-zag homotopy equivalence of bifunctors $\text{sh}(Y, C) \times \text{sh}(X, C) \rightarrow \text{swell } C$,

$$(F, G) \mapsto f^{-1}F \circ G \text{ and } F \circ f_!G.$$

5.14.1

Theorem 5.18 *We have a zig-zag term-wise homotopy equivalence of functors $\text{Open}_Y \rightarrow \text{sh}(X)$: $U \mapsto f^{-1}\mathbb{A}_U$ and $U \mapsto \mathbb{A}_{f^{-1}U}$.*

Sketch of the proof We have a zig-zag homotopy equivalence of functors $\text{Open}_Y \rightarrow \mathbf{GZ}$: $V \mapsto (f^{-1}\mathbb{A}_U)(V)$ and $V \mapsto (f^{-1}\mathbb{A}_U) \circ \mathbb{A}_V$; which is zig-zag homotopy equivalent to

$$\begin{aligned} V &\mapsto \mathbb{A}_U \circ (f_! \mathbb{A}_V); \quad V \mapsto f_! \mathbb{A}_V(U); \quad V \mapsto \mathbb{A}_V(f^{-1}U); \\ V &\mapsto \mathbb{A}_V \circ \mathbb{A}_{f^{-1}U}; \quad V \mapsto \mathbb{A}_{f^{-1}U}(V). \end{aligned}$$

5.14.2 Inverse image under closed embedding

Let $i : X \rightarrow Y$ be a closed embedding.

Proposition 5.19 *We have a homotopy equivalence of functors $\text{compact}_X^{\text{op}} \times \text{sh}(Y) \rightarrow \text{swell } C$: $(K, F) \mapsto (i^{-1}F)(K)$ and $(K, F) \mapsto F(i(K))$.*

Sketch of the proof Assume for simplicity $X \subset Y$. Use the notation \approx for 'zig-zag pointwise homotopy equivalent'. The functor $(K, F) \mapsto i^{-1}F(K)$ is zig-zag pointwise homotopy equivalent to

$$\begin{aligned} (F, K) &\mapsto i^{-1}F \circ \mathbb{A}_K \approx F \circ i_! \mathbb{A}_K \approx F(\bar{U}) \otimes_{U \in \text{Open}_Y}^L i_! \mathbb{A}_K(U) \\ &\approx (F, K) \mapsto F(T) \otimes_{T \in \text{compact}_Y}^L \text{Hom}_{\text{compact}_Y}(\bar{U}; T) \otimes_{U \in \text{precompact}_X}^L i_! \mathbb{A}_K(U) \\ &\quad \xrightarrow{\sim} (F, K) \mapsto F(T) \otimes_{T \in \text{compact}_Y}^L \mathbb{A}_K(i^{-1}\text{int}T) \\ &\approx (F, K) \mapsto F(T) \otimes_{T \in \text{compact}_X}^L \text{Hom}(V, i^{-1}\text{int}T) \otimes_{V \in \text{precompact}_Y}^L \mathbb{A}_K(V) \\ &\quad \xrightarrow{\sim} (F, K) \mapsto F(\bar{V}) \otimes_{\text{Open}_X}^L \mathbb{A}_K(V) \end{aligned}$$

Set $R(U) := \text{Cone}(F(X \cap U) \rightarrow F(X))$, $R : \text{Open}_X \rightarrow \text{swell } C$. It is easy to see that R satisfies the gluing properties for all coverings. Hence, we have

$$F(\bar{V}) \otimes_{\text{Open}_X}^L \mathbb{A}_K(V) \approx R(\bar{V}) \otimes_{\text{Open}_X}^L \mathbb{A}_K(V) \approx R(K) \approx F(K).$$

This proves the statement.

5.14.3 Direct image under closed embedding of \mathbb{A}_K

As above, let $i : X \rightarrow Y$ be a closed embedding.

Corollary 5.20 *We have a zig-zag pointwise homotopy equivalence of functors $\text{compact}_X^{\text{op}} \rightarrow \text{sh}(Y)$: $K \mapsto \mathbb{A}_{i(K)}$ and $K \mapsto i_! \mathbb{A}_K$.*

Sketch of the proof We have

$$i_! \mathbb{A}_K(L) \approx \mathbb{A}_K \circ i^{-1} \mathbb{A}_L \approx i^{-1} \mathbb{A}_L(K) \approx \mathbb{A}_L(i(K)) \approx \mathbb{A}_L \circ \mathbb{A}_{i(K)} \approx \mathbb{A}_{i(K)}(L).$$

5.15 Convolutions of constant sheaves on simplices

Fix a triangulation \mathcal{T} of \mathbb{R}^n . Let A be a star of a simplex from \mathcal{T} .

5.15.1 Lemma

Lemma 5.21 1) *We have a homotopy equivalence*

$$\mathbb{A}_{\mathbb{R}^n}[n](A) \xrightarrow{\sim} \mathbb{A}.$$

Sketch of the proof Follows from a standard computation.

5.15.2 Corollary

Corollary 5.22 *We have a zig-zag homotopy equivalence of functors $\mathcal{T}^{\text{op}} \rightarrow \mathbf{GZ}$:*

$$u \mapsto \mathbb{A}_{\mathbb{R}^n}[n](\mathbf{Star}(u)) \text{ and } u \mapsto \mathbb{A}.$$

Sketch of the proof As follows from the previous Lemma, $\mathbb{A}_{\mathbb{R}^n}(\mathbf{Star}(u))$ admits a truncation and the natural transformation of functors $\mathcal{T}^{\text{op}} \rightarrow \mathbf{GZ}$:

$$\tau_{\leq 0} \mathbb{A}_{\mathbb{R}^n}[n](\mathbf{Star}(u)) \rightarrow \mathbb{A}_{\mathbb{R}^n}[n](\mathbf{Star}(u))$$

is a termwise homotopy equivalence.

Finally, we have a natural transformation of functors $\mathcal{T}^{\text{op}} \rightarrow \mathbf{GZ}$:

$$\tau_{\leq 0} \mathbb{A}_{\mathbb{R}^n}[n](\mathbf{Star}(-)) \rightarrow \mathbb{A}_{\mathcal{T}^{\text{op}}}$$

which is a homotopy equivalence as well.

5.16 Dualization of convolution

In this section we assume that C has internal hom. Consider a functor

$$\text{sh}(X, C)^{\text{op}} \otimes \text{sh}(X|Y, C)^{\text{op}} \otimes \text{sh}(Y, C) \rightarrow \mathbf{swell} C;$$

$$(F, K, G) \mapsto \text{Hom}_C(F \circ_X K; G).$$

Theorem 5.23 *There exists a functor $\text{sh}(X|Y, C)^{\text{op}} \otimes \text{sh}(Y, C) \rightarrow \text{sh}(X, C)$, $(K, G) \mapsto K^!G$, and a zig-zag pointwise homotopy equivalence of functors*

$$(F, K, G) \mapsto \text{Hom}_C(F \circ_X K; G) \text{ and } (F, K, G) \mapsto \text{Hom}(F; K^!G).$$

Sketch of the proof. A. We have a homotopy equivalence

$$h_F(U) \otimes_{U \in \text{precompact}_X}^L U \xrightarrow{\sim} F.$$

We have an induced homotopy equivalence

$$\text{Hom}(F \circ K, G) \xrightarrow{\sim} \text{Hom}(h_F(U) \otimes_{U \in \text{precompact}_X}^L U \circ K; G).$$

Denote $\Lambda : \text{Open}_X \rightarrow \mathbf{swell} C$, $\Lambda(U) := \text{Hom}(U \circ K; G)$. We can now continue

$$\text{Hom}(h_F(U) \otimes_{U \in \text{precompact}_X}^L U \circ K; G) \cong \text{RHom}_{\text{precompact}_X}(h_F; \Lambda).$$

B. Let us also introduce a functor $Z : \text{compact}_X \rightarrow \mathbf{swell} C$. For $P \in \text{compact}_X$, let $\delta_P : \text{Open}_X^{\text{op}} \rightarrow \mathbf{GZ}$, $\delta_P(U) = \mathbb{A}$ if $P \cap U \neq \emptyset$ and $\delta_P(U) = 0$ otherwise. Set $\delta_P^Y : \text{Open}_X^{\text{op}} \times \text{Open}_Y^{\text{op}} \rightarrow \text{psh}(Y)$, $\delta_P^Y(U, V) = \delta_P(U) \otimes V$. Set

$$Z(P) := \text{Hom}_{\text{psh}(Y)}(\delta_P^Y(K); G).$$

We have a natural isomorphism $\Lambda(U) = Z(\bar{U})$ for every $U \in \text{precompact}_X$.

C. It follows that Z satisfies Meyer-Vietoris. For every $P, Q \in \text{compact}_X$, we have

$$[0 \rightarrow Z(P \cap Q) \rightarrow Z(P) \oplus Z(Q) \rightarrow Z(P \cup Q) \rightarrow 0] \sim 0,$$

where $[\cdot]$ denote the totalization of a complex. Indeed, denote $\delta_{P,Q} : \text{Open}_X^{\text{op}} \rightarrow \mathbf{GZ}$,

$$\delta_{P,Q} := [0 \rightarrow \delta_{P \cup Q} \rightarrow \delta_P \oplus \delta_Q \rightarrow \delta_{P \cap Q} \rightarrow 0].$$

Observe that $\delta_{P,Q}(U) = 0$ whenever $U \cap (P \cup Q) \subset P$ or $U \cap (P \cup Q) \subset Q$. Denote by \mathcal{B}_X the set of all pre-compact subsets of X with this property. They form a base of topology on X . Hence, there is an object in $\text{psh}(\mathcal{B}_X \times \text{Open}_Y, C)$ which is homotopy equivalent to K . It follows that $\delta_{P,Q} \circ K \sim 0$ which proves the statement.

D. Define a functor $M : \text{Open}_X \rightarrow \mathbf{swell} C$, where $\text{Set } M(U) := \text{hocolim}_{P \in \text{compact}_X \mid K \subset U} Z(K)$. We have a natural transformation $M \rightarrow \Lambda$ because $\Lambda(U) = Z(\bar{U})$.

Let us show that the induced map $\text{RHom}(h_F; M) \rightarrow \text{RHom}(h_F; \Lambda)$ is a homotopy equivalence. Equivalently $\text{RHom}(h_F; \text{Cone}(M \rightarrow \Lambda))$ is acyclic. Let $r : \text{precompact}_X^{\text{op}} \times \text{precompact}_X \rightarrow \mathbf{GZ}$ be given by $r(U, V) = \mathbb{A}$ if $\bar{U} \subset V$; $r(U, V) = 0$ otherwise. as $F \in \text{sh}(X, C)$, the natural map $h_F \otimes_{\text{precompact}_X}^L r \rightarrow h_F$ is a termwise homotopy equivalence. Therefore, it suffices to show that

$$\text{RHom}(h_F \otimes_{\text{precompact}_X}^L r; \text{Cone}(M \rightarrow \Lambda))$$

is acyclic. Equivalently:

$$\text{holim}_{V \in \text{precompact}_X \mid \bar{U} \subset V} \text{Cone}(M(V) \rightarrow \Lambda(V)) \sim 0.$$

As the holim is filtered, it suffices to show that for every $V \in \text{precompact}_X$, $V \supset \bar{U}$ there exists a $W \in \text{precompact}_X$, $W \supset \bar{U}$, $W \subset V$, such that the induced map

$$\text{Cone}(M(W) \rightarrow \Lambda(W)) \rightarrow \text{Cone}(M(V) \rightarrow \Lambda(V))$$

is homotopy equivalent to 0. To this end, it suffices to choose W so that $\overline{W} \subset V$.

F. Set $K^!G := M(U) \otimes_{\text{precompact}_X}^L U$ and show that $K^!G \in \text{sh}(X, C)$. The stability axiom is obvious. Let us check the remaining properties. We have a term-wise homotopy equivalence of functors $\text{precompact}_X \rightarrow \text{swell } C: h_{K^!G} \rightarrow M$. Therefore, it suffices to show that M satisfies the direct limit gluing property, Meyer-Vietoris, and $M(\emptyset) \sim 0$. The direct limit gluing property and $M(\emptyset) \sim 0$ is obvious. Let us check Meyer-Vietoris.

F1. Let $U, V \in \text{precompact}_X$. Let compact_U be the poset of compact subsets of U and similar for compact_V . Let us prove that the natural map

$$\text{hocolim}_{K \in \text{compact}_U; L \in \text{compact}_V} F(K \cup L) \rightarrow \text{hocolim}_{M \in \text{compact}_{U \cup V}} F(M)$$

is a homotopy equivalence for every $F: \text{compact}_X \rightarrow \text{swell } C$. Indeed, it suffices to check this statement for $F(M) = \text{Hom}(N, M)$, $N \in \text{compact}_{U \cup V}$, in which case the statement reduces to

$$\text{hocolim}_{K \in \text{compact}_U; L \in \text{compact}_V; N \subset K \cup L} \mathbb{A} \rightarrow \text{hocolim}_{M \in \text{compact}_{U \cup V}; N \subset M} \mathbb{A}.$$

As both colimits are filtered, the statement follows.

F2. Similarly, we can prove that the natural map

$$\text{hocolim}_{K \in \text{compact}_U; L \in \text{compact}_V} F(K \cap L) \rightarrow \text{hocolim}_{M \in \text{compact}_{U \cap V}} F(M)$$

is a homotopy equivalence.

F3. The natural map

$$\text{hocolim}_{K \in \text{compact}_U; L \in \text{compact}_V} F(K) \rightarrow \text{hocolim}_{K \in \text{compact}_U} F(K)$$

is a homotopy equivalence because the set compact_V is filtered.

F4 For $A \in \text{precompact}_X$, set

$$F'(A) := \text{hocolim}_{K \in \text{compact}_X | K \subset U} F(K).$$

The natural map

$$\begin{aligned} \text{hocolim}_{K \in \text{compact}_U; L \in \text{compact}_V} [0 \rightarrow F(K \cap L) \rightarrow F(K) \oplus F(L) \rightarrow F(K \cup L) \rightarrow 0] \\ \rightarrow [0 \rightarrow F'(U \cap V) \rightarrow F'(U) \oplus F'(V) \rightarrow F'(U \cup V) \rightarrow 0]. \end{aligned} \quad (22)$$

is a homotopy equivalence.

F5. It now remains to apply F4 to $F = Z$, where Z is as in C . Then $F' = M$ and the LHS of (22) is acyclic.

5.16.1 Projection along \mathbb{R}^n

Let $Z \in \text{sh}(\mathbb{R}^n \times X | X)$, $Z = \mathbb{A}_{\mathbb{R}^n \times \Delta_X}$ so that Z is the graph of the projection $p: \mathbb{R}^n \times X \rightarrow X$.

Proposition 5.24 *We have a zig-zag homotopy equivalence of functors $\text{sh}(X) \rightarrow \text{sh}(\mathbb{R}^n \times X)$ between $G \mapsto G \boxtimes \mathbb{A}_{\mathbb{R}^n}[n]$ and $G \mapsto Z^!G$.*

Sketch of the proof.

Choose a triangulation \mathcal{T} of \mathbb{R}^n . Let \mathcal{B} be the base of topology on \mathbb{R}^n formed by stars of all simplices of all baricentric sub-divisions of \mathcal{T} .

According to Sec 5.9, it suffices to construct a zig-zag homotopy equivalence between the following functors $\mathcal{B} \times \text{Open}_X \times \text{sh}(X, C) \rightarrow \text{swell } C$:

$$(A, U, G) \mapsto Z^!G(A \times U) \text{ and } (A, U, G) \mapsto \mathbb{A}_{\mathbb{R}^n}[n](A) \otimes G(U).$$

According to Sec 5.9.2 and 5.15 we have homotopy equivalences

$$\begin{aligned} \mathbb{A}_{\mathbb{R}^n} \boxtimes \mathbb{A}_{\Delta_X} &\xrightarrow{\sim} \mathbb{A}_Z; \\ \mathbb{A}_{\overline{U}} \leftarrow (U \circ \Delta_X) \rightarrow (A \circ \mathbb{A}_{\mathbb{R}^n}) \otimes (U \circ \mathbb{A}_{\Delta_X}) &\xrightarrow{\sim} (A \times U) \circ Z; \end{aligned}$$

These equivalences induce a zig-zag pointwise homotopy equivalence between $\Lambda(A \times U)$ and $\text{Hom}(\mathbb{A}_{\overline{U}}, G)$, hence $\Gamma_{\overline{U}}G$. Here Λ is as in the previous subsection.

Therefore $Z^!G(A, U)$ is zig-zag homotopy equivalent to

$$\text{hocolim}_{U' \mid \overline{U'} \subset U} \Gamma_{\overline{U'}}G.$$

We have a natural transformation $G(U') \rightarrow \Gamma_{\overline{U'}}G$, which induces a map

$$\text{hocolim}_{U' \mid \overline{U'} \subset U} G(U') \text{ hocolim}_{U' \mid \overline{U'} \subset U} \Gamma_{\overline{U'}}G$$

Let us show that this transformation is a homotopy equivalence. Indeed, set

$$C(U') := \text{Cone } G(U') \rightarrow \Gamma_{\overline{U'}}G.$$

The problem now reduces to showing that

$$\text{hocolim}_{U' \mid \overline{U'} \subset U} C(U') \sim 0.$$

As the colimit is over a filtered poset, the statement follows from: let $\overline{U'} \subset U''$, then the induced map $C(U') \rightarrow C(U'')$ is homotopy equivalent to 0, which is immediate.

We also have a homotopy equivalence $\text{hocolim}_{U' \mid \overline{U'} \subset U} G(U') \rightarrow G(U)$, which establishes a zig-zag homotopy equivalence between $Z^!G(A, U)$ and $G(U)$.

As follows from Sec 5.15, we have a zig-zag homotopy equivalence between

$$\mathbb{A}_{\mathbb{R}^n}[n](A) \text{ and } \mathbb{A},$$

which finishes the proof.

5.16.2 Inverse image under closed embedding

Let $i : X \rightarrow Y$ be a closed embedding. Let $W \in \text{sh}(Y|X)$; $W = \mathbb{A}_{\Gamma_i}$.

Theorem 5.25 *We have a zig-zag pointwise homotopy equivalence of functors $\text{sh}(X) \rightarrow \text{sh}(Y)$ $G \mapsto W^!G$ and $G \mapsto i_!G$.*

Sketch of the proof Let $F \in \text{sh}(Y)$. We have $F \circ_Y W \approx i^{-1}F$.

Therefore, we have

$$Z(L) \approx \text{RHom}_X(i^{-1}\mathbb{A}_L; G) \approx \text{RHom}_X(\mathbb{A}_{i^{-1}L}; G) \approx \text{holim}_{U \in \text{precompact}_X | U \supset i^{-1}L} G(U)$$

Next,

$$M(U) = \text{hocolim}_{V \in \text{precompact}_Y | \bar{V} \subset U} \text{holim}_{W \in \text{precompact}_X | \bar{V} \cap X \subset W} G(U).$$

We have natural maps

$$G(U \cap X) \leftarrow \text{hocolim}_{V \in \text{precompact}_Y | \bar{V} \subset U} G(V \cap X) \rightarrow M(U)$$

both of which are homotopy equivalences, whence the statement.

5.16.3 Direct images under proper map

Let $p : X \rightarrow Y$ be a map. Let $\Gamma_p \subset X \times Y$ be the graph of p and $\Gamma_p^t \subset Y \times X$ be the transposed graph of p .

We then set $p_! : \text{sh}(X, C) \rightarrow \text{sh}(Y, C)$; $p_!F = F \circ_X \mathbb{A}_{\Gamma_p}$; $p^{-1} : \text{sh}(Y, C) \rightarrow \text{sh}(X, C)$; $p^{-1}G = G \circ_Y \mathbb{A}_{\Gamma_p^t}$.

We have $\mathbb{A}_{\Gamma_p} \circ_Y \mathbb{A}_{\Gamma_p^t} \approx \mathbb{A}_{X \times_Y X}$. Let $\Delta_X \subset X \times X$ be the diagonal. As $\Delta_X \subset X \times_Y X$, we have a map $\mathbb{A}_{X \times_Y X} \rightarrow \mathbb{A}_{\Delta_X}$, whence a zig-zag map

$$p^{-1}p_!F \rightarrow F,$$

we then have an induced zig-zag map

$$p_!F \rightarrow p_*F.$$

Theorem 5.26 *Assume p is proper on the support of F . Then the above map is a homotopy equivalence.*

Sketch of the proof The statement reduces to the case p is proper. Next, one reduces the statement to showing that the through map

$$\text{Hom}(\mathbb{A}_K; p_!F) \rightarrow \text{Hom}(p^{-1}\mathbb{A}_K; p^{-1}p_!F) \rightarrow \text{Hom}(p^{-1}\mathbb{A}_K; F)$$

is a homotopy equivalence for any compact set $K \subset Y$. As p is proper, $p^{-1}K$ is compact and the above map is homotopy equivalent to

$$\text{hocolim}_{U \in \text{precompact}_Y; K \subset U} p_!F(U) \rightarrow \text{hocolim}_{V \in \text{precompact}_X; p^{-1}K \subset V} F(V)$$

which can be rewritten as

$$\text{hocolim}_{U \in \text{precompact}_Y; K \subset U} F(p^{-1}U) \rightarrow \text{hocolim}_{V \in \text{precompact}_X; p^{-1}K \subset V} F(V).$$

As p is proper, the open subsets of the form $p^{-1}U$, $U \supset K$ form a base of neighborhoods of $f^{-1}K$. Therefore, the above map is a homotopy equivalence by the cofinality argument.

6 Quantum/Semi-classical sheaves

6.0.4 Definition of $\text{sh}_\varepsilon(X, C)$

Let $\varepsilon \in \mathbb{R}_{>0} \cup \{\infty\}$. We will use the SMC Q_ε as in Sec. 4.

Let $\text{sh}_\varepsilon(X, C) \subset \text{swell}(X^{\text{op}} \otimes Q_\varepsilon \otimes C)$ be the full sub-category satisfying the following conditions below.

A. Stability. Every object $F \in \text{sh}_\varepsilon(X, C)$ must be stable. Recall the meaning of this condition. Let $h_F : \text{Open}_X \otimes Q_\varepsilon^{\text{op}} \rightarrow \text{swell}C$ be defined by $h_F(U, a) = \text{Hom}((U, a); F)$. Then the natural map

$$h_F(U, a) \otimes_{(U, a) \in \text{Open}_X \times Q_\varepsilon^{\text{op}}}^L (U, a) \rightarrow F$$

is a homotopy equivalence,

B. Sheaf condition 'along X '. F must belong to $\text{sh}(X, C \otimes Q_\varepsilon) \subset \text{swell}(\text{Open}_X^{\text{op}} \otimes C \otimes Q_\varepsilon^{\text{op}})$.

C. Direct limit condition for Q_ε . For every $U \in \text{Open}_X$ and every $a \in \mathbb{R}$, the natural map

$$\text{hocolim}_{b|b>a} h_F((U, b)) \rightarrow h_F(U, a) \quad (23)$$

must be a homotopy equivalence.

D. Completeness condition. For every $U \in \text{Open}_X$ there must be:

$$\text{hocolim}_{b \in \mathbb{R}^{\text{op}}} F((U, b)) \sim 0.$$

6.0.5 The category $\text{sh}_\omega(X, C)$

We set

$$\text{psh}_\omega(X, C) := \text{swell}(\text{Open}_X^{\text{op}} \otimes C \otimes Q_\omega).$$

Let us define a full sub-category $\text{sh}_\omega(X, C)$ of objects satisfying the conditions A,B from the previous subsection and the condition C for any $\varepsilon > 0$: the natural

$$\text{hocolim}_{b|b>a} h_F((U, f_b^\varepsilon)) \rightarrow h_F(U, f_a^\varepsilon) \quad (24)$$

must be a homotopy equivalence.

The category $\text{sh}_\omega(X, C)$ is enriched over \mathcal{Q}_ω hence \mathbf{R}_ω .

6.0.6 A fully faithful embedding of $\text{sh}_\infty(X, C)$ into $\text{sh}(X \times \mathbb{R}, C)$

Let $\text{int} \subset \text{Open}_\mathbb{R}$ be a subset consisting of all open intervals (both finite and infinite). The subsets from int form a base of topology on \mathbb{R} . Therefore, we have a quasi-equivalence of categories

$$\text{sh}(X \times \text{int}, C) \rightarrow \text{sh}(X \times \mathbb{R}, C).$$

Let $\pi : \text{int} \rightarrow Q_\infty^{\text{op}}$, $\pi(a, b) = a$ if $a \neq -\infty$; $\pi(-\infty, b) = 0$. We then have an induced functor

$$\pi : \text{psh}(X \times \text{int}, C) \rightarrow \text{swell}(\text{Open}_X^{\text{op}} \otimes Q_\infty \otimes C)$$

One checks that π induces a map

$$\pi : \text{sh}(X \times \mathbf{int}, C) \rightarrow \text{sh}_\infty(X, C).$$

We have a homotopy equivalence

$$p(F) := F((U, u)) \otimes_{(U, u) \in \text{Open}_X \times \mathbf{int}}^L (U, \pi(u)) \rightarrow \pi(F).$$

Let us now define a functor $s : \text{sh}_\infty(X, C) \rightarrow \text{sh}(X \times \mathbf{int}, C)$.

$$s(F) = F(U, \pi(u)) \otimes_{(U, u) \in \text{Open}_X \times \mathbf{int}} (U, u).$$

So that we have a homotopy equivalence

$$s(F)(V, v) \xrightarrow{\sim} F(V, \pi(v)), \quad (V, v) \in \text{Open}_X \times \mathbf{int}. \quad (25)$$

We have natural transformations

$$ps(F) \xrightarrow{\sim} F(V, \pi(v)) \otimes_{(V, v) \in \text{Open}_X \times \mathbf{int}} (V, \pi(V)) \rightarrow F; \quad (26)$$

$$\begin{aligned} sp(V) &= F((U, u)) \otimes_{(U, u) \in \text{Open}_X \times \mathbf{int}}^L \text{Hom}((U, \pi(u)); (V, \pi(v))) \otimes_{(V, v) \in \text{Open}_X \times \mathbf{int}} \otimes (V, v) \\ &\leftarrow F((U, u)) \otimes_{(U, u) \in \text{Open}_X \times \mathbf{int}}^L \text{Hom}((U, u); (V, v)) \otimes_{(V, v) \in \text{Open}_X \times \mathbf{int}} \otimes (V, v) \\ &\xrightarrow{\sim} F. \quad (27) \end{aligned}$$

Let $\mathbf{shq}(X, C) \subset \text{sh}(X \times \mathbf{int}, C)$ be the full sub-category consisting of all objects F satisfying $F(-\infty, a) \sim 0$.

Theorem 6.1 1) The functor s takes values in $\mathbf{shq}(X, C)$.

2) The natural transformation (26) is a termwise homotopy equivalence.

3) The natural transformation (27) induces a homotopy equivalence for all $F \in \mathbf{shq}(X)$.

The functors p and s , therefore, establish a quasi-equivalence between $\text{sh}_\infty(X, C)$ and $\mathbf{shq}(X, C)$.

Sketch of the proof. 1) Follows from (25).

2)

$$\begin{aligned} ps(F)(U, a) &\xrightarrow{\sim} F(V, \pi(v)) \otimes_{(V, v) \in \text{Open}_X \times \mathbf{int}} \text{Hom}_{\text{Open}_X \times Q_\infty^{\text{op}}}((V, \pi(v)); (U, a)) \\ &\xleftarrow{\sim} F(W, b) \otimes_{\text{Open}_X \times Q_\infty^{\text{op}}} \text{Hom}_{\text{Open}_X \times Q_\infty^{\text{op}}}((W, b); (V, \pi(v))) \otimes_{(V, v) \in \text{Open}_X \times \mathbf{int}}^L \text{Hom}((V, \pi(v)); (U, a)). \end{aligned}$$

We have a homotopy equivalence

$$\begin{aligned} \text{Hom}_{\text{Open}_X \times Q_\infty^{\text{op}}}((W, b); (V, \pi(v))) \otimes_{(V, v) \in \text{Open}_X \times \mathbf{int}}^L \text{Hom}_{\text{Open}_X \times Q_\infty^{\text{op}}}((V, \pi(v)); (U, a)) \\ = \text{Hom}_{\text{Open}_X \times Q_\infty^{\text{op}}}((W, b); (V, \pi(v))) \otimes_{(V, v) \in \text{Open}_X \times \mathbf{int}}^L \text{Hom}_{\text{Open}_X \times \mathbf{int}}((V, v); (U, (a, \infty))) \\ \xrightarrow{\sim} \text{Hom}_{\text{Open}_X \times Q_\infty^{\text{op}}}((W, b); (U, a)). \end{aligned}$$

So that we have an induced homotopy equivalence

$$\begin{aligned} F(W, b) \otimes_{\text{Open}_X \times Q_\infty^{\text{op}}} \text{Hom}_{\text{Open}_X \times Q_\infty^{\text{op}}}((W, b); (V, \pi(v))) &\otimes_{(V, v) \in \text{Open}_X \times \text{int}}^L \text{Hom}((V, \pi(v)); (U, a)) \\ &\xrightarrow{\sim} F(W, b) \otimes_{\text{Open}_X \times Q_\infty^{\text{op}}} \text{Hom}_{\text{Open}_X \times Q_\infty^{\text{op}}}((W, b), (U, a)) \xrightarrow{\sim} F(U, a) \end{aligned}$$

which proves the statement.

3) We have

$$\begin{aligned} sp(F)(U, u) &\xrightarrow{\sim} F(V, v) \otimes_{\text{Open}_X \times \text{int}}^L \text{Hom}_{\text{Open}_X \times Q_\infty^{\text{op}}}((V; \pi(v)); (U, \pi(u))) \\ &= F(V, v) \otimes_{\text{Open}_X \times \text{int}}^L \text{Hom}_{\text{Open}_X \times \text{int}}((V; v); (U, (\pi(u), \infty))) \\ &\xrightarrow{\sim} F((U, (\pi(u), \infty))). \end{aligned}$$

The induced map

$$F(U, u) \rightarrow sp(U, u) \rightarrow F((u, (\pi(u), \infty)))$$

coincides with the natural map induced by the embedding $u \subset (\pi(u), \infty)$, whence the statement.

Below we will use the notation $\text{sh}_q(X)$ instead of $\text{sh}_\infty(X)$.

6.0.7 Objects in $\text{sh}_q(X)$

Let $F : Q_\infty^{\text{op}} \rightarrow \text{sh}(X, C)$ be a functor. Say that F satisfies the direct limit condition if 1) The natural map $\text{hocolim}_{d \in Q_\infty^{\text{op}} | d > c} F(d) \rightarrow F(c)$ is a homotopy equivalence;

2) $\text{hocolim}_{d \in Q_\infty^{\text{op}}} F(d) \sim 0$.

Denote

$$\mathcal{R}(F) := F(u) \otimes_{u \in Q_\infty^{\text{op}}}^L u \in \text{swell}(\text{Open}_X^{\text{op}} \otimes Q_\infty \otimes C).$$

It follows that $\mathcal{R}(F) \in \text{sh}_q(X, C)$. The stability follows from the fact that $\mathcal{R}(F)$ is a bounded from above complex consisting of objects of the form $F(u) \otimes v$, $(u, v) \in Q_\infty^{\text{op}} \otimes Q_\infty$, which are stable. Next, we have

$$h_{\mathcal{R}(F)}(U, c) = F(d)(U) \otimes_{d \in Q_\infty^{\text{op}}}^L \text{Hom}_{Q_\infty}(c, d) \xrightarrow{\sim} F(c)(U),$$

which implies the statement.

6.0.8 Object $\mathbb{A}_{[K, f]}$

Let $K \subset X$ be a compact subset and let $f : K \rightarrow \mathbb{R} \cup \infty$ be a lower-continuous function. That is $f^{-1}(a, \infty) \in \text{Open}_X$ for all $a \in \mathbb{R}$. Let

$$K_{f \leq c} := \{x \in K | f(x) \leq c\}.$$

Set $F_{[K, f]}(c) = \mathbb{A}_{K_{f \leq c}}$ so that $F_{[K, f]} : Q_\infty^{\text{op}} \rightarrow \text{sh}(X, \mathbb{A})$. One checks that $F_{[K, f]}$ satisfies the direct limit property so that $\mathcal{R}F_{[K, f]} \in \text{sh}_q(X)$.

Proposition 6.2 *We have*

$$s(\mathcal{R}F_{[K, f]}) \approx \mathbb{A}_{(x, t) | t \geq f(x)}[1] \in \text{shq}(X).$$

Sketch of the proof

We have

$$s(\mathcal{R}F_{[K,f]})(U, u) \approx (\mathcal{R}F_{[K,f]})(U, \pi(u)) \approx F_{[K,f]}(\pi(u))(U).$$

We have a zig-zag homotopy equivalence

$$s\mathcal{R}(F_{[K,f]}) \approx F_{[K,f]}(\pi(u))(U) \otimes_{(U,u) \in \text{Open}_X \times \text{int}}^L \mathbb{A}_{\overline{U}} \boxtimes \mathbb{A}_{\overline{u}} \xrightarrow{\sim} F(\pi(u)) \otimes_{u \in \text{int}} \mathbb{A}_{\overline{u}}.$$

Let $\pi : \text{int} \rightarrow \mathbb{R}^{\text{op}}$; $\sigma : \text{int} \rightarrow \mathbb{R}$ be given by $\pi((a, b)) = a$; $\sigma((a, b)) = b$.

We have a homotopy equivalence

$$\text{Cone}(\mathbb{A}_{(\sigma(u), \infty)} \oplus \mathbb{A}_{(-\infty, \pi(u))} \rightarrow \mathbb{A}_{\mathbb{R}}) \xrightarrow{\sim} \mathbb{A}_{\overline{u}}.$$

Let us consider

$$\begin{aligned} F(\pi(u)) \otimes_{u \in \text{int}}^L \mathbb{A}_{\mathbb{R}} &= F(\pi(u)) \otimes_{u \in \text{int}}^L \text{Hom}_{\text{int}}(u, \mathbb{R}) \otimes \mathbb{A}_{\mathbb{R}} \\ &\xrightarrow{\sim} F(\pi(\mathbb{R})) \boxtimes \mathbb{A}_{\mathbb{R}} \sim 0. \end{aligned}$$

$$\begin{aligned} F(\pi(u)) \otimes_{u \in \text{int}}^L \mathbb{A}_{(\sigma(u), \infty)} &\xleftarrow{\sim} F(\pi(u)) \otimes_{u \in \text{int}} \text{Hom}_{Q_{\infty}}(\sigma(u), v) \otimes_{v \in Q_{\infty}} \mathbb{A}_{(v, \infty)} \\ &= F(\pi(u)) \otimes_{u \in \text{int}} \text{Hom}_{\text{int}}(u, (-\infty, \sigma(v))) \otimes_{v \in Q_{\infty}} \mathbb{A}_{(v, \infty)} \xrightarrow{\sim} F(\pi(-\infty, \sigma(v))) \otimes_{v \in Q_{\infty}} \mathbb{A}_{(v, \infty)} \sim 0, \end{aligned}$$

because $F(\pi(-\infty, \sigma(v))) = F((-\infty, \infty)) \sim 0$.

We now have a homotopy equivalence

$$F(\pi(u)) \otimes_{u \in \text{int}}^L (\mathbb{A}_{(\sigma(u), \infty)} \oplus \mathbb{A}_{(-\infty, \pi(u))} \rightarrow \mathbb{A}_{\mathbb{R}}) \xrightarrow{\sim} F(\pi) \otimes_{u \in \text{int}}^L \mathbb{A}_{(\sigma(u), \infty)}[1]$$

Finally, we have

$$\begin{aligned} F(\pi(u)) \otimes_{u \in \text{int}}^L \mathbb{A}_{(-\infty, \pi(u))} &\xleftarrow{\sim} F(\pi(u)) \otimes_{u \in \text{int}} \text{Hom}_{Q_{\infty}}(v; \pi(u)) \otimes_{Q_{\infty}^{\text{op}}}^L \mathbb{A}_{(-\infty, v)} \\ &= F(\pi(u)) \otimes_{u \in \text{int}} \text{Hom}_{\text{int}}((u, \infty); (v, \infty)) \otimes_{v \in Q_{\infty}}^L \mathbb{A}_{(-\infty, v)} \xrightarrow{\sim} F(\pi(v, \infty)) \otimes_{v \in Q_{\infty}}^L \mathbb{A}_{(-\infty, v)} \\ &= F(v) \otimes_{v \in Q_{\infty}^{\text{op}}}^L \mathbb{A}_{(-\infty, v)} \xleftarrow{\sim} \text{hocolim}_{(v, w) \in \text{int}} F(v) \boxtimes \mathbb{A}_{(-\infty, w)} = \text{hocolim}_{(v, w) \in \text{int}} \mathbb{A}_{\{(x, t) | f(x) \leq v; t < w\}} \\ &\xleftarrow{\sim} \text{Cone} \text{hocolim}_{(v, w) \in \text{int}} \mathbb{A}_{(x, t) | f(x) > v; t < w} \rightarrow \text{hocolim}_{(v, w) \in \text{int}} \mathbb{A}_{K \times (-\infty, w)} \end{aligned}$$

The open sets $\{(x, t) | f(x) > v; t < w\} \subset K \times \mathbb{R}$ form an open covering of the set $\{(x, t) | t < f(x)\}$. The open sets $K \times (-\infty, w)$ form an open covering of $K \times \mathbb{R}$. Therefore, we have a homotopy equivalence

$$\begin{aligned} \text{Cone}(\text{hocolim}_{(v, w) \in \text{int}} \mathbb{A}_{(x, t) | f(x) > v; t < w} \rightarrow \text{hocolim}_{(v, w) \in \text{int}} \mathbb{A}_{K \times (-\infty, w)}) \\ \xrightarrow{\sim} \text{Cone}(\mathbb{A}_{(x, t) | t < f(x)} \rightarrow \mathbb{A}_{K \times \mathbb{R}}) \xrightarrow{\sim} \mathbb{A}_{(x, t) | t \geq f(x)}. \end{aligned}$$

This proves the statement.

6.0.9 Definition of $\mathbb{A}_{[K,f]}$

We have

$$\mathcal{R}_{F_{[K,f]}} = \mathbb{A}_{x|f(x) \leq c} \otimes_{Q_\infty^{\text{op}}}^L c \xleftarrow{\sim} \text{hocolim}_{\{L \in \text{compact}_X \mid f|_{K \setminus L} > c\}} \otimes_{c \in Q_\infty^{\text{op}}}^L c \xrightarrow{\sim} \mathbb{A}_{K \setminus U} \otimes_{U \in \text{precompact}_K}^L f(U)$$

where we set

$$f(U) := \inf_{x \in U \cap K} f(x).$$

In the case $U \cap K = \emptyset$ we let $f(U)$ to be the zero-object of **swell** Q_∞ .

Let $C \subset X$ be a locally closed sub-set and let $f : C \rightarrow \mathbb{R}$ be a lower-continuous function. Set

$$\mathbb{A}_{[C,f]} := \mathbb{A}_{C \setminus U} \otimes_{U \in \text{precompact}_X}^L f(U).$$

We have

$$s(\mathbb{A}_{[C,f]}) \approx s\mathcal{R}(F_{[C,f]}) \approx \mathbb{A}_{(x,t) \mid x \in C, t \geq f(x)}.$$

6.0.10 Functoriality of $\mathbb{A}_{[K,f]}$

Let C_1, C_2 be closed subsets of X , If $C_1 \subset C_2$, f_1 is a lower continuous function on C_1 , f_2 on C_2 and $f_2|_{C_1} \leq f_1$, we have a natural map $\mathbb{A}_{[C_2,f_2]} \rightarrow \mathbb{A}_{[C_1,f_1]}$ coming from the inequality $f_2(U) \leq f_1(U)$ for any $U \in \text{precompact}_X$.

6.0.11 The functors $\text{red}_{\varepsilon_1 \varepsilon_2}$

Let $\varepsilon_1 \geq \varepsilon_2, \varepsilon_1, \varepsilon_2 \in \mathbb{R} \cup \{\infty\}$. The functors $\text{red}_{\varepsilon_1 \varepsilon_2} : Q_{\varepsilon_1} \rightarrow Q_{\varepsilon_2}$ induce functors $\text{red}_{\varepsilon_1 \varepsilon_2} : \text{sh}_{\varepsilon_1}(X, C) \rightarrow \text{sh}_{\varepsilon_2}(X)$

6.0.12 Reduction of $\mathbb{A}_{[K,f]}$

In the notation of Sec. 6.0.10 suppose $g|_K + \varepsilon \leq f$. Then the natural map

$$\text{red}_{\infty \varepsilon} \mathbb{A}_{[M,g]} \rightarrow \text{red}_{\infty \varepsilon} \mathbb{A}_{[K,f]}$$

equals 0 because such are all the maps $g(M \setminus L) \rightarrow f(K \setminus L)$ in Q_ε .

6.0.13 The functor $\boxtimes : \text{sh}_\varepsilon(X, C) \otimes \text{sh}_\varepsilon(Y, C) \rightarrow \text{sh}_\varepsilon(X|Y, C)$

We have a natural functor

$$\otimes : \text{psh}_\varepsilon(X, C) \otimes \text{psh}_\varepsilon(Y, C) \rightarrow \text{psh}_\varepsilon(X|Y, C).$$

which descends onto the corresponding categories of sheaves.

6.0.14 Convolution

Let $F \in \text{psh}_\varepsilon(X|Y, C)$, $G \in \text{psh}_\varepsilon(Y|Z, C)$. Let $g : \text{Open}_Y \times \text{Open}_Y \rightarrow \mathbf{GZ}$; $g(U, V) = \mathbb{A}$ if $U \cap V \neq \emptyset$ and $g(U, V) = \emptyset$ otherwise. We get an induced functor $g : \text{psh}_\varepsilon(X|Y|Z, C) \rightarrow \text{psh}_\varepsilon(X|Z, C)$. We then get an object $F \boxtimes G \in \text{psh}_\varepsilon(X|Y|Z, C)$. Set

$$F *_Y G := g(F \boxtimes G) \in \text{psh}_\varepsilon(X|Z, C).$$

Let $F \bullet_Y G \in \text{psh}_\varepsilon(X|Z)$ be given by

$$F \bullet_Y G = (F *_Y G)|_0,$$

where $|_0 : \text{psh}_\varepsilon(\mathcal{B}, C) \rightarrow \text{psh}(\mathcal{B})$ is given by $(U, a)|_0 = \text{Hom}_{Q_\varepsilon}(0, a) \otimes U$. In particular, if $F, G \in \text{sh}_\varepsilon(X)$, then $F \bullet G \in \mathbf{swell} C$.

All the above functors descend onto the corresponding categories of sheaves.

6.0.15 Convolution with the constant sheaf on a graph

Let $X \subset Y$. Let $F : X \rightarrow \mathbb{R}$ be an upper continuous functions. Let $C \subset X$ be a closed subset and $f : C \rightarrow \mathbb{R}$ a lower continuous function. Let $\Gamma \subset X \times Y$ be the graph of the embedding $X \subset Y$. Let $F' = F \circ \iota^{-1}$. Let $\iota : X \rightarrow \Gamma$ be the identification.

Proposition 6.3 *We have a natural zig-zag homotopy equivalence*

$$\mathbb{A}_{[C, f]} *_X \mathbb{A}_{\Gamma, F'} \approx \mathbb{A}_{[X, F' + f]} \in \text{sh}_\infty(Y).$$

Sketch of the proof We have

$$\begin{aligned} \mathbb{A}_{[C, f]} *_X \mathbb{A}_{\Gamma, F'} &\xleftarrow{\sim} \mathbb{A}_{C \setminus U} *_X \mathbb{A}_{\Gamma \setminus (V \times W)} \otimes_{(U, V, W) \in \text{precompact}_{X \times X \times Y}}^L (f(U \cap C) + F(V \times W \cap \Gamma)) \\ &= \mathbb{A}_{C \setminus U} *_X \mathbb{A}_{\Gamma \setminus \iota(V \cap W)} \otimes_{(U, V, W) \in \text{precompact}_{X \times X \times Y}}^L (f(U \cap C) + F(\iota(V \cap W))) \\ &\approx \mathbb{A}_{C \setminus (U \cup (V \cap W))} \otimes_{(U, V, W) \in \text{precompact}_{X \times X \times Y}}^L (f(U) + F(\iota(V \cap W))) \\ &\xleftarrow{\sim} \text{hocolim}_{A \in \text{precompact}_X} \mathbb{A}_{C \setminus (U \cup A)} \otimes_{(U, V, W) \in \text{precompact}_{X \times X \times Y}}^L (f(U) + F(\iota(V \cap W))) \\ &\approx \mathbb{A}_{C \setminus (U \cup A)} \otimes_{A \in \text{precompact}_X}^L \text{Hom}(A, V \cap W) \otimes_{(U, V, W) \in \text{precompact}_{X \times X \times Y}}^L (f(U \cap C) + F(\iota(V \cap W))) \\ &\approx \mathbb{A}_{C \setminus (U \cup A)} \otimes_{A \in \text{precompact}_X, U \in \text{precompact}_X}^L \text{hocolim}_{\{V \times W \in \text{precompact}_{X \times Y}^{\text{op}} \mid A \subset V \cap W\}} (f(U \cap C) + F(\iota(V \cap W))) \\ &\quad \xrightarrow{\sim} \mathbb{A}_{C \setminus (U \cup A)} \otimes_{A \in \text{precompact}_X, U \in \text{precompact}_X}^L (f(U \cap C) + F(A)). \end{aligned}$$

The last arrow is a homotopy equivalence because the poset

$$\{V \times W \in \text{precompact}_{X \times Y}^{\text{op}} \mid A \subset V \cap W\}$$

is filtered.

Let us continue:

$$\begin{aligned}
& \mathbb{A}_{C \setminus (U \cup A)} \otimes_{(A,U) \in \text{precompact}_{X \times X}}^L (f(U) + F(A)) \\
& \approx \mathbb{A}_{C \setminus B} \otimes_{B \in \text{precompact}_X}^L \text{Hom}(B, U \cup A) \otimes_{(A,U) \in \text{precompact}_{X \times X}}^L (f(U \cap C) + F(A))
\end{aligned} \tag{28}$$

We have a homotopy equivalence (we assume $(A, U) \in \text{precompact}_{X \times X}^{\text{op}}$):

$$\begin{aligned}
\text{Cone}(\text{hocolim}_{(A,U) | B \setminus (A \cup U) \neq \emptyset} f(U \cap C) + F(A)) & \rightarrow \text{hocolim}_{(A,U)} f(U \cap C) + F(A) \\
& \rightarrow \text{Hom}(B, U \cup A) \otimes_{(A,U)}^L (f(U \cap C) + F(A)).
\end{aligned}$$

As

$$\text{hocolim}_{(A,U)} f(U \cap C) + F(A) \sim f(\emptyset) + F(\emptyset) = 0,$$

we have

$$\text{Hom}(B, U \cup A) \otimes_{(A,U)}^L (f(U \cap C) + F(A)) \approx \text{hocolim}_{(A,U) | B \setminus (A \cup U) \neq \emptyset} f(U \cap C) + F(A)[1].$$

Next, we have an acyclic complex

$$\begin{aligned}
& \text{hocolim}_{(A,U) | B \setminus (A \cup U) \neq \emptyset} f(U \cap C) + F(A) \\
& \rightarrow (\text{hocolim}_{(A,U) | B \setminus A \neq \emptyset} f(U \cap C) + F(A)) \oplus \text{hocolim}_{(A,U) | B \setminus U \neq \emptyset} f(U \cap C) + F(A) \\
& \rightarrow \text{hocolim}_{(A,U) | B \setminus (A \cap U) \neq \emptyset} f(U \cap C) + F(A).
\end{aligned}$$

As $f(\emptyset) = F(\emptyset)$ is the 0 object of Q_∞ , the middle term in this complex is acyclic. Therefore,

$$\text{Hom}(B, U \cup A) \otimes_{(A,U)}^L (f(U \cap C) + F(A)) \approx \text{hocolim}_{(A,U) | B \setminus (A \cap U) \neq \emptyset} f(U \cap C) + F(A) \xrightarrow{\sim} (f(B \cap C) + F(B)).$$

so that we can continue (28):

$$\begin{aligned}
& \mathbb{A}_{C \setminus B} \otimes_{B \in \text{precompact}_X}^L \text{Hom}(B, U \cup A) \otimes_{(A,U) \in \text{precompact}_{X \times X}}^L (f(U \cap C) + F(A)) \\
& \approx \mathbb{A}_{C \setminus B} \otimes_{B \in \text{precompact}_X}^L f(B \cap C) + F(B) \\
& \xleftarrow{\sim} \mathbb{A}_{C \setminus B} \otimes_{B \in \text{precompact}_X}^L \text{Hom}(c, f(B \cap C) + F(B)) \otimes_{c \in Q_\infty^{\text{op}}}^L c \\
& \approx (\text{hocolim}_{\{B \in \text{precompact}_X | f(B \cap C) + F(B) \geq c\}} \text{Cone}(\mathbb{A}_B \otimes \mathbb{A}_C \rightarrow \mathbb{A}_c)) \otimes_{c \in Q_\infty^{\text{op}}}^L c.
\end{aligned}$$

Let

$$S_c := \{B \in \text{precompact}_X | f(B \cap C) + F(B) \geq c\}.$$

The set S_c is closed under finite intersections; the union of all elements of S_c equals

$$U_{f+F>c} = X \setminus C \cup \{x \in C | f(x) + F(x) > c\}.$$

We therefore have a homotopy equivalence

$$\begin{aligned}
& \text{hocolim}_{\{B \in \text{precompact}_X | f(B \cap C) + F(B) \geq c\}} \text{Cone}(\mathbb{A}_B \otimes \mathbb{A}_C \rightarrow \mathbb{A}_C) \otimes_{c \in Q_\infty^{\text{op}}}^L c \\
& \xrightarrow{\sim} \text{Cone}(\mathbb{A}_{U_{f+F>c}} \otimes \mathbb{A}_C \rightarrow \mathbb{A}_C) \otimes_{c \in Q_\infty^{\text{op}}}^L c \xrightarrow{\sim} \mathbb{A}_{\{x \in C | f(x) + F(x) \leq c\}} \otimes_{c \in Q_\infty^{\text{op}}}^L c \approx \mathbb{A}_{[C, f+F]}.
\end{aligned}$$

Corollary 6.4 1) We have a zig-zag homotopy equivalences

$$\mathbb{A}_{\Delta_X, f} *_X \mathbb{A}_{\Delta_X; g} \approx \mathbb{A}_{\Delta_X, f+g};$$

$$Id \approx \mathbb{A}_{\Delta_X, f} *_X \mathbb{A}_{\Delta_X, -f}.$$

6.0.16 Universal property of $\mathbb{A}_{[X, f]}$

Let X be compact.

Theorem 6.5 We have a zig-zag homotopy equivalence of functors $\text{sh}_q(X) \rightarrow \mathbf{GZ}$: $F \mapsto \text{Hom}(\mathbb{A}_{[X, f]}; F)$,

$$F \mapsto \text{Cone}(\text{holim}_{C \rightarrow \infty} \mathbb{A}_{X, -f - C} \rightarrow \text{holim}_{\delta \downarrow 0} F \bullet_X \mathbb{A}_{[X, \delta - f]})[-1],$$

and

$$F \mapsto \text{Cone}(\text{holim}_{C \rightarrow \infty} \mathbb{A}_{X, -C} \rightarrow \text{holim}_{\delta \downarrow 0} F \bullet_X \mathbb{A}_{[X, \delta - f]})[-1]$$

1) The third functor is zig-zag homotopy equivalent to the second one by the cofinality argument. Below we construct a zig-zag homotopy equivalence of the first two functors.

2) By virtue of Corollary 6.4 2, the endofunctor $F \mapsto F *_X \mathbb{A}_{\Delta_X; f}$ on $\text{sh}_\varepsilon(X)$ is a homotopy equivalence, therefore, the statement reduces to the case $f = 0$.

3) We have

$$\mathbb{A}_{[X, 0]}(c) \approx \text{Cone} \text{hocolim}_{\delta \downarrow 0} \mathbb{A}_X \otimes \text{Hom}(c, -\delta) \rightarrow \text{hocolim}_{C \rightarrow \infty} \mathbb{A}_X \otimes \text{Hom}(c, C).$$

Which implies

$$\begin{aligned} \text{Hom}(\mathbb{A}_{[X, 0]}; F) &\approx \text{holim}_{\delta \downarrow 0, C \rightarrow \infty} \text{Hom}(\mathbb{A}_X; \text{Cone}(F(C) \rightarrow F(-\delta)))[-1]) \\ \text{holim}_{\delta \downarrow 0, C \rightarrow \infty} \text{Cone}(F(X, C) \rightarrow F(X, -\delta))[-1] &\approx \text{holim}_{\delta \downarrow 0, C \rightarrow \infty} F \bullet_X \text{Cone}(\mathbb{A}_{[X, -C]} \rightarrow \mathbb{A}_{[X, \delta]})[-1]. \end{aligned}$$

7 Singular support

7.1 Lenses

Let X be a smooth manifold. Let $\Omega \subset T^*X \times \mathbb{R}$ be an open subset. Call Ω *fiberwise convex* if every fiber of Ω under the map $\Omega \rightarrow T^*X \times \mathbb{R} \rightarrow X$ is convex. Fix a fiberwise convex Ω .

7.1.1

Let $K \subset X$ be a compact set. A *lense* ℓ supported on $K \subset X$ is a collection of the following data:

— a pair of lower continuous functions $f^{\mathbf{k}} := f_{\ell}^{\mathbf{k}}$, $\mathbf{k} = 0, 1$, defined on K such that $f^1 + \varepsilon \geq f^0 \geq f^1$ for all $x \in K$.

An Ω -lense with support K is a lens ℓ with support $K' \subset K$ additionally satisfying:

there exists a neighborhood U of K' such that the functions f^0, f^1 can be extended to smooth functions U satisfying:

- a) for each $x \in K'$, the point $(x, -df_x^{\mathbf{k}}, f^{\mathbf{k}}(x))$ is in Ω , $\mathbf{k} = 0, 1$.
- b) f^0 and f^1 coincide outside of K' .

7.1.2 The sheaf \mathbb{A}_{ℓ}

Given a lens ℓ , let us define an object $\mathbb{A}_{\ell} \in \text{sh}_{\varepsilon}(X)$ as follows.

A. Let $a, b \in \mathbb{R}$, $0 \leq b - a \leq \varepsilon$. Let $h_{ab} : Q_{\varepsilon}^{\text{op}} \rightarrow \mathbb{A}$, $\chi_{ab}(x) = \mathbb{A}$ if $x \in (a, b]$ and $\chi_{ab}(x) = 0$ otherwise.

A1. Let $\delta_{ab} \in \mathcal{Q}_{\varepsilon}$ be represented by the following complex

$$\cdots \rightarrow (a - 2\varepsilon) \rightarrow (b - 2\varepsilon) \rightarrow (a - \varepsilon) \rightarrow (b - \varepsilon) \rightarrow a \rightarrow b \rightarrow 0.$$

We have a termwise homotopy equivalence $h_{\delta_{ab}} \rightarrow \chi_{ab}$.

A2. Set

$$\mathbb{A}_{\ell} := \mathbb{A}_L \otimes_{L \in \text{compact}_K} \delta_{f^0(K \setminus L); f^1(K \setminus L)}.$$

We then can represent \mathbb{A}_{ℓ} by a complex in $\text{sh}_{\varepsilon}(X)$

$$\cdots \rightarrow \mathbb{A}_{[K, f^0 - 2\varepsilon]} \rightarrow \mathbb{A}_{[K, f^1 - 2\varepsilon]} \rightarrow \mathbb{A}_{[K, f^0 - \varepsilon]} \rightarrow \mathbb{A}_{[K, f^1 - \varepsilon]} \rightarrow \mathbb{A}_{[K, f^0]} \rightarrow \mathbb{A}_{[K, f^1]} \rightarrow 0,$$

where we denote, by abuse of notation $\text{red}_{\infty, \varepsilon} \mathbb{A}_{[K, f]}$ by $\mathbb{A}_{[K, f]}$. The composition of every two successive arrows in this complex is 0 via Sec (6.0.12).

7.1.3 Sections of \mathbb{A}_{ℓ}

We have

$$\begin{aligned} \mathbb{A}_{\ell}(U, a) &= \mathbb{A}_L(U) \otimes_{L \in \text{compact}_K} \delta_{f^0(K \setminus L); f^1(K \setminus L)}(a) \\ &\quad \mathbb{A}_L(U) \otimes_{L \in \text{compact}_K} \chi_{f^0(K \setminus L); f^1(K \setminus L)}(a) \\ &\xleftarrow{\sim} \mathbb{A}_L(U) \otimes_{L \in \text{compact}_X} \text{Cone Hom}_{Q_{\infty}}(a, f^0(K \setminus L)) \rightarrow \text{Hom}_{Q_{\infty}}(a, f^1(K \setminus L)) \\ &\quad \xrightarrow{\sim} \text{Cone } \mathbb{A}_{K_{f^0 \leq a}}(U) \rightarrow \mathbb{A}_{K_{f^1 \leq a}}(U) \\ &\quad \approx \text{Cone}(\mathbb{A}_{K_{f^0 > a}}(U) \rightarrow \mathbb{A}_{K_{f^1 > a}}(U))[1]. \end{aligned}$$

7.1.4 Fitlered colimits of \mathbb{A}_ℓ

Let ℓ_1, ℓ_2 be lenses supported on K . Write $\ell_1 \leq \ell_2$ if $f_{\ell_1}^{\mathbf{k}} \leq f_{\ell_2}^{\mathbf{k}}$, $\mathbf{k} = 0, 1$. wherever the two functions are defined. This gives a partial order to the set of lenses supported on K .

Whenever $\ell_1 \leq \ell_2$ we have an induced map $\mathbb{A}_{\ell_1} \rightarrow \mathbb{A}_{\ell_2}$. Let I be a filtrant poset and let $\ell_i, i \in I$ be a monotone I -family of lenses supported on K . set $f_{\ell_I}^{\mathbf{k}}(x) := \sup_{i \in I} f_{\ell_i}^{\mathbf{k}}$; $\mathbf{k} = 0, 1$. We see that ℓ_I is a lense supported on K . We also have a homotopy equivalence

$$\text{hocolim}_{i \in I} \mathbb{A}_{\ell_i} \rightarrow \mathbb{A}_{\ell_I}.$$

Call a lense ℓ a generalized Ω -lense supported on K if $\ell = \ell_I$ and all ℓ_i are Ω -lenses supported on K .

7.1.5 Maximum of a pair of lenses

Let ℓ_1, ℓ_2 be Ω -lenses supported on K . Let $\lambda := \sup(\ell_1, \ell_2)$ be defined by $f_{\lambda}^{\mathbf{k}} = \sup(f_{\ell_1}^{\mathbf{k}}, f_{\ell_2}^{\mathbf{k}})$. Then λ is a generalized Ω -lense supported on K . Sketch of the proof:

1) we have a monotone sequence of smooth non-decreasing functions $\phi_n(x)$, where

- $\phi_n(x) = 0$ if $x \leq 0$;
- $\phi_n(x) = 1$ if $x \geq 1/n$.

Let $\Phi_n(x) = \int_0^x \phi_n(x)$. In particular

$$0 \leq \Phi_n(x) \leq \max(0, x); \quad 0 \leq \phi_n(x) \leq 1. \quad (29)$$

2) Set $f_n^{\mathbf{k}}(x) := f_{\ell_1}^{\mathbf{k}}(x) + \Phi_n(f_{\ell_2}^{\mathbf{k}}(x) - f_{\ell_1}^{\mathbf{k}}(x))$.

We have $df_n^{\mathbf{k}}(X) = df_{\ell_1}^{\mathbf{k}}(x) + \phi_n(f_{\ell_2}^{\mathbf{k}}(x) - f_{\ell_1}^{\mathbf{k}}(x))(df_{\ell_2}^{\mathbf{k}}(x) - df_{\ell_1}^{\mathbf{k}}(x))$. As follows from (29) and from the fiberwise convexity of Ω , each $f_n^{\mathbf{k}}$ is an Ω -lense with support K . Since $f_n^{\mathbf{k}}(x) \uparrow \max(f_{\ell_1}^{\mathbf{k}}(x), f_{\ell_2}^{\mathbf{k}}(x))$, the statement follows.

7.1.6 Infinite suprema of lenses

Let $\ell_s = \{f_s^{\mathbf{k}}\}$, $s \in S$ be generalized Ω -lenses with support K . Let $f^{\mathbf{k}}(x) := \sup_{s \in S} f_s^{\mathbf{k}}(x)$. Then $\ell = \{f^{\mathbf{k}}\}$ is also a generalized lense with support K . Indeed, we first consider the case of finite S . This reduces to a two-element set S , which follows from the previous subsection.

If S is infinite, pass to the filtrant poset P of finite subsets of S . To each finite $I \subset S$, associate $f_I^{\mathbf{k}} := \max_{i \in I} f_i^{\mathbf{k}}$. Let ℓ_I be the lense supported on K determined by the functions $f_I^{\mathbf{k}}$. The lenses ℓ_I satisfy all the conditions from Sec.7.1.4.

7.2 Localization of Ω

Let $\Omega = \Omega_1 \cup \Omega_2 \cup \dots \cup \Omega_n$ be a finite cover by fiberwise convex subsets. Let $\{f^k\}$ be an Ω -lense supported on a compact K . One then has smooth functions $f^0 = g^0 \leq g^1 \leq \dots \leq g^N = f^1$ such that (g^i, g^{i+1}) are Ω_{n_i} -lenses supported on K .

This follows from the following 2 particular cases.

Case 1. Let $K \subset \bigcup_{i=1}^n U_i$ be an open cover and let $\Omega_i = p^{-1}U_i \cap \Omega$, where $\pi : T^*X \times \mathbb{R} \rightarrow X$ is the projection.

Case 2. $\pi(\Omega_i) \supset K$ for all i .

Proof for Case 1. 1) Choose a partition of unit, i.e. smooth functions ρ_i supported on U_i such that $0 \leq \rho_i \leq 1$ and $\sum_i \rho_i(x) = 1$ for all $x \in K$. Let $E \subset \Omega$ be a compact fiberwise convex subset which contains all the points $(x, -df^k(x), f^k(x))$, $x \in K$.

2) There exist a positive integer $\mathbf{K} > 0$ such that

— for every i and for every function $\psi(x)$ such that $(x, -d\psi(x), \psi(x)) \in E$ for all $x \in K$, we have: $(x, -dT_i\psi(x), T_i\psi(x)) \in \Omega$ for all $x \in K$, where

$$T_i\psi(x) = \psi(x) + \frac{(\rho_1(x) + \rho_2(x) + \dots + \rho_i(x))(f^1(x) - f^0(x))}{\mathbf{K}}.$$

3) Consider the sequence of functions $f^0(x), T_1f^0(x), \dots, T_nf^0(x)$. It follows that $(T_if^0(x), T_{i+1}f^0(x))$ is an Ω_i -variation. Next,

$$T_nf^0(x) = f^0 + \frac{(f^1 - f^0)}{\mathbf{K}} \in E.$$

We therefore can continue our sequence by adding

$$T_1\left(f^0 + \frac{f^1 - f^0}{\mathbf{K}}\right), T_2\left(f^0 + \frac{f^1 - f^0}{\mathbf{K}}\right), \dots, T_n\left(f^0 + \frac{f^1 - f^0}{\mathbf{K}}\right) = f^0 + \frac{2(f^1 - f^0)}{\mathbf{K}}.$$

By repeating this process \mathbf{K} times we prove the statement.

Case 2 It suffices to choose $\phi^k : (1 - k/\mathbf{K})f^0 + k/\mathbf{K}f^1$, where \mathbf{K} is large enough and $k = 0, 1, 2, \dots, \mathbf{K}$.

7.2.1 Convolution $\mathbb{A}_{[K,f]} \star \mathbb{A}_\ell$

Let X, Y be smooth manifolds. Let $\iota : X \rightarrow Y$ be a closed embedding. Let f be a smooth function on X . Let Γ be a graph of ι . Let f be a lower continuous function on X . Denote by $\kappa : \Gamma \rightarrow X$ the identification. Let $\ell = \{f^k\}$ be a lense on Y . Let

$$T_f\ell := \{f^k \circ \iota + f\},$$

so that $T_f\ell$ is a lense on X .

Proposition 7.1 *We have*

$$\mathbb{A}_{[X,f]} *_Y \mathbb{A}_\ell \approx \mathbb{A}_{T_f\ell}.$$

Sketch of the proof Follows from Sec. 6.0.15.

7.3 Definition of Singular Support

7.3.1 Ω -stable objects

Denote by $a : T^*X \times \mathbb{R} \rightarrow T^*X \times \mathbb{R}$ the following reflection map $a(x, \omega, t) = (x, -\omega, -t)$. Let $F \in \text{psh}_\varepsilon(X)$. Call F Ω -stable if $F \bullet \mathcal{R}_\ell \sim 0$ for every Ω^a -lense ℓ .

7.3.2 Definition of Singular Support

Let $F \in \text{sh}_\varepsilon(X)$. Define an open subset $U \subset T^*X$ as the union of all open fiberwise open subsets $\Omega \subset T^*X \times \mathbb{R}$ such that F is Ω -stable. Observe that F is Ω -stable iff $\Omega \subset U$. Indeed, if $\Omega \subset U$, then

$$\Omega \subset \bigcup_{a \in A} \Omega_a,$$

where F is Ω_a stable for all $a \in A$. Let ℓ be an Ω -lense, then there exists a pre-compact fiberwise convex subset $\Omega' \subset \Omega$ such that ℓ is an Ω' -lense. One then can select a finite subset $B \subset A$ such that $\Omega \subset \bigcup_{b \in B} \Omega_b$. The statement now follows from Sec. 7.2.

Denote $\text{SS}(F) := T^*X \times \mathbb{R} \setminus U$ so that F is Ω -stable iff $\Omega \cap \text{SS}(F) = \emptyset$.

7.4 Properties of Singular support

7.4.1 Dual definition

Proposition 7.2 *Let $F \in \text{sh}(X, C)$. Then F is non-singular on an open subset $\Omega \subset T^*X \times \mathbb{R}$ iff $\text{Hom}(\mathbb{A}_\ell, F) \sim 0$ for any Ω -lense ℓ supported on a compact $K \subset X$.*

Sketch of the proof Let $\ell = \{f^\mathbf{k}\}$ be a lense. Let $\ell_\delta^\vee := \{-f^\mathbf{k} - \delta\}$. As follows from Theorem 6.5, we have a zig-zag homotopy equivalence

$$\text{Hom}(\mathbb{A}_\ell; F) \approx \text{holim}_{\delta \downarrow 0} F \bullet_X \mathbb{A}_{\ell_\delta^\vee},$$

The statement now follows.

7.4.2 Convolution with a graph

Let $f : X \rightarrow \mathbb{R}$ be a smooth function. Let $T_f : T^*X \times \mathbb{R} \rightarrow T^*X \times \mathbb{R}$ be given by $T_f(x, \omega, t) = (x, \omega - df_x; t + f_x)$. If ℓ is an Ω -lense supported on K , then $T_f \ell$ is a $T_f \Omega$ -lense supported on K .

Let $\Delta_X \subset X \times X$ be the diagonal. Let $f_\Delta : \Delta = X \xrightarrow{f} \mathbb{R}$.

Proposition 7.3 *Let $F \in \text{sh}_\varepsilon(X)$ and let $\text{SS}(F) \subset C$. We have*

$$\text{SS}(F *_X \mathbb{A}_{[\Delta_X, f_\Delta]}) \subset T_f C.$$

Sketch of the proof. Let $\Omega \subset T^*X \times \mathbb{R}$ be an open fiberwise convex subset such that $\Omega \cap (T_f C)^a = \emptyset$. Let ℓ be an Ω -lense. We have

$$(F *_{X, f_\Delta} \mathbb{A}_{[\Delta_X, f_\Delta]}) \bullet \mathbb{A}_\ell = F \bullet (\mathbb{A}_{[\Delta_X, f_\Delta]} *_{X, f_\Delta} \mathbb{A}_\ell) \stackrel{(1)}{\approx} F \bullet \mathbb{A}_{T_f \ell} \stackrel{(2)}{\sim} 0,$$

where (1) follows from Sec 7.2.1 and (2) follows from $T_f \ell$ being a $T_f \Omega$ lense, where

$$T_f \Omega \cap C^a = T_f \Omega \cap T_f (T_f C)^a = T_f (\Omega \cap (T_f C)^a) = \emptyset.$$

7.4.3 Variation of lenses

Proposition 7.4 *Let M be a smooth manifold and let F^k be smooth functions on $X \times M$ such that for every $m \in M$, $\{F^k(m, -)\}$ is an Ω -lense supported on a compact K . Let $\ell := \{F^k\}$. Let $F \in \text{sh}_\varepsilon(X)$ and $\text{SS}(F) \cap \Omega^a = \emptyset$. Then $\mathbb{A}_\ell \bullet_X F \sim 0$ as an object of $\text{sh}(M)$.*

Sketch of the proof. 1) It suffices to show that $\mathbb{A}_\ell \bullet_X F(U) \sim 0$, where $U \subset M$ is an arbitrary pre-compact subset.

2) There exists a $\delta > 0$ such that for every $m \in M$ and every $\delta' \in [0, \delta)$, $\{F^k(x, m) - \delta'\}$ is an Ω -lense supported on K .

3) Let $V \subset U$ be an open subset. Set

$$f^k(x)_V := \sup_{v \in V} f^k(x, v), \quad x \in X.$$

As follows from Sec. 7.1.5, $\{f^k_V\}$ is an Ω -lense supported on K , and so is $\ell_{V, \delta'} := \{f^k_V - \delta'\}$ for all $\delta' \in [0, \delta)$.

4) Call V δ' -small if $f(x) - f(y) > -\delta'$ for all $x, y \in V$. We then have $f^k_V - \delta' \leq f$ on $X \times V$.

5) For an open δ' -small subset $V \in U$, set

$$\mathcal{F}_{V, \delta'} := \mathbb{A}_{\ell_{V, \delta'}} \boxtimes \mathbb{A}_V \in \text{sh}_\varepsilon(X \times M).$$

Let P be the poset whose each element is a pair (V, δ') , where V is δ' small. The order is defined by $(V_1, \delta'_1) \leq (V_2, \delta'_2)$ if $V_1 \subset V_2$ and $\delta'_1 \geq \delta'_2$. Then $\mathcal{F} : P \rightarrow \text{sh}_\varepsilon(X \times M)$. We have a natural map

$$\text{hocolim}_P \mathcal{F} \rightarrow \mathbb{A}_\ell.$$

7) Let us show that this map induces a homotopy equivalence

$$\text{hocolim}_{(V, \delta') \in P} \mathcal{F}_{V, \delta'}(W \times U, a) \rightarrow \mathbb{A}_\ell(W \times U, a)$$

for all $a \in Q_\varepsilon^{\text{op}}$ and all $W \in \text{Open}_K$.

Using (7.1.3), the problem reduces to showing that the natural map

$$\text{hocolim}_{(V, \delta') \in P} \mathbb{A}_{\{x \in K \mid \exists v \in V : f^k(x, v) - \delta' > a\} \times V}(W \times U) \rightarrow \mathbb{A}_{\{(x, v) \in K \times U \mid f^k(x, v) > a\}}(W \times U) \quad (30)$$

is a homotopy equivalence.

Fix a value of \mathbf{k} . For $p = (V, \delta') \in P$, denote

$$W_p^{\mathbf{k}} := \{x \in K \mid \exists v \in V : f^{\mathbf{k}}(x, v) - \delta' > a\} \times V \in \text{Open}_{K \times U}$$

and

$$W^{\mathbf{k}} := \{(x, v) \in K \times U \mid f^{\mathbf{k}}(x, v) > a\}.$$

The natural zig-zag homotopy equivalences $\mathbb{A}_A(B) \approx \mathbb{A}_A \circ \mathbb{A}_B \approx \mathbb{A}_B(A)$ show that the arrow in (30) is zig-zag homotopy equivalent to

$$\text{hocolim}_{p \in P} \mathbb{A}_{W \times U}(W_p^{\mathbf{k}}) \rightarrow \mathbb{A}_{W \times U}(W^{\mathbf{k}}). \quad (31)$$

Observe that the set $\{W_p^{\mathbf{k}}\}_{p \in P}$ is closed under finite intersection:

$$W_{V_1, \delta_1}^{\mathbf{k}} \cap W_{V_2, \delta_2}^{\mathbf{k}} = W_{V_1 \cap V_2; \max(\delta_1, \delta_2)}^{\mathbf{k}}.$$

Therefore, $\{W_p^{\mathbf{k}}\}_{p \in P}$ is an open covering of

$$\bigcup_{p \in P} W_p^{\mathbf{k}} = W^{\mathbf{k}}$$

so that the map in (31) is a homotopy equivalence by the gluing property for the sheaf $\mathbb{A}_{W \times U}$.

7.5 Singular support of $F \boxtimes G$

Let $F \in \text{sh}_{\varepsilon}(X)$ and $G \in \text{sh}_{\varepsilon}(Y)$. Suppose $\text{SS}(F) \subset A$ and $\text{SS}(G) \subset B$. Consider the following subset of $T^*(X \times Y) \times \mathbb{R}$

$$C_0(F, G) = \{(x, \omega, y, \eta, t_1 + t_2) \mid (x, \omega, t_1) \in A; (y, \eta, t_2) \in B\}.$$

Let $C(F, G)$ be the closure of $C_0(F, G)$.

Claim 7.5 *We have $\text{SS}(F \boxtimes G) \subset C(F, G)$.*

Sketch of the proof.

0) For $a \in \mathbb{R}$. Define functors

$$\mathbf{cut}_{t < a}, R_{> a}, \mathbf{cut}_{\geq a}, R_{\leq a} : \mathcal{Q}_{\varepsilon} \rightarrow \mathcal{Q}_{\varepsilon}$$

as follows. Set:

- $\mathbf{cut}_{t < a} e_b = e_b$ if $b \leq a - \varepsilon$;
- $\mathbf{cut}_{t < a} e_b = \text{Cone } e_b \rightarrow e_a[-1]$ if $a - \varepsilon < b \leq a$;
- $\mathbf{cut}_{t < a} e_b = 0$ if $b > a$;
- $\mathbf{cut}_{t \geq a} e_b = 0$ if $b \leq a - \varepsilon$;
- $\mathbf{cut}_{t \geq a} e_b = e_a$ if $a - \varepsilon < b \leq a$;
- $\mathbf{cut}_{t \geq a} e_b = e_b$ if $b > a$.

- $R_{>a}e_b = e_b$ if $b > a$;
- $R_{>a}e_b = 0$ if $b \leq a$;
- $R_{\leq a}e_b = 0$ if $b > a$;
- $R_{\leq a}e_b = e_b$ if $b \leq a$.

These functors extend to functors $\text{sh}_\varepsilon(X) \rightarrow \text{sh}_\varepsilon(X)$. One has

$$\mathbf{cut}_{\geq a}\mathbb{A}_{[K,f]} \approx \mathbb{A}_{[K;\max(a,f)]}; \quad R_{\leq a}\mathbb{A}_{[K,f]} = \mathbb{A}_{K';f},$$

where $K' = \{x \in K \mid f(x) \leq a\}$.

We have natural transformations $\mathbf{cut}_{t < a} \rightarrow \text{Id} \rightarrow \mathbf{cut}_{t \geq a}$; $R_{>a} \rightarrow \text{Id} \rightarrow R_{\leq a}$. whose compositions are 0. The complexes

$$0 \rightarrow \mathbf{cut}_{t < a}F \rightarrow F \rightarrow \mathbf{cut}_{t \geq a}F \rightarrow 0; \quad 0 \rightarrow R_{>a}F \rightarrow F \rightarrow R_{\leq a}F \rightarrow 0$$

are acyclic for every $F \in \text{psh}_\varepsilon(X)$.

We have $\mathbf{cut}_{t < a}F \bullet_X R_{\leq -a}G \sim 0$; $\mathbf{cut}_{t \geq a} \bullet_X R_{>-a}G \sim 0$ for all $F, G \in \text{psh}_\varepsilon(X)$. Hence, the induced maps

$$\mathbf{cut}_{t < a}F \bullet_X R_{>-a}G \rightarrow \mathbf{cut}_{t < a} \bullet_X G$$

and

$$\mathbf{cut}_{t < a}F \bullet_X R_{>-a}G \rightarrow F \bullet R_{>-a}G$$

are homotopy equivalences. We have

$$\mathbf{cut}_{t < a}F \bullet_X G \approx F \bullet_X R_{>-a}G \tag{32}$$

Similarly, we get

$$\mathbf{cut}_{t \geq a}F \bullet_X G \approx F \bullet_X R_{\leq -a}G. \tag{33}$$

Whenever $a \leq b$ we have a natural transformation $\mathbf{cut}_{t < a} \rightarrow \mathbf{cut}_{t < b}$. Let $\mathbf{cut}_{a \leq t, b} := \text{Cone } \mathbf{cut}_{t < a} \rightarrow \mathbf{cut}_{t < b}$.

Let us also denote $T_c : Q_\varepsilon \rightarrow Q_\varepsilon$; $T_c a = a + c$.

1) Let $P := (x_0, p_0, y_0, q_0, t_0) \notin C(F, G)$. Let us show that $F \boxtimes G$ is nonsingular at P . Let f be a smooth function on X and g on Y such that $f(x_0) = 0$, $g(y_0) = -t_0$, $d_{x_0}f = -p_0$, $d_{y_0}g = -q_0$. Let $h : X \times Y \rightarrow \mathbb{R}$ so that $h(x, y) = f(x) + g(y)$. We then have

$$\mathbb{A}_{[\Delta_X; f_\delta]} \boxtimes \mathbb{A}_{[\Delta_Y; g_\Delta]} \approx \mathbb{A}_{[\Delta_{X \times Y}; h_\Delta]}.$$

Let $F' := F *_X \mathbb{A}_{[\Delta_X; f_\delta]}$, $G' := G *_Y \mathbb{A}_{[\Delta_Y; g_\Delta]}$, $(F \boxtimes G)' := (F \boxtimes G) * \mathbb{A}_{[\Delta_{X \times Y}; h_\Delta]}$. We then have $F' \boxtimes G' \approx (F \boxtimes G)'$.

It now follows that $\text{SS}(F') = T_f \text{SS}F$, $\text{SS}(G') = T_g \text{SS}G$, and $\text{SS}(F \boxtimes G) = T_h \text{SS}(F \boxtimes G)$. It also follows that $C(F', G') = T_h C(F, G)$. We therefore have $P' = (x_0, 0, y_0, 0, 0) \notin C(F', G')$ and it suffices to prove that $P' \notin \text{SS}(F' \boxtimes G')$.

Therefore, the problem reduces to showing that if $P = (x_0, 0, y_0, 0, 0) \notin C(F, G)$, then $P \notin \text{SS}(F \boxtimes G)$. We assume below that $P \notin C(F, G)$.

2) There exist neighborhoods U of $(x_0, 0) \in T^*X, V$ of $(y_0, 0) \in T^*Y$, and $\delta > 0$, such that whenever $(p, t_1) \in \text{SSF}$ and $(q, t_2) \in \text{SSG}$ with $p \in U$ and $q \in V$, there must be $|t_1 + t_2| > \delta$.

3) Let $A = \{t \in \mathbb{R} \mid \exists p \in U : (p, t) \in \text{SSF}\}; B = \{t \in \mathbb{R} \mid \exists q \in V : (q, t) \in \text{SSG}\}$. It follows that $\text{dist}(A, -B) > \delta$.

4) Let $t \in \mathbb{R}$. It follows that either $[t - \delta/2, t + \delta/2] \cap A = \emptyset$ or $[t - \delta/2, t + \delta/2] \cap -B = \emptyset$. In the first case call $[t - \delta/2, t + \delta/2]$ an *A-interval*, and t an *A-point*. Otherwise, call $[t - \delta/2, t + \delta/2]$ a *B-interval*, and t a *B-point*.

5) Let $f^{\mathbf{k}}(x, y)$ be an $U \times V \times (-\delta/4, \delta/4)$ -lense, to be denoted by ℓ .

6) Let $a, b \in \mathbb{R}$ satisfy $a + b \geq -\delta/2$.

Suppose $[a - \delta/4, a + 3\delta/4]$ is an *A-interval*. Let us show that

$$(R_{>a}F \boxtimes R_{>b}H) \bullet_{X \times Y} \mathbb{A}_\ell \sim 0 \quad (34)$$

for every $H \in \text{psh}_\varepsilon(X)$, hence for G .

It suffices to check it for $H = [W, c]$, where $W \subset X$ is an open subset and $c \in \mathbb{R}$. The statement then follows automatically for $c \leq b$ as $R_{>b}H = 0$ in this case.

7) Consider the case $c > b$. We have $R_{>b}[W, c] = [W, c]$. We have

$$(R_{>a}F \boxtimes [W, c]) \bullet \mathbb{A}_\ell = (R_{>a}F \bullet_X T_c \mathbb{A}_\ell)(W) = (R_{>a}F \bullet_X \mathbb{A}_{T_c \ell})(W) \approx (F \bullet_X \mathbf{cut}_{<-a} \mathbb{A}_{T_c \ell})(W),$$

where we have used (32). We have

$$\mathbf{cut}_{<-a} \mathbb{A}_{T_c \ell} \approx \mathbb{A}_{\ell'},$$

where

$$\ell' = \{\min(f^{\mathbf{k}}(x) + c, -a)\} = \min \ell, \ell_{-a},$$

where ℓ_{-a} is the lense $f^1 = f^2 = -a$. We have

$$-a - 3\delta/4 \leq b - \delta/4 \leq \min(f^{\mathbf{k}}(x) + c, -a) \leq -a.$$

Thus, ℓ' is a generalized $U \times V \times (-a - 3\delta/4, -a + \delta/4)$ -lense so that

$$F \bullet_X \mathbb{A}_{\ell'} \sim 0,$$

as was required.

8) Consider now the case when $(a - \delta/4, a + 3\delta/4)$ is a *B-interval*.

Then we replace $R_{>a}F$ with $[W, c]$, where $c > a$. We are to prove

$$([W, c] \boxtimes R_{>b}G) \bullet_{X \times Y} \mathbb{A}_\ell \sim 0,$$

where ℓ is a $U \times V \times (-\delta/4, \delta/4)$ -lense.

Similar to above, we have

$$([W, c] \boxtimes R_{>b}G) \bullet_{X \times Y} \mathbb{A}_\ell \approx (R_{>b}G \bullet_X \mathbb{A}_{T_c \ell})(W) \approx (G \bullet_X \mathbf{cut}_{<-b} \mathbb{A}_{T_c \ell})(W) \approx (G \bullet_X \mathbb{A}_{\ell'})(W),$$

where

$$\ell' = \min(f^{\mathbf{k}} + c, -b).$$

We have

$$a - \delta/4 \leq \min(f^{\mathbf{k}} + c, -b) \leq -b \leq a + 3\delta/4.$$

and ℓ' is a $U \times V \times (a - \delta/4, a + 3\delta/4)$ -lense.

As $(a - \delta/4, a + 3\delta/4)$ is a B -interval, G is nonsingular on $V \times (-(a - \delta/4), -(a + 3\delta/4))$ so that $G \bullet_Y \mathbb{A}_{\ell'} \sim 0$, as was required.

9) Let $a + b \leq -\delta/2$. Let $a_1 = -b - \delta/4, b_1 = b - \delta/4$. We have $b_1 \leq b; a_1 \geq a + \delta/2 - \delta/4 \geq a$. We then have the following acyclic complex:

$$\begin{aligned} 0 \rightarrow R_{>a_1} F \boxtimes R_{>b} G &\rightarrow R_{>a} F \boxtimes R_{>b} G \oplus R_{>a_1} F \boxtimes R_{>b_1} G \rightarrow R_{>a} F \boxtimes R_{>b_1} G \\ &\rightarrow R_{a < t \leq a_1} F \boxtimes R_{b_1 < t \leq b} G \rightarrow 0. \end{aligned}$$

As $a_1 + b = -\delta/4$, we have

$$(R_{a < t \leq a_1} F \boxtimes R_{b_1 < t \leq b} G) \bullet \mathbb{A}_{\ell} \sim 0.$$

Indeed, as $a_1 + b = -\delta/4$, the natural map

$$(R_{a < t \leq a_1} F \boxtimes R_{b_1 < t \leq b} G) \rightarrow R_{\leq -\delta/4} (R_{a < t \leq a_1} F \boxtimes R_{b_1 < t \leq b} G)$$

is a homotopy equivalence so that we have

$$(R_{a < t \leq a_1} F \boxtimes R_{b_1 < t \leq b} G) \bullet \mathbb{A}_{\ell} \approx (R_{\leq -\delta/4} (R_{a < t \leq a_1} F \boxtimes R_{b_1 < t \leq b} G)) \bullet \mathbb{A}_{\ell} \approx (R_{a < t \leq a_1} F \boxtimes R_{b_1 < t \leq b} G) \bullet \mathbf{cut}_{\geq \delta/4} \mathbb{A}_{\ell}.$$

, Finally, $\mathbf{cut}_{\geq \delta/4} \mathbb{A}_{\ell} \approx \mathbb{A}_{\ell''}$, where $\ell'' = \max(\delta/4, f^{\mathbf{k}}) = \delta/4$ so that $\mathbb{A}_{\ell''} \sim 0$. which implies the statement.

Next, $a_1 + b_1 = -\delta/2$ and $a_1 + b = -\delta/4 \geq -\delta/2$, we have (by 7) and 8):

$$(R_{>a_1} F \boxtimes R_{>b_1} G) \bullet \mathbb{A}_{\ell} \sim 0;$$

$$(R_{>a_1} F \boxtimes R_{>b} G) \bullet \mathbb{A}_{\ell} \sim 0.$$

Thus, if $a + b \leq -\delta/2$ and $(R_{>a} F \boxtimes R_{>b} G) \bullet \mathbb{A}_{\ell} \sim 0$, then $(R_{>a} F \boxtimes R_{>b - \delta/4} G) \bullet \mathbb{A}_{\ell} \sim 0$. Taking into account 7), 8), it now follows by induction that $(R_{>a} F \boxtimes R_{>b} G) \bullet \mathbb{A}_{\ell} \sim 0$, whenever $a + b = -\delta/2 - N\delta/4$, $N \geq 0$.

9) We have

$$\text{hocolim}_{N \rightarrow \infty} (R_{>-\delta/4 - N\delta/8} F \boxtimes R_{>-\delta/4 - N\delta/8} G) \xrightarrow{\sim} F \boxtimes G,$$

which implies the statement.

7.5.1 Singular support of $\mathbb{A}_{[X,f]}$

Let $f : X \rightarrow \mathbb{R}$ be a smooth function. Set $\mathcal{L}_f := \{(x, -d_x f, f(x)) | x \in X\} \subset T^*X \times \mathbb{R}$.

Proposition 7.6 *We have $SS\mathbb{A}_{[X,f]} \subset \mathcal{L}_f$.*

Sketch of the proof As follows from Sec 6.0.15, 7.4.2, it suffices to consider the case $f = 0$. Next, it suffices to consider the case $X = \mathbb{R}^n$ which reduces to the case $n = 1$ by virtue of the previous section.

Let $(x_0, p_0, t_0) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} = T^*\mathbb{R} \times \mathbb{R}$, where $(p_0, t_0) \neq (0, 0)$. Choose $\delta > 0$ so that $\max(|p_0|, |t_0|) > 2\delta$.

Let $U = \{(x, p, t) | |x - x_0|, |p - p_0|, |t - t_0| < \delta\}$. Let $\ell = \{f^k\}$ be a U -lense on \mathbb{R} supported on $|x - x_0| \leq \delta$.

We have

$$\mathbb{A}_{[\mathbb{R}, 0]} \bullet \mathbb{A}_\ell \approx \text{Cone } \mathbb{A}_\mathbb{R}(K_0) \rightarrow \mathbb{A}_\mathbb{R}(K_1),$$

where $K_k = \{x | |x| \leq \delta, f^k(x) \leq 0\}$. *Case 1.* $|t_0| > 2\delta$. As $|f^k(x) + t_0| < \delta$, $f^k(x)$ are of the same sign for all k and all x , $|x| \leq \delta$ so that $K_1 = K_0$.

Case 2. $|p_0| > 2\delta$. As $|f^k(x)' + p_0| < \delta$, $f^k(x)'$ are of the same sign for all k and all x , $|x| \leq \delta$. Therefore, $K_k = [f^k(-\delta), f^k(-\delta)]$. So that the arrow $\mathbb{A}_\mathbb{R}(K_0) \rightarrow \mathbb{A}_\mathbb{R}(K_1)$ is homotopy equivalent to the identity arrow $\mathbb{A} \rightarrow \mathbb{A}$, whence the statement.

7.5.2 $SS\mathbb{A}_{[\bar{U}, 0]}$, where U has a smooth boundary

Let $U \subset X$ be a domain with a smooth boundary. Let f be a smooth function in a neighborhood of U . For $x \in X$ set $n_x \subset T_x^*X$ be defined as follows: $n_x = 0$ if $x \in U$; n_x is the closed ray consisting of all inner normal vectors at x to U if x is a boundary point of U ; $n_x = \emptyset$ otherwise. Set

$$\Sigma := \bigcup_{x \in X} n_x.$$

Proposition 7.7 *We have*

$$SS\mathbb{A}_{[\bar{U}, 0]} \subset \Sigma \times \{0\} \subset T^*X \times \mathbb{R}.$$

Sketch of the proof Choose an increasing sequence of smooth functions $f_n(x)$ such that $f_n(x) \rightarrow \infty$ for all $x \notin \bar{U}$ and $f_n(x) = 0$ for all $x \in \bar{U}$.

We then have

$$\text{hocolim}_{n \rightarrow \infty} \mathbb{A}_{\{(t, x) | t \geq f_n(x)\}} \rightarrow \mathbb{A}_{[\bar{U}, 0]}.$$

Let $p \in T^*X \times \mathbb{R} \setminus \Sigma \times 0$. It follows that there for every neighborhood V of p there exists an N such that

$$SS\mathbb{A}_{[X, f_n(x)]} = \mathcal{L}_{f_n} \cap V = \emptyset.$$

This implies the statement.

7.5.3 $\text{SSA}_{[U,0]}$

Proposition 7.8 *We have*

$$\text{SSA}_{[U,0]} \subset (\Sigma \times \{0\})^a \subset T^*X \times \mathbb{R}.$$

Sketch of the proof Apply the previous Proposition to $X \setminus U$.

7.5.4 Inverse image under closed embedding

Let $i : Y \rightarrow X$ be a closed embedding. Let S be a closed subset of $T^*X \times \mathbb{R}$. Define a closed subset $C'_Y S := S \hat{+} T^*_Y X|_Y \subset T^*X|_Y \times \mathbb{R}$, where $\hat{+}$ is the Whitney sum. Let $C_Y S \subset T^*Y \times \mathbb{R}$ be the image of $C'_Y S$ under the projection $T^*X|_Y \rightarrow T^*Y$. In local coordinates: let y be coordinates on Y and (y, x) on X . A point $(y_0, q_0, t_0) \in C_Y S$ iff there exists a sequence $(y_n, q_n, x_n, p_n, t_n) \in S$, where $(y_n, q_n, x_n, t_n) \rightarrow (y_0, q_0, t_0)$ and $|x_n|p_n \rightarrow 0$.

Let $S \in \text{sh}_\varepsilon(X)$. Then $\text{SS}i^{-1}S \in C_Y \text{SSS}$.

Sketch of the proof. 1) Let us introduce local coordinates (x, y) so that Y is given by the equation $x = 0$. Suppose $(0, \eta_0, t_0) \notin C_Y \text{SSS}$. We need to show that $i^{-1}S$ is non-singular at $(0, \eta_0, t_0)$. By change of variable $t \mapsto t - t_0 - (\eta_0, y) - 1$, we reduce the problem to the case $\eta_0 = 0, t_0 = -1$.

Thus $(0, 0, -1) \notin C_Y \text{SSS}$. This implies that there exists $\delta > 0$ such that $(x, \omega, y, \eta, t) \notin \text{SSS}$, whenever

$$|x| < \delta, |y| < \delta, |\eta| < \delta, |t + 1| < \delta, |\omega||x| < \delta.$$

Denote this set by W

2) Lemma. For each $r_0 > 0$ there exists a smooth non-decreasing function $g_{r_0} : [0, \infty) \rightarrow [0, 1]$ such that

- a) there exists $\delta > 0$ such that $g(x) = 0$ for all $x \in [0, \delta]$.
- b) $g(r_0) = 1$, in particular $g(r) = 1$ for all $r \geq r_0$,
- c) $|rg'(r)| < 1/2$ for all $r \geq 0$.
- d) $g_{r_0}(x) \geq g_{r_1}(x)$ whenever $r_0 \leq r_1$.

3) Let $f^{\mathbf{k}}(y)$ be a W' -lense on Y , where $W' = \{(y, \eta, t) | |y| < \delta, |\omega| < \delta, |t - 1| < \delta\}$, supported on the set $|y| \leq \delta$. Set

$$\phi_{r_0}^{\mathbf{k}}(x, y) = (f^{\mathbf{k}}(y) - 1 - \delta)(1 - g(|x|)) + 1 + \delta$$

. Let us show that $\{\phi_{r_0}^{\mathbf{k}}\}$ is a W^a -lense supported on the set $K_{r_0} := \{(x, y) | |x| \leq r_0, |y| \leq \delta\}$.

- a) it is clear that $\phi_{r_0}^1 = \phi_{r_0}^2$ away from K_{r_0} ;
- b) $1 + \delta > \phi_{r_0} > (1 - \delta - 1 - \delta) + 1 + \delta = 1 - \delta$;
- c)

$$|x| \cdot |d_x \phi_{r_0}^{\mathbf{k}}| = |x| \cdot |f^{\mathbf{k}}(y) - 1 - \delta| \cdot |g'(|x|)| < |x| \cdot |g'(|x|)| \cdot 2\delta \leq \delta;$$

- d)

$$|d_y \phi_{r_0}^{\mathbf{k}}| = |d_y f^{\mathbf{k}}(y)| \cdot |1 - g| < \delta.$$

We have $\phi_{r_0}^{\mathbf{k}}(x, y) \geq \phi_{r_1}^{\mathbf{k}}(x, y)$ if $r_0 \leq r_1$. Furthermore

$$\lim_{r_0 \downarrow 0} \phi_{r_0}^{\mathbf{k}}(x, y) = \psi^{\mathbf{k}}(x, y),$$

where $\psi(x, y) = 1 + \delta$ if $x \neq 0$ and $\psi^{\mathbf{k}}(0, y) = f(y)$. Let $\ell_{r_0} := \{\phi_{r_0}^{\mathbf{k}}\}$.

We therefore have a homotopy equivalence

$$0 \sim \text{hocolim}_{r_0 \downarrow 0} F \bullet_X \mathbb{A}_{\ell_{r_0}} \approx F \bullet_X i_! \mathbb{A}_\ell \approx i^{-1} F \bullet_Y \mathbb{A}_\ell.$$

This shows the statement.

7.5.5 Direct image under closed embedding

Let $i : Y \rightarrow X$ be a closed embedding. Let $F \in \text{sh}_\varepsilon(Y)$. For every $y \in Y$, let $p_y : T_y^* X \rightarrow T_y^* Y$ be the projection.

Proposition 7.9 *We have*

$$SSi_! F \subset \{(y, \omega, t) \mid y \in Y; (y, p_y(\omega), t) \in SS(F)\}$$

Sketch of the proof Let $\ell = \{f^{\mathbf{k}}\}$ be a lense on X . We have

$$i_! F \bullet \mathbb{A}_\ell \approx F \bullet \mathbb{A}_{i^{-1}\ell},$$

where $i^{-1}\ell = \{f^{\mathbf{k}}|_Y\}$.

7.5.6 Direct image under open embedding

Let $U \subset X$ be a domain with a smooth boundary. Let Σ be the same as in Sec. 7.5.2. Let $F \in \text{sh}_\varepsilon(U)$. Let $j : U \rightarrow X$ be the embedding.

Proposition 7.10 *We have*

$$SS(j_! F) \subset SS(F) \hat{+} \Sigma^a.$$

Sketch of the proof By change of coordinates one reduces the case to $U \subset \mathbb{R}^n$, where U is a hyperplane $x^0 > 0$. Let us denote $y := (x^1, x^2, \dots, x^n)$ and $x := x^0$. Let $p \notin SS(F) \hat{+} \Sigma^a$, w.l.o.g. we may assume $p = (x_0, 0, -1) \in T^*\mathbb{R}^n \times \mathbb{R}$. Therefore, there exists $\delta > 0$ such that F is non-singular on the open subset $W \subset T^*\mathbb{R}^n \times \mathbb{R}$ consisting of all points

$$(y, x, a, \eta, t) \in \mathbb{R}_{>0} \times \mathbb{R}^{n-1} \times \mathbb{R} \times \mathbb{R}^{n-1} \times \mathbb{R},$$

where

$$0 < y < \delta; |x| < \delta; \delta > a > -\frac{\delta}{y}; |\eta| < \delta; |t + 1| < \delta.$$

Let $\Omega \subset T^*\mathbb{R}^n \times \mathbb{R}$ consist of all points (y, x, b, ω) of the form

$$|y| < \delta, |x| < \delta, |b| < \delta, |\omega| < \delta, |t + 1| < \delta.$$

$\ell = \{f^{\mathbf{k}}\}$ be an Ω^a -lense supported on the set $|y| \leq \delta, |x| \leq \delta$.

Choose smooth functions for each $r > 0$: $\sigma_r : \mathbb{R} \rightarrow [0, 1]$, satisfying:

- $\sigma_r(x) = 0$, $x \leq 0$; $\sigma_{r_0}(x) = 1$ for $x \geq r_0$;
- $\sigma_r(x) = 0$ in a neighborhood of 0;
- $\sigma_{r_1}(x_1) \leq \sigma_{r_2}(x_2)$ if $r_1 \geq r_2$ and $x_1 \leq x_2$;
- $x\sigma'_r(x) \leq 1/2$ for all x and all r .

Let us define new lenses

$$F_r^{\mathbf{k}}(y, x) = (f^{\mathbf{k}}(y, x) - 1 + \delta)\sigma_r(y) + 1 - \delta.$$

Let $\ell_r := \{F_r^{\mathbf{k}}\}$. We have

- ℓ_r is supported on a compact within U ;
- ℓ_r is an Ω -lense. Indeed:

$$\begin{aligned} 1 - \delta &\leq F^k k \leq 1 + \delta; \\ |d_x F^{\mathbf{k}}| &= |d_x f^{\mathbf{k}}| \sigma(y) \leq |d_x f^{\mathbf{k}}| < \delta; \\ -\delta y &< \min(y d_y f^{\mathbf{k}}, 0) < y d_y F^{\mathbf{k}} < 1/2 |f^{\mathbf{k}} - 1 + \delta| < \delta. \end{aligned}$$

We also have $\lim_{r \downarrow 0} F_r^{\mathbf{k}}(y, x) = f^{\mathbf{k}}(y, x)$ for all $(y, x) \in U$. The statement now follows.

7.5.7 Proper direct image

let $f : X \rightarrow Y$ be a proper map of smooth manifolds. Let $F \in \text{sh}_\varepsilon(X, C)$ and $\text{SSF} \subset T$. Let $f(T) \subset T^*Y \times \mathbb{R}$ be the set consisting of all points (x, ω, t) , where there exists a $y \in p^{-1}x$ such that $(y, f^*\omega, t) \in T$.

Proposition 7.11 *We have $\text{SSF}_! F \subset f(T)$.*

7.5.8 Direct image along \mathbb{R}^n

Let $p : X \times \mathbb{R}^n \rightarrow X$ be the projection. Let $F \in \text{sh}_\varepsilon(X \times \mathbb{R}^n)$ and let $\text{SSF} \subset T \subset T^*X \times T^*\mathbb{R}^n \times \mathbb{R}$. Let $P : T^*X \times T^*\mathbb{R}^n \times \mathbb{R} \rightarrow T^*X \times (\mathbb{R}^n)^* \times \mathbb{R}$ be the projection and let $I : T^*X \times \mathbb{R} \rightarrow T^*X \times (\mathbb{R}^n)^* \times \mathbb{R}$ be the embedding onto $T^*X \times 0 \times \mathbb{R}$. Let $f(T) := I^{-1}\overline{P(T)}$.

Proposition 7.12 *We have $\text{SSF} \subset f(T)$.*

7.5.9

Let X be a smooth manifold with a marked point x_0 . Let $\mathcal{S}_X \subset \text{sh}_\varepsilon(X)$ be the full sub-category consisting of all objects F such that $\text{SSF} \subset T^*X \times \{0\}$.

We have functors $\text{sh}_\varepsilon(X) \xrightarrow{F} \text{sh}_\varepsilon(X) \xrightarrow{G} \text{sh}_\varepsilon(X)$, where $F(S) = S \bullet_{\text{pt}} \mathbb{A}_{t \geq 0}$; $G(T) := T \boxtimes \mathbb{A}_{t \geq 0}$.

Proposition 7.13 *The functors F, G are mutually inverse equivalences of categories.*

7.5.10

Let X be a simply-connected manifold with a marked point x_0 . Let $\text{Loc}(X) \subset \text{sh}_q(X)$ be the full sub-category consisting of all objects supported on $T_X^*X \times 0$. Let $\text{const}(X)$ be the full sub-category consisting of all $F \in \text{const}(X)$ satisfying $F_{x_0} \in \mathbb{A}\text{-mod} \subset \mathbf{GZ}$.

Proposition 7.14 1) *We have $\text{Hom}(F, G) \in \mathbf{GZ}_{\geq 0}$.*

2) *The through map*

$$\tau_{\leq 0} \text{Hom}(F, G) \rightarrow \text{Hom}(F|_{x_0}; G|_{x_0})$$

is a homotopy equivalence.

7.5.11 Sheaves constant along \mathbb{R}^n

Let $p : X \times \mathbb{R}^n \rightarrow X$ be the projection. Let $\mathcal{C} \subset \text{sh}_\varepsilon(X \times \mathbb{R}^n)$ be the full sub-category of objects F , where

$$\text{SS}(F) \subset T^*X \times T_{\mathbb{R}^n}^*\mathbb{R}^n \times \mathbb{R}.$$

Proposition 7.15 *The category \mathcal{C} consists of all objects F homotopy equivalent to objects of the form $G \boxtimes \mathbb{A}_{\mathbb{R}^n}$, $G \in \text{sh}_\varepsilon(X)$.*

7.5.12 Fourier transform

Let $E = \mathbb{R}^n$ with the standard euclidean pairing $\phi : E \times E \rightarrow \mathbb{R}$. Let $\mathcal{F} \in \text{sh}_q(E \times E)$, $\mathcal{F} = \mathbb{A}_{[E \times E, \phi]}$. Let $\mathcal{F}^t = \mathbb{A}_{[E \times E, -\phi]}[n]$. Let $R : T^*E \times \mathbb{R} \rightarrow T^*E \times \mathbb{R}$, where $R(q, p, t) = (p^\vee, -q, t + \langle p, q \rangle)$, where $\vee : E^* \rightarrow E$ is induced by the pairing. Let $a : E \rightarrow E$ be given by $a(v) = -v$.

Let $\mathbb{F}, \mathbb{F}^t : \text{sh}_q(E) \rightarrow \text{sh}_q(E)$, $\mathbb{F}(G) := G *_E \mathcal{F}$; $\mathbb{F}^t(G) := G *_E \mathcal{F}^t$.

Proposition 7.16 1) *We have a zig-zag termwise homotopy equivalences $\mathbb{F}\mathbb{F}^t \approx \text{Id}$; $\mathbb{F}^t\mathbb{F} \approx \text{Id}$; $\mathbb{F}^t \approx a_! \mathbb{F}[-n]$;*

2) $\text{SS}(G *_E \mathbb{F}) \subset R(\text{SS}(G))$.

7.5.13 Fourier transform of convolution

Let E_1, E_2, E_3 be real vector spaces. Let $K \in \text{sh}_\varepsilon(E_1|E_2, C)$; $L \in \text{sh}_\varepsilon(E_2|E_3, C)$. Let $a_2 : E_2 \times E_3 \rightarrow E_2 \times E_3$, $a_2(v, w) = (-v, w)$.

Proposition 7.17 *We have*

$$\mathbb{F}(K *_{E_2} L) \approx \mathbb{F}K *_{E_2^*} a_{2!} \mathbf{F}L;$$

The proof is straightforward.

Let now $K \in \text{sh}_\varepsilon(E_1|E_2; C)$ and $F \in \text{sh}(E_2, C)$. Let $a : E_1 \rightarrow E_1$ be given by $a(v) = -v$.

Corollary 7.18 *We have 1)*

$$\mathbb{F}K^! F \sim a_!(\mathbb{F}K)^! \mathbb{F}F.$$

2) *The natural map*

$$((\mathbb{F}K)^! \mathbb{F}F) *_{E_1} \mathbb{F}K \rightarrow \mathbb{F}F$$

is homotopy equivalent to

$$((\mathbb{F}K)^! \mathbb{F}F) *_{E_1^*} \mathbb{F}K \approx a_! \mathbb{F}K^! F *_{E_1^*} \mathbb{F}F \approx \mathbb{F}K^! F *_{E_1} K \rightarrow \mathbb{F}F.$$

Indeed, 1) follows from the above proposition and 2) follows from the fact that \mathbb{F} is a homotopy equivalence of categories, therefore preserves pairs of adjoint functors.

7.6 Comparison of the two inverse images

Let $i : Y \rightarrow X$ be a closed embedding. Let $m = \dim Y$; $n + m = \dim X$. Let $F \in \text{sh}_\varepsilon(X)$. Set $D_Y := i^! \mathbb{A}_X$. We have a natural map $i_! D_Y \rightarrow \mathbb{A}_X$. Let $\Delta_X : X \rightarrow X \times X$ be the diagonal embedding. We have an induced map $\Delta_X_! i_! D_Y \rightarrow \Delta_! \mathbb{A}_X$. We now have an induced map

$$F *_X \Delta_! i_! D_Y \rightarrow F *_X \Delta_! \mathbb{A}_X \approx F.$$

Let $\delta : Y \rightarrow X \times Y$ be the diagonal embedding. We have

$$i_! F *_X \delta_! D_Y \approx F *_X \Delta_! i_! D_Y,$$

whence induced maps

$$\begin{aligned} i_! F *_X \delta_! D_Y &\rightarrow F; \\ F *_X \delta_! D_Y &\rightarrow i^! F. \end{aligned} \tag{35}$$

7.6.1 Theorem: formulation

Let $U \subset T^* X \times \mathbb{R}$ be a conic open subset containing $T_Y^* X \times \mathbb{R}$, where conic means stable under positive dilation of fibers of the bundle $T^* X \times \mathbb{R} \rightarrow X \times \mathbb{R}$.

Theorem 7.19 *Suppose $SS(F) \cap \overline{U} \subset T^* X \times \mathbb{R}$ is proper over $X \times \mathbb{R}$. Then the map (35) is a homotopy equivalence.*

The rest of the subsection is devoted to the proof.

7.6.2 Reduction to the flat case

The statement is local in Y . Let $y_0 \in Y$. Choose a pre-compact neighborhood V of y_0 endowed with a diffeomorphism $\phi : \overline{V} \cong B_n \times B_m \subset \mathbb{R}^n \times \mathbb{R}^m$, where $B_n \subset \mathbb{R}^n$ is the unit ball centered at 0 and $\phi(Y \cap \overline{V}) = 0 \times B_m$. We have an identification $T^*X|_U = U \times \mathbb{R}^n \times \mathbb{R}^m$. It follows that there exist an open cone $C \subset \mathbb{R}^n \times \mathbb{R}^m$, $\overline{C} \supset \mathbb{R}^n \times 0$, and a compact subset $K \subset \mathbb{R}^n \times \mathbb{R}^m$ such that

$$\phi(U \cap T^*V \times \mathbb{R}) \supset V \times C \times \mathbb{R}$$

and

$$\text{SS}(F) \cap T^*V \times C \subset T^*V \times K.$$

One can choose diffeomorphisms $h : \mathbb{R}^n \cong \text{int}B_n$; $h_m : \mathbb{R}^m \cong \text{int}B_m$ and an open cone $A \subset \mathbb{R}^n \times \mathbb{R}^m$, $\mathbb{R}^n \times 0 \subset \overline{A}$, satisfying: $(h_n \times h_m)^*(\text{int}B_n \times \text{int}B_m \times C) \supset \mathbb{R}^n \times \mathbb{R}^m \times A$, where $(h_n \times h_m)^* : T^*(\text{int}B_n \times \text{int}B_m) \rightarrow T^*(\mathbb{R}^n \times \mathbb{R}^m)$ is the induced map.

3) The problem reduces to the case $X = \mathbb{R}^n \times \mathbb{R}^m$, $Y = 0 \times \mathbb{R}^m$, $\text{SS}F \cap \mathbb{R}^n \times \mathbb{R}^m \times \overline{A}$ is compact, where $A \subset \mathbb{R}^n \times \mathbb{R}^m$ is an open cone, $0 \times \mathbb{R}^m \subset \overline{A}$.

Let (x, y) be local coordinates on $\mathbb{R}^n \times \mathbb{R}^m$. Let (x, ω, y, η) be coordinates on $T^*(\mathbb{R}^n \times \mathbb{R}^m)$. There exists a $C > 0$ such that

$$A \supset \{(\omega, \eta) \mid 0 < C|\eta| < |\omega|\}.$$

There exists a $D > 0$ such that F is non-singular on the set

$$\{(x, \omega, y, \eta) \mid \max(D, C|\eta|) < |\omega|\}.$$

Denote $H := \{(\omega, \eta) \mid \eta \neq 0; \max(D, C|\eta|) < \omega\}$. Let

$$\begin{aligned} \Sigma &:= \mathbb{R}^n \times \mathbb{R}^m \setminus H, \\ \Sigma &= \{(\omega, \eta) \mid |g| \leq \max(D, C|\eta|)\} \end{aligned}$$

7.6.3 Applying the Fourier transform

Let us apply Fourier transform (7.5.12).

- 1) We have $\mathbb{F}F$ is supported on Σ .
- 2) The properties of Fourier transform imply that the map

$$\mathbb{F}\delta_{Y!}D_Y *_X F \rightarrow \mathbb{F}F$$

is homotopy equivalent to the following map

$$\mathbb{A}_{\{(x_1, y_1, x_2, y_2) \mid x_1 = x_2\}, 0} *_{\mathbb{R}^n \times \mathbb{R}^m} \mathbb{F}F \rightarrow \mathbb{A}_{\{(x_1, y_1, x_2, y_2) \mid x_1 = x_2, y_1 = y_2\}, 0} *_{\mathbb{R}^n \times \mathbb{R}^m} \mathbb{F}F$$

which is homotopy equivalent to the natural map

$$p^{-1}p_! \mathbb{F}F \rightarrow \mathbb{F}F,$$

same as in Sec. 5.16.3. The map (35) is then equivalent to the induced map

$$p_! \mathbb{F}F \rightarrow p_* \mathbb{F}F.$$

which is a homotopy equivalence because p is proper on the support of $\mathbb{F}F$.

8 Action of $\mathrm{Sp}(2N)$

Let G be the universal cover of $\mathrm{Sp}(2N)$. Let $V = \mathbb{R}^{2N}$ be the standard symplectic vector space with the coordinates (q, p) and let $E = \mathbb{R}^N$ so that $V = T^*E$. The group $\mathrm{Sp}(2N)$, hence G , acts on V .

8.1 Graph of the G -action on T^*E

. Let $a : T^*E \rightarrow T^*E$ be the antipode map $(q, p) \mapsto (q, -p)$. Let $\Gamma \subset G \times V \times V$ consist of all points of the form $\{(g, v, gv^a) \mid g \in \mathrm{Sp}(2N); v \in V\}$. It follows that there exists a unique Legendrian sub-manifold $\mathcal{L} \subset T^*(G \times E \times E) \times \mathbb{R}$ which — diffeomorphically projects onto Γ under the projection

$$T^*(G \times E \times E) \times \mathbb{R} \rightarrow G \times T^*(E \times E) \times \mathbb{R}.$$

— contains all the points of the form $(e, v, v^a, 0)$, where e is the unit of G and $v \in V$.

Let \mathcal{C} be the full sub-category of $\mathrm{sh}_\infty(G \times E \times E)$ consisting of all objects F satisfying:

- there exists a homotopy equivalence $F|_{e \times E \times E} \sim \mathbb{A}_{[\Delta_E], 0}$, where $\Delta_E \subset E \times E$ is the diagonal.
- $\mathrm{SS}(F) \subset \mathcal{L}$.

We have a functor $\mathcal{C} \rightarrow \mathbb{A}\text{-mod}$, $F \mapsto F|_{(0,0,0)}$

Theorem 8.1 *This functor is a weak equivalence.*

Sketch of the proof. *Part 1: Let us construct at least one object \mathbb{S} of \mathcal{C} satisfying $F|_{0,0,0} = \mathbb{A}$.*

- 1) For an open subset $U \subset G$, let $\mathcal{L}_U \subset T^*(U \times E \times E) \times \mathbb{R}$ be the restriction of \mathcal{L} . Let \mathcal{C}_U be the full sub-category of $\mathrm{sh}_q(U \times E \times E)$ consisting of all objects F such that $\mathrm{SS}(F) \subset \mathcal{L}_U$ and there exists a homotopy equivalence $F|_{e \times E \times E} \sim \mathbb{A}_{[\Delta_E], 0}$.
- 2) Let \mathcal{U} be a small enough geodesically convex neighborhood of unit in $\mathrm{Sp}(2N)$ satisfying: for each $g \in \mathcal{U}$ we have: (q, p') is a non-degenerate system of coordinates, where $(q', p') = g(q, p)$. \mathcal{U} lifts uniquely to G , to be denoted by the same letter.
- 3) We will freely use the notation from Sec. 7.5.12. Let

$$R_1 : T^*E \times T^*E \times \mathbb{R} \rightarrow T^*E \times T^*E \times \mathbb{R},$$

be defined by $R_1(u_1, u_2, t) = (u_1, R^{-1}(u_2, t))$, where R as in Sec 7.5.12. Let $\mathcal{C}'_U \subset \mathrm{sh}_q(U \times E \times E)$ consist of all objects F such that

- there exists a homotopy equivalence $F|_{e \times E \times E} \sim \mathbf{F}'$.
- $\mathrm{SS}F \subset R_1(\mathcal{L}_U)$.

It follows that the functor $G \mapsto G *_E \mathbf{F}$ induces a homotopy equivalence of categories $\mathcal{C}'_U \rightarrow \mathcal{C}_U$.

- 4) The Legendrian manifold $R_1\mathcal{L}_U \subset T^*(G \times E \times E) \times \mathbb{R}$ projects uniquely onto the base $G \times E \times E$, therefore, $R_1\mathcal{L}_U$ is of the form \mathcal{L}_f for some smooth function f on $G \times E \times E$.

Let $\mathcal{A} \subset \mathrm{sh}_q(G \times E \times E)$ be the full sub-category of objects F satisfying:

- $\mathrm{SS}(F) \subset T^*_{U \times E \times E} U \times E \times E \times 0$;

— there exists a homotopy equivalence $F|_{e \times E \times E} \sim \mathbb{A}_{E \times E}$.

It follows that \mathcal{A} is the category consisting of all objects homotopy equivalent to $\mathbb{A}_{[U \times E \times E, 0]}$.

According to Sec. 7.4.2, the convolution with $\mathbb{A}_{\Delta_E, f}$ gives a homotopy equivalence of categories $\mathcal{A} \rightarrow \mathcal{C}'_U$.

Fix an object $S_{\mathcal{U}} \in \mathcal{C}_{\mathcal{U}}$ along with a homotopy equivalence

$$S_{\mathcal{U}}|_{0 \times E \times E} \sim \mathbb{A}_{[\Delta_E, 0]}.$$

5) For $h \in \mathcal{U}$, set $S_h := S_{\mathcal{U}}|_{h \times E \times E}$. Every $g = G$ can be written as $g = g_1 g_2 \cdots g_n$, where $g_i, g_i^{-1} \in \mathcal{U}$.

Set $S_{g_1, \dots, g_n} = S_{g_1} *_{\mathcal{E}} S_{g_2} *_{\mathcal{E}} \cdots *_{\mathcal{E}} S_{g_n}$.

For each g , choose an object $S_{g\mathcal{U}}$ which is homotopy equivalent to one of $S_{g_1, \dots, g_n} *_{\mathcal{E}} S_{\mathcal{U}}$ for $g_1 \cdots g_n = g$. Observe that the objects S_{g_1, \dots, g_n} and $S_{g'_1, \dots, g'_m}$, where $g_1 \cdots g_n = g'_1 \cdots g'_m = g$ are homotopy equivalent. It suffices to show that

$$S_{g_1, \dots, g_m, (g'_m)^{-1}, \dots, (g'_1)^{-1}} \sim \mathbb{A}_{[\Delta_E, 0]}$$

that is $S_{g_1 g_2 \cdots g_n} = \mathbb{A}_{\Delta_E, 0}$ whenever $g_1 g_2 \cdots g_n = e$. As U is geodesically closed, there is a unique shortest geodesic line joining $g_1 \cdots g_k$ and $g_1 \cdots g_{k+1}$. We will thus get a broken geodesic line starting and terminating at e . As G is simply connected, this line can be contracted to a point. By possibly adding intermediate points, one can reduce the problem to the case when there exist smooth paths $h_k : [0, 1] \rightarrow U$ such that $h_1(t) \cdots h_n(t) = e$, $h_k(1) = e$, $h_k(0) = g_k$ for all k . Let $S_k \in \text{sh}([0, 1] \times E \times E)$, $S_k := h_k^{-1} S_{\mathcal{U}}$. Consider

$$\Sigma := S_1 *_{\mathcal{E}} S_2 *_{\mathcal{E}} \cdots *_{\mathcal{E}} S_n \in \text{sh}_q(I^n \times E \times E)|_{\Delta_I \times E \times E},$$

where $\Delta_I \subset I^n$ is the diagonal.

It follows that

$$\Sigma_{1 \times E \times E} \sim \mathbb{A}_{[\Delta_E, 0]}; \quad \Sigma_{0 \times E \times E} \sim S_{g_1, g_2, \dots, g_n}.$$

Next, the singular support estimate shows that Σ is locally constant along Δ_I , which implies the statement.

6) Choose a covering $G = \bigcup_n g_n \mathcal{U}$. Let $I \in \mathbf{Cov}_G$ be the poset consisting of all non-empty intersections $g_{i_1} \mathcal{U} \cap \cdots \cap g_{i_k} \mathcal{U}$. Each element of I is geodesically convex. It follows that all the restrictions $S_{g_{i_l} \mathcal{U}}|_{g_{i_1} \mathcal{U} \cap \cdots \cap g_{i_k} \mathcal{U}}$ are homotopy equivalent. Indeed, choose a point $h \in g_{i_1} \mathcal{U} \cap \cdots \cap g_{i_k} \mathcal{U}$; 4) implies that there is a homotopy equivalence of restrictions $S_{g_{i_l} \mathcal{U}}|_{h \times E \times E}$ with S_h . The statement now follows from 4).

For every $A \in I$, $A = g_{i_1} \mathcal{U} \cap g_{i_2} \mathcal{U} \cap \cdots \cap g_{i_k} \mathcal{U}$, choose an object $S_A \in \mathcal{C}_A$ to be homotopy equivalent to each of the restrictions $S_{g_{i_l} \mathcal{U}}|_{A \times E \times E}$.

7) For each $V \in I$ let $j : V \rightarrow G$ be the embedding. Let $T_V := j_{\mathcal{V}!} S_{\mathcal{V}}$.

8) Whenever $A \subset B$, $A, B \in I$, we have a homotopy equivalence $\mathbb{A} \sim \text{Hom}(T_A, T_B)$. Let $r_{AB} : T_A \rightarrow T_B$ be the image of $1 \in \mathbb{A}$.

9) We have $r_{BC} r_{AB}$ is homotopy equivalent to $E_{ABC} r_{AC}$ for some $E_{ABC} \in \mathbb{A}^{\times}$.

10) E_{ABC} is a 2-cocycle on I . Since $H^2(G, \mathbb{A}^{\times}) = 0$, E_{ABC} is exact. Therefore, wlog we can assume that $E_{ABC} = 1$.

11) Denote $\mathcal{J}(A, B) := \tau_{\leq 0} \text{Hom}(T_A, T_B)$. We have a functor $\mathcal{J} \rightarrow I$ which is a homotopy equivalence of categories so that we have the constant functor $Z : \mathcal{J}^{\text{op}} \rightarrow I^{\text{op}} \rightarrow \mathbf{GZ}$, $Z(A) = \mathbb{A}$ for all A .

Finally, we set $\mathbb{S} := S_G := \mathcal{Z} \otimes_{\mathcal{J}^{\text{op}}}^L S$.

Part 2. Uniqueness The convolution with \mathbb{S} gives a pair of quasi-inverse maps between \mathcal{C}_G and the full sub-category of objects $S \in \text{sh}_q(G \times E \times E)$ with $\text{SSS} \subset T_G^*G \times T_E^*(E \times E) \times \{0\}$, where there exists an isomorphism

$$S|_{e \times E \times E} \sim \mathbb{A}_{\{(e, e, 0) | e \in E\}}.$$

The latter category, hence the initial one, satisfies $\text{Hom}(F, G) \in \mathbf{GZ}_{\geq 0}$ for every pair of objects. Passing to $\tau_{\geq 0}$ yields the statement.

8.1.1 The object \mathbb{S}

Fix an object $\mathbb{S} \in \mathcal{C}$ endowed with a homotopy equivalence $\mathbb{S}|_{0,0,0} \rightarrow \mathbb{A}$.

9 Objects supported on a symplectic ball

9.1 Projector onto the ball

Let $i_0 : \mathbb{R}/2\pi\mathbb{Z} \rightarrow \text{Sp}(2N)$ be a one-parametric subgroup consisting of all transformations

$$q' = q \cos(2a) + p \sin(2a);$$

$$p' = -q \sin(2a) + p \cos(2a).$$

Let $i : \mathbb{R} \hookrightarrow G$ be the lifting. Denote $\mathcal{A} := i(\mathbb{R})$. Let $\mathcal{T} \in \text{sh}_q(\mathcal{A} \times E \times E)$ be the restriction of \mathbb{S} . The object \mathcal{T} is microsupported within the set

$$\Sigma = \Sigma_0 \cup \{(a, -(q^2 + p^2), q, -p, q', p', -S(q, p, a)) | (q, p) \in V; a \in \mathbb{R}, \sin(2a) \neq 0\} \subset T^*\mathcal{A} \times T^*E \times T^*E \times \mathbb{R} \quad (36)$$

where

$$\Sigma_0 = \{(\pi n, -(q^2 + p^2), q, -p, q, p, 0) | (q, p) \in V, n \in \mathbb{A}\} \cup \{(\pi(\frac{1}{2} + n); -(q^2 + p^2), q, -p, -q, -p, 0) | (q, p) \in V, n \in \mathbb{A}\};$$

$$S(q, p, a) = \frac{\cos(2a)(q^2 + (q')^2) + 2qq'}{2 \sin(2a)}.$$

Let $\mathcal{B} = \mathbb{R}$ with the coordinate b . Let $p_{\mathcal{B}} : \mathcal{B} \times E \times E \rightarrow E \times E$ be the projection. Set

$$\mathcal{P}_R := p_{\mathcal{B}!} \mathcal{T} *_{\mathcal{A}} \mathbb{A}_{\{(a, b) \in \mathcal{A} \times \mathcal{B} | b < R^2\}, -ab}[1] \in \text{sh}_q(E \times E).$$

Let

$$\Delta_{a \leq 0} := \{(a, a) | a \leq 0\} \subset \mathcal{A} \times \mathcal{A}.$$

We have

$$\mathcal{P}_R \sim p_{\mathcal{A}!} \mathcal{T} *_{\mathcal{A}} \mathbb{A}_{[\Delta_{a \leq 0}, -aR^2]},$$

where $p_{\mathcal{A}} : \mathcal{A} \times E \times E \rightarrow E \times E$ is the projection.

9.1.1 The map $\alpha : T_{-\pi R^2} \mathcal{P}_R[2N] \rightarrow \mathcal{P}_R$

We have a homotopy equivalence

$$T_{-\pi}^a \mathcal{T}[-2N] \sim \mathcal{T},$$

where $T_{-\pi}^a$ is the translation along \mathcal{A} by $-\pi$ units.

Thus, we have a map

$$\begin{aligned} \mathcal{P}_R &\sim p_{\mathcal{A}!}((T_{-\pi}^a \mathcal{T}) *_{\mathcal{A}} \mathbb{A}_{[\Delta_{a \leq 0}, -aR^2]}[-2N]) \sim p_{\mathcal{A}!}(\mathcal{T} *_{\mathcal{A}} \mathbb{A}_{[\{(a_1, a_2) | a_2 \leq 0, a_1 = a_2 + \pi\}, -a_2 R^2]})[-2N] \\ &\sim p_{\mathcal{A}!}(\mathcal{T} *_{\mathcal{A}} \mathbb{A}_{[\{(a_1, a_2) | a_1 \leq \pi; a_1 = a_2\}, \pi R^2 - a_1 R^2]})[-2N] \\ &\sim T_{\pi R^2} p_{\mathcal{A}!}(\mathcal{T} *_{\mathcal{A}} \mathbb{A}_{[\{(a_1, a_2) | a_1 \leq \pi; a_1 = a_2\}, -a_1 R^2]})[-2N] \\ &\rightarrow T_{\pi R^2} p_{\mathcal{A}!}(\mathcal{T} *_{\mathcal{A}} \mathbb{A}_{[\{(a_1, a_2) | a_1 \leq 0; a_1 = a_2\}, -a_1 R^2]})[-2N] \sim T_{\pi R^2} \mathcal{P}_R[-2N]. \end{aligned}$$

This map can be rewritten as

$$\alpha : T_{-\pi R^2} \mathcal{P}_R[2N] \rightarrow \mathcal{P}_R.$$

9.1.2 $\text{Hom}(T_c \mathcal{P}_R; \mathcal{P}_R)$

Let $(\nu - 1)\pi R^2 < c \leq \nu\pi R^2$, where $\nu \in \mathbb{Z}$. Let $G_c := \text{Hom}(T_c \mathcal{P}_R; \mathcal{P}_R)$. Then

$$G_c \sim \mathbb{Z}[-2N\nu] \text{ if } \nu \geq 0, \quad G_c = 0 \text{ if } \nu > 0.$$

The natural map $G_{\nu\pi R^2} \rightarrow G_c$ is a homotopy equivalence. The generator of $G_{\nu\pi R^2}$, $\nu < 0$ is given by α^{*n} .

The map $\mathcal{P}_R \rightarrow \mathbb{A}_{[\Delta_E, 0]}$ induces a homotopy equivalence

$$\text{Hom}(T_c \mathcal{P}_R; \mathcal{P}_R) \rightarrow \text{Hom}(T_c \mathcal{P}_R; \mathbb{A}_{[\Delta_E, 0]}).$$

9.1.3 \mathcal{P}_R is a projector

We have a natural map

$$\text{pr} : \mathcal{P}_R \rightarrow \mathbb{A}_{[\Delta_E, 0]}. \tag{37}$$

Let $\mathcal{C}_R \subset \text{sh}_q(E)$ be the full subcategory of objects supported away from $\overset{\circ}{B}_R \times \mathbb{R} \subset T^*E \times \mathbb{R}$. Let $\text{sh}_q[\overset{\circ}{B}_R] \subset \text{sh}_q(E)$ be the left orthogonal complement to \mathcal{C}_R . We have $\mathcal{P}_R *_{\mathcal{E}} F \in \text{sh}_q[\overset{\circ}{B}_R]$; $\text{Cone } \mathcal{P}_R *_{\mathcal{E}} F \rightarrow F \in \mathcal{C}_R$ so that \mathcal{P}_R gives a semi-orthogonal decomposition.

9.1.4 Generalization

Denote by $\text{sh}_{\varepsilon}[T^*X \times \overset{\circ}{B}_R \times \mathbb{R}] \subset \text{sh}_{\varepsilon}(X \times E)$ be the left orthogonal complement to the full category of objects supported away from $T^*X \times \overset{\circ}{B}_R \times \mathbb{R}$. The convolution with \mathcal{P}_R gives a semi-orthogonal decomposition.

9.1.5 The object $\gamma = \text{Cone } \alpha$

Let $\gamma := \text{Cone } \alpha$. We have

$$\gamma \sim \mathcal{T} *_{\mathcal{A}} \mathbb{A}_{[\{(a_1, a_2) | a_1 = a_2; -\pi R^2 < a_1 \leq 0\}, -aR^2]}$$

We have a homotopy equivalence

$$E_c := \text{Hom}(T_c \gamma, \mathcal{P}_R) \xrightarrow{\sim} \text{Hom}(T_c \gamma; \mathbb{A}_{[\Delta_E, e_0]})$$

We have

$$E_c = (\text{Cone } G_c \rightarrow G_{c-\pi R^2}[-2N])[-1],$$

where the map is induced by the multiplication by α .

Therefore,

$$-E_c = \mathbb{A}[-2N - 1], 0 < c \leq \pi R^2;$$

$$-E_c = 0 \text{ otherwise.}$$

9.1.6 Singular support of γ

We have

$$\text{SS} \mathcal{T} *_{\mathcal{A}} \mathbb{A}_{[\{(a_1, a_2) | a_1 = a_2, -\pi R^2 < a_1 \leq 0\}, -aR^2]} \subset \{(a, R^2 + k, q, -p, q', p', t - aR^2) \in \Sigma | -\pi < a < 0\} \cup S,$$

where Σ is as in (36) and

$$S = \{(-\pi, R^2 + k, q, -p, q, p, -\pi R^2) | k \leq -p^2 - q^2\} \cup \{(0, R^2 + k, q, -p, q, p, 0) | k \leq -p^2 - q^2\}.$$

Therefore, we have

$$\begin{aligned} \text{SS} \gamma &\subset \{(q, -p, q', p', -aR^2 - S(a, q, q')) | p^2 + q^2 = R^2; -\pi < a < 0\} \cup \{(q, -p, q, p, -\pi R^2) | q^2 + p^2 \leq R^2\} \\ &\quad \cup \{(q, -p, q, p, 0) | q^2 + p^2 \leq R^2\}. \end{aligned}$$

It follows that $0 \leq -aR^2 - S(a, q, q') \leq \pi R^2$ if $-\pi < a < 0$.

9.1.7 Singular support of \mathcal{P}

Similarly, one can find

$$\text{SS} \mathcal{P} \subset \{(q, -p, q', p', -aR^2 - S(a, q, q')) | p^2 + q^2 = R^2; a < 0\} \cup \{(q, -p, q, p, 0) | q^2 + p^2 \leq R^2\}.$$

9.1.8 Singular support of $\text{Cone } \mathcal{P} \rightarrow \mathbb{A}_{[\Delta_E, 0]}$

We have

$$\text{Cone}(\mathcal{P} \rightarrow \mathbb{A}_{[\Delta_E, 0]}) \approx p_{\mathcal{A}!} \mathcal{T} *_{\mathcal{A}} \mathbb{A}_{[\{(a_1, a_2) | a_1 = a_2, a_1 \leq 0\}, -aR^2]}$$

so that

$$\text{SS} \mathcal{T} *_{\mathcal{A}} \mathbb{A}_{[\{(a_1, a_2) | a_1 = a_2, a_1 \leq 0\}, -aR^2]} \subset \{(a, R^2 + k, q, -p, q', p', t - aR^2) \in \Sigma | a < 0\} \cup S',$$

where Σ is as in (36) and

$$S' = \{(0, R^2 + k, q, -p, q, p, 0) | k \geq -p^2 - q^2\}.$$

Therefore,

$$\text{SS Cone}(\mathcal{P} \rightarrow \mathbb{A}_{[\Delta_E, 0]}) \subset \{(q, -p, q', p', -aR^2 - S(a, q, q') | p^2 + q^2 = R^2; a < 0\} \cup \{(q, -p, q, p, 0) | q^2 + p^2 \geq R^2\}.$$

9.1.9 Corollaries

Corollary 9.1 *We have*

$$\text{Cone}(\mathcal{P} \rightarrow \mathbb{A}_{[\Delta_E, 0]}) \bullet \mathbb{A}_{[\mathbf{pt}, c]} \approx 0;$$

$$\text{Cone}(\mathcal{P} \boxtimes \mathcal{P} \rightarrow \mathbb{A}_{[\Delta_E \times \Delta_E, 0]} \bullet \mathbb{A}_{[\mathbf{pt}, c]} \approx 0.$$

for all $c \leq 0$.

Corollary 9.2 *Let $F \in \text{sh}(E \times E)$. Then the natural maps*

$$\text{Hom}(\mathbb{A}_{\Delta_E \times \Delta_E}; F) \xrightarrow{\sim} \text{Hom}(\mathcal{P} \boxtimes \mathcal{P}; F \boxtimes \mathbb{A}_{[\mathbf{pt}, 0]});$$

$$\text{Hom}(\mathbb{A}_{\Delta_E \times \Delta_E}; F) \xrightarrow{\sim} \text{Hom}(T_{2\pi R^2} \gamma \boxtimes \gamma[-4N]; F \boxtimes \mathbb{A}_{[\mathbf{pt}, 0]})$$

are homotopy equivalences.

9.1.10 Convolution of γ with itself

We have a homotopy equivalence

$$\gamma *_E \gamma \sim \gamma \oplus T_{-\pi R^2} \gamma[2N].$$

Denote by $\mu : \gamma *_E \gamma \rightarrow \gamma$ the projection.

We now have the following homotopy equivalence

$$\text{Hom}(T_c \gamma, \mathbb{A}_{[\Delta_E, 0]}) \xrightarrow{\mu} \text{Hom}(T_c \gamma *_E \gamma; \mathbb{A}_{[\Delta_E, 0]}),$$

for all c except those in $(\pi R^2, 2\pi R^2]$.

In particular, for $0 < c \leq \pi R^2$, we have:

$$\text{Hom}(T_c \gamma *_E \gamma; \mathbb{A}_{[\Delta_E, 0]}) \sim \mathbb{A}[-2N - 1];$$

For $c \leq 0$, the above expression is homotopy equivalent to 0.

Let $\Lambda \in \text{sh}_q(\mathbf{pt})$; $\Lambda = \text{Cone}(\mathbb{A}_{[\mathbf{pt}, -\pi R^2]} \rightarrow \mathbb{A}_{[\mathbf{pt}, 0]})$.

We have a chain of homotopy equivalences

$$\text{Hom}(\gamma; \mathbb{A}_{\Delta_E} \boxtimes \Lambda) \xrightarrow{\mu} \text{Hom}(\gamma *_{E^2} \gamma; \mathbb{A}_{\Delta_E} \boxtimes \Lambda) \sim \mathbb{A}[-2N].$$

In particular, we have a homotopy equivalence

$$\text{Hom}(\gamma, \Lambda \boxtimes \mathbb{A}_{\Delta_E}[2N]) \sim \mathbb{A}.$$

Let

$$\nu : \gamma \rightarrow \Lambda \boxtimes \mathbb{A}_{\Delta_E}[2N] \quad (38)$$

be the generator.

One also has a map $\varepsilon : \Lambda \boxtimes \mathbb{A}_{\Delta_E} \rightarrow \gamma$ which has a homotopy unit property with respect to μ , the through map

$$\gamma \sim \mathbb{A}_{\Delta_E} *_{E^2} \gamma \rightarrow \Lambda \boxtimes \mathbb{A}_{\Delta_E} *_{E^2} \gamma \rightarrow \gamma *_{E^2} \gamma \rightarrow \gamma$$

is homotopy equivalent to the Identity.

The induced map

$$\text{Hom}(\gamma, \Lambda \boxtimes \mathbb{A}_{\Delta_E}) \xrightarrow{\varepsilon} \text{Hom}(\gamma, \gamma) \quad (39)$$

is a homotopy equivalence. The map ν on the LHS corresponds to Id on the RHS.

9.1.11 Lemma on $\nu \boxtimes \nu$

Consider the following maps

$$\gamma \boxtimes \gamma \xrightarrow{\nu \boxtimes \nu} \Lambda \boxtimes \mathbb{A}_{\Delta_E} \boxtimes \Lambda \boxtimes \mathbb{A}_{\Delta_E}[4N] \rightarrow \Lambda \boxtimes \mathbb{A}_{\Delta_E \times \Delta_E}[4N]; \quad (40)$$

$$\gamma \boxtimes \gamma \xrightarrow{\bar{\mu}} p_{14}^{-1} \gamma \boxtimes p_{23}^{-1} \mathbb{A}_{\Delta_E} \xrightarrow{\nu} \Lambda \boxtimes p_{14}^{-1} \mathbb{A}_{\Delta_E} \boxtimes p_{23}^{-1} \mathbb{A}_{\Delta_E}[3N] \rightarrow \mathbb{A}_{\Delta_E \times \Delta_E}[4N]. \quad (41)$$

Here the maps $\bar{\mu}$ is obtained from μ by conjugation. The last arrow is the generator of

$$\text{Hom}(p_{23}^{-1} \mathbb{A}_{\Delta_E} \otimes p_{14}^{-1} \mathbb{A}_{\Delta_E}; \mathbb{A}_{\Delta_E \times \Delta_E}[N]).$$

Lemma 9.3 *The maps (40) and (41) are homotopy equivalent.*

Sketch of the proof One reformulates the statement as follows:

By the conjugacy, the map ν corresponds to a homotopy equivalence

$$\xi : \Lambda \rightarrow \gamma *_{E^2} \mathbb{A}_{[\mathbb{R}^n, 0]}[n]$$

The problem reduces to showing that the map

$$\Lambda \rightarrow \Lambda \approx (\gamma \boxtimes \gamma) *_{E^4} \mathbb{A}_{\Delta \times \Delta}[2n] \rightarrow (\gamma \boxtimes \gamma) *_{E^4} \mathbb{A}_{(v_1, v_2, v_3, v_4) \in E^4 | v_1 = v_4, v_2 = v_3}[n] \approx (\gamma *_{E^2} \gamma) *_{E^2} \mathbb{A}_{\Delta}[n] \rightarrow \gamma *_{E^2} \mathbb{A}_{\Delta}[n] \quad (42)$$

is homotopy equivalent to

$$\Lambda \otimes \Lambda \rightarrow \Lambda \rightarrow \gamma *_{E^2} \mathbb{A}_\Delta[n]. \quad (43)$$

According to Sec. 35 we have a homotopy equivalence,

$$\gamma *_{E^2} \mathbb{A}_\Delta[n] \cong \text{Hom}(\mathbb{A}_\Delta; \gamma).$$

The map ξ rewrites as $\xi' : \Lambda \rightarrow \text{Hom}(\mathbb{A}_\Delta; \gamma)$ which produces a map $e : \Lambda \otimes \mathbb{A}_\Delta \rightarrow \gamma$.

The map (42) rewrites as

$$\Lambda \otimes \Lambda \rightarrow \text{Hom}(\mathbb{A}_\Delta; \gamma) \otimes \text{Hom}(\mathbb{A}_\Delta; \gamma) \rightarrow \text{Hom}(\mathbb{A}_\Delta; \gamma *_{E^2} \gamma) \rightarrow \text{Hom}(\mathbb{A}_\Delta; \gamma).$$

The map (43) rewrites as

$$\Lambda \otimes \Lambda \rightarrow \Lambda \rightarrow \text{Hom}(\mathbb{A}_\Delta; \gamma).$$

Homotopy equivalence of the two maps follows from the following maps being homotopy equivalent:

$$\Lambda \otimes \mathbb{A}_\Delta *_{E^2} \Lambda \otimes \mathbb{A}_\Delta \xrightarrow{e * e} \gamma *_{E^2} \gamma \rightarrow \gamma$$

and

$$\Lambda \otimes \Lambda \rightarrow \Lambda \rightarrow \gamma.$$

The latter statement follows from Sec. 9.1.10.

9.1.12 γ as an object of $\text{sh}_{\pi R^2}(E \times E)$

It follows that γ is supported within the set $E \times E \times [-\pi R^2; 0]$. Therefore, γ determines an object of $\text{sh}_{\pi R^2}(E \times E)$, to be denoted by Γ .

Using the bar-resolution for $\Gamma *_{E^2} \Gamma$, we see that it is glued of $\gamma *_{E^2} \Lambda *_{E^2} \gamma$. We therefore have the following homotopy equivalences (all the hom's are in $\text{sh}_{\pi R^2}(E \times E)$):

$$\text{Hom}(\Gamma; \mathbb{A}_{\Delta_E}) \xrightarrow{\xi} \text{Hom}(\Gamma *_{E^2} \Gamma; \mathbb{A}_{\Delta_E}) \sim \mathbb{A}[-2N].$$

9.2 Study of the category $\text{sh}_q(F \times E \times E)[T^*F \times \text{int}B_R \times \text{int}B_R \times \mathbb{R}]$

9.2.1 The category \mathcal{A}_I

Let $I \subset R$ be an open subset. Denote by \mathcal{A}_I the full sub-category of

$$\text{sh}_q(F \times E \times E)[T^*F \times \text{int}B_R \times \text{int}B_R \times \mathbb{R}]$$

consisting of all objects X , where

$$\text{SS}(X) \cap T^*F \times \text{int}B_R \times \text{int}B_R \times I = \emptyset.$$

9.2.2 Study of $\mathcal{A}_{(a,\infty)}$

Let $F \in \mathcal{A}_{(a,\infty)}$.

We have a natural map

$$F * (P_R \boxtimes P_R) \rightarrow (R_{\leq a} F) * (P_R \boxtimes P_R),$$

where $R_{\leq a}$ is as in the proof of Claim 7.5.

Lemma 9.4 *The above map is a homotopy equivalence.*

Sketch of the proof Equivalently, we are to show

$$(R_{>a} F) * (P_R \boxtimes P_R) \sim 0.$$

We have

$$\text{hocolim}_{c \downarrow a} R_{>c} F \xrightarrow{\sim} R_{>a} F,$$

therefore, it suffices to show that

$$R_{>c} F * (P_R \boxtimes P_R) \sim 0, \quad c > a.$$

As P_R is supported within $B_R \times B_R \times [0, \infty)$, we further reformulate:

$$(R_{>c} F) * (P_R \boxtimes P_R) \sim 0. \quad (44)$$

Let us study $\text{SSR}_{>c} F$. As $F \in \mathcal{A}_I$, F is non-singular on the set

$$\Omega \{(f, \eta, v_1, \zeta_1, v_2, \zeta_2, t) \mid t > a; \quad |v_1|, |v_2| < R\}.$$

Let $\ell\{f^k\}$ be an Ω^a -lense. According to (32), we have

$$(R_{>c} F) \bullet \mathbb{A}_\ell \approx F \bullet \tau_{\leq -c} \mathbb{A}_\ell \approx F \bullet \mathbb{A}_{\ell_{-c}},$$

where $\ell_{-c} = \{\min(-c, f^k)\}$. This implies that $R_{>c} F$ is non-singular on Ω , which implies (44).

9.2.3 Study of $\mathcal{A}_{(-\infty, a)}$

Lemma 9.5 *Let $F \in \mathcal{A}_{(-\infty, a)}$. Then $\tau_{<a} F \sim 0$.*

Sketch of the proof It suffices to show that $R_{\leq c} F \sim 0$ for all $c < a$. Similar to the previous Lemma, we deduce that $R_{\leq c} F$ is non-singular on the set

$$T^* F \times \text{int} B_R \times \text{int} B_R \times \mathbb{R}.$$

Next, we have homotopy equivalences

$$R_{\leq c} \approx R_{\leq c} (F * (P_R \boxtimes P_R)) \xrightarrow{\sim} R_{\leq c} (R_{\leq c} F * (P_R \boxtimes P_R)) \sim 0.$$

This proves the statement.

9.2.4 Study of $\mathcal{A}_{\mathbb{R} \setminus a}$

Let $b_R \subset E$ be the open ball of radius R centered at 0. We have functors

$$\alpha : \text{sh}(F \times b_R \times b_R) \rightarrow \mathcal{A}_{\mathbb{R} \setminus a},$$

where

$$\begin{aligned}\alpha(S) &= (S \boxtimes \mathbb{A}_{[\mathbf{pt}, a]}) * (P_R \boxtimes P_R); \\ \beta : \mathcal{A}_{\mathbb{R} \setminus a} &\rightarrow \text{sh}(F \times b_R \times b_R), \\ \beta(T) &= T \bullet \mathbb{A}_{\mathbf{pt}, a}.\end{aligned}$$

Proposition 9.6 *The functors α, β establish homotopy inverse homotopy equivalences of categories.*

Sketch of the proof Let $S \in \mathcal{A}_{\mathbb{R} \setminus a}$. According to the two previous subsections we have homotopy equivalences:

$$S \approx R_{\leq a} S * (P_R \boxtimes P_R) \approx (\tau_{\geq a} R_{\leq a} S) * (P_R \boxtimes P_R) \approx ((S \bullet \mathbb{A}_{t \geq a}) \boxtimes \mathbb{A}_{[\mathbf{pt}, a]}) * (P_R \boxtimes P_R),$$

which implies the statement.

9.2.5 $\text{SS}(\alpha(F))$

Proposition 9.7 *Let C be a closed conic subset of $T^*F \times T^*b_R \times T^*b_R$. $F \in \mathcal{A}_{\mathbb{R} \setminus a}$ and suppose $\text{SS}(F) \cap T^*F \times B_R \times B_R \times a \subset C$. Then $\text{SS}(\alpha(F) \boxtimes \mathbb{A}_{[\mathbf{pt}, a]}) \subset C \times a$.*

9.2.6 The category $\mathcal{A}_{\mathbb{R} \setminus a, \Delta}$

Let $\alpha : B_R \rightarrow B_R$ be the antipode map, $\alpha(q, p) = (q, -p)$. Let

$$\Delta^\alpha = \{(\alpha(v), v) | v \in \text{int}B_R\} \subset \text{int}B_R \times \text{int}B_R.$$

Let $\mathcal{A}_{\mathbb{R} \setminus a, \Delta} \subset \mathcal{A}_{\mathbb{R} \setminus a}$ be the full sub-category of objects X where

$$\text{SS}(X) \cap T^*F \times \text{int}B_R \times \text{int}B_R \times \mathbb{R} \subset T_F^*F \times T_{\Delta^\alpha}^*(\text{int}B_R \times \text{int}B_R) \times a.$$

Let $A_F \subset \text{sh}(F \times b_R \times b_R)$ be the full sub-category of objects T where

$$\text{SS}(T \boxtimes \mathbb{A}_{[\mathbf{pt}, a]}) \subset T_{F \times \Delta_{b_R}}^*(F \times b_R \times b_R \times a). \quad (45)$$

According to the previous subsection, we have a homotopy equivalence

$$\beta : A_F \rightarrow \mathcal{A}_{\mathbb{R} \setminus a, \Delta}.$$

Furthermore, let $\text{Loc}(F) \subset \text{sh}(F)$ be the full sub-category of objects T where

$$\text{SS}(T \boxtimes \mathbb{A}_{[\mathbf{pt}, a]}) \subset T_F^*F \times a.$$

Let $\gamma : \text{Loc}(F) \rightarrow A_F$ be given by

$$\gamma(S) = S \boxtimes \mathbb{A}_{\Delta_{b_R}}.$$

Lemma 9.8 *γ is a homotopy equivalence of categories.*

Therefore,

Proposition 9.9 *the functor $\zeta := \beta\gamma : \text{Loc}(F) \rightarrow \mathcal{A}_{\mathbb{R} \setminus a, \Delta}$ is a homotopy equivalence of categories.*

9.2.7 The category $\mathcal{C}_{\mathcal{I}}$

Let $\text{sh}_q(F \times \mathbb{R}^n \times \mathbb{R}^n)[T^*F \times \mathbf{int}B_R \times T^*\mathbb{R}^n \times \mathbb{R}]$ be the full sub-category of $\text{sh}_q(F \times \mathbb{R}^n \times \mathbb{R}^n)$ consisting of all objects F which are left orthogonal to all objects non-singular on $T^*F \times \mathbf{int}B_R \times T^*\mathbb{R}^n \times \mathbb{R}$, same as in Sec 9.1.4.

Below we will study the full sub-category

$$\mathcal{C}_{\mathcal{I}} \subset \text{sh}_q(F \times \mathbb{R}^n \times \mathbb{R}^n)[T^*F \times \mathbf{int}B_R \times T^*\mathbb{R}^n \times \mathbb{R}]$$

consisting of all objects T satisfying $\text{SS}(T) \cap T^*F \times \mathbf{int}B_R \times T^*\mathbb{R}^n \times \mathbb{R} \subset \mathcal{L}$.

9.2.8 Main Theorem

Let A_F be a category as in (45).

Theorem 9.10 *We have a homotopy equivalence between the categories $\mathcal{C}_{\mathcal{I}}$ and A_F .*

The proof of this theorem occupies the rest of the subsection.

1) Extend I to $F \times [-1, 1] \times B_R$ as follows. For $t \in [-1, 1] \setminus 0$, set

$$J(f, t, x) = \frac{I(f, tx) - I(f, 0)}{t} + I(f, 0).$$

This map extends uniquely to a smooth map $J : F \times [-1, 1] \times B_R \rightarrow T^*\mathbb{R}^n$. The grading of I extends uniquely to a grading \mathcal{J} of J .

Let $K = J|_{F \times 0}$. It follows that K is a family of linear symplectomorphisms of $T^*\mathbb{R}^n$ restricted to B_R . The grading \mathcal{J} determines uniquely a map

$$\mu : F \rightarrow \overline{\mathbf{Sp}}(2N) \times \mathbb{R}. \quad (46)$$

2) For every $(f, t) \in F \times B_R$ we have a Hamiltonian vector field on B_R , namely $\frac{dJ(f, t)}{dt}$. Let $H_{(f, t)}$ be a smooth function on B_R corresponding to this vector field and satisfying $H_{(f, t)}(0) = 0$. It follows that $H : F \times I \times B_R \rightarrow \mathbb{R}$ is a smooth function. It extends to a smooth function on $F \times I \times T^*E$ whose support projects properly onto $F \times I$.

3) Let $\chi : \mathbb{R} \rightarrow [-1, 1]$ be a non-decreasing smooth function such that $\chi(t) = -1$ for all $t \leq -1$, $\chi(t) = 1$ for all $t \geq 1$, and $\chi(0) = 0$. Let $K(f, t) = J(f, \chi(t))$ and $h(f, t, v) = H(f, \chi(t), v)\chi'(t)$ so that $h(f, t, -)$ is the Hamiltonian function of the vector field $\frac{dK(f, t)}{dt}$. It follows that there exists a unique family of symplectomorphisms $M : F \times \mathbb{R} \times E \rightarrow E$ such that

- a) $M|_{F \times 0}$ is the family of linear symplectomorphisms coinciding with $J|_{F \times 0} = K|_{F \times 0}$;
- b) $\frac{dM(f, t)}{dt}$ is the Hamiltonian vector field of $h(f, t, -)$.

It also follows that $M|_{F \times \mathbb{R} \times B_R} = K$

4) The family M defines a Legendrian sub-manifold $\mathcal{L}_M \subset T^*(F \times E \times E \times \mathbb{R})$ such that $\mathcal{L}_M \cap T^*F \times B_R \times T^*E \times \mathbb{R} = \mathcal{L}_K$.

5) According to the theorem of Guillermou-Kaschiwara-Schapira, there exists a quantization of \mathcal{L}_M : an object $Q \in \text{sh}_q(F \times E \times E)$ such that $\text{SS}Q \subset \mathcal{L}_M$ and $Q|_{t=0} = \mu^{-1}\mathbf{S}$, where μ is as in (46).

6) Similarly, one defines a quantization Q' of the family M^{-1} of inverse symplectomorphisms.

7) Let $\Delta : F \times E \times E \rightarrow F \times I \times F \times I \times E \times E$ be the following embedding

$$\Delta(f, v_1, v_2) = (f, 1, f, 1, v_1, v_2).$$

We have endofunctors

$$S \mapsto S *_{F \times E} \Delta_! Q; \quad S \mapsto S *_{F \times E} \Delta_! Q'$$

of $\text{sh}_q(F \times E \times E)$ which descends to homotopy inverse homotopy equivalences between \mathcal{C}_O and \mathcal{C}_I , where $O : F \times B_R \rightarrow B_R \xrightarrow{\iota} E$ is the constant family, where ι is the standard embedding.

By definition, $\mathcal{C}_O = \mathcal{A}_{\mathbb{R} \setminus 0, \Delta}$. By Proposition 9.9 we have a homotopy equivalence $\zeta : \text{Loc}(F) \rightarrow \mathcal{C}_O$. We thus have constructed a zig-zag homotopy equivalence between $\text{Loc}(F)$ and \mathcal{C}_I . Denote by $\mathcal{P}_I \in \mathcal{C}_I$ the object corresponding to $\mathbb{A}_F \in \text{Loc}(F)$.

9.2.9 Inverse functor

We have $\mathcal{P}_I \in \text{sh}_q(F \times b_R \times E)$.

Let $I' : F \times B_R \rightarrow T^*E$ be given by $I'(f, v) = \alpha I(f, \alpha(v))$, where $\alpha : T^*E \rightarrow T^*E$, $\alpha(q, p) = \alpha(q, -p)$. Let $\mathcal{Q}_I := \sigma_! \mathcal{P}_{I'} \in \text{sh}_q(F \times E \times b_R)$, where $\sigma : b_R \times E \rightarrow E \times b_R$ is the permutation.

Let $\Delta_F : F \rightarrow F \times F$ be the diagonal embedding.

Proposition 9.11 *We have*

$$\mathcal{Q}_I *_{F \times E} \Delta_{F!} \mathcal{P}_I \approx \mathbb{A}_F \boxtimes \mathcal{P}_R \in \text{sh}_q(F \times b_R \times b_R).$$

9.2.10

Let $\pi : T^*F \rightarrow F$ be the projection. Let $G_I \subset T^*F \times T^*E$ be an open subset defined as follows

$$G_I = \{(\phi, v) | v \in I(\pi(f) \times \text{int}B_R)\}.$$

Let us also define functors

$$\mathbb{P} : \text{sh}_q(F \times b_R)[T^*F \times \text{int}B_R] \rightarrow \text{sh}_q(F \times E)[G_I]; \quad \mathbb{Q} : \text{sh}_q(F \times E)[G_I] \rightarrow \text{sh}_q(F \times b_R)[T^*F \times \text{int}B_R],$$

where

$$\mathbb{P}(S) = S *_{F \times b_R} \Delta_{F!} \mathcal{P}_I; \quad \mathbb{Q}(T) = T *_{F \times E} \Delta_{F!} \mathcal{Q}_I.$$

Proposition 9.12 *The functors \mathbb{P}, \mathbb{Q} establish homotopy mutually inverse homotopy equivalences between the categories $\text{sh}_q(F \times b_R)[T^*F \times \text{int}B_R]$ and $\text{sh}_q(F \times E)[G_I]$.*

9.2.11 Lemma on $\mathcal{P}_I, \mathcal{Q}_I$

We abbreviate $\mathcal{P} := \mathcal{P}_I, \mathcal{Q} := \mathcal{Q}_I$.

We have natural maps

$$\alpha : \Delta_F^{-1}(\mathcal{Q} \circ_{b_R} \mathcal{P}) \rightarrow \mathbb{A}_{F \times \Delta_E};$$

$$\beta : \Delta_F^{-1}(\mathcal{P} \circ_E \mathcal{Q}) \rightarrow \mathbb{A}_{F \times \Delta_E}.$$

We therefore have a pair of induced maps

$$\text{Id} \circ \alpha, \beta \circ \text{Id} : \mathcal{P} \circ_E \mathcal{Q} \circ_E \mathcal{P} \rightarrow \mathcal{P}. \quad (47)$$

which are homotopy equivalent and likewise for the pair:

$$\alpha \circ \mathbb{A}_{F \times \Delta_E}, \mathbb{A}_{F \times \Delta_E} \text{Id} \circ : \mathcal{Q} \circ \mathcal{P} \circ \mathcal{Q} \rightarrow \mathcal{Q}. \quad (48)$$

One gets the following corollary from (47), (48).

A. Let

$$p_1, p_2 : F \times E \times E \times E \times E \rightarrow F \times E \times E$$

be projections, where

$$p_i(\phi, e_1, f_1, e_2, f_2) = (\phi, e_i, f_i).$$

The maps α, β induce, by the conjugacy, maps

$$A : p_1^{-1}\mathcal{P} \otimes p_2^{-1} \rightarrow \mathcal{Q} \rightarrow \mathbb{A}_{\{f_1=e_2\}}[N];$$

$$B : p_1^{-1}\mathcal{Q} \otimes p_2^{-1} \rightarrow \mathcal{P} \rightarrow \mathbb{A}_{\{f_1=e_2\}}[N].$$

Let $p_j^i : (F \times (E \times E)^2)^2 \rightarrow F \times E \times E$ be projections, where

$$p_j^i(\phi^1, e_1^1, f_1^1, e_2^1, f_2^1, e_1^2, f_1^2, e_2^2, f_2^2) = (\phi^i, e_j^i, f_j^i).$$

We have the following maps

$$\begin{aligned} \mathbf{A} : (p_1^1)^{-1}\mathcal{P} \otimes (p_2^1)^{-1}\mathcal{Q} \otimes (p_1^2)^{-1}\mathcal{P} \otimes (p_2^2)^{-1}\mathcal{Q} &\xrightarrow{A \otimes B} \mathbb{A}_{\{f_1=e_2, e_1=f_2, f_3=e_4, e_3=f_4\}}[2N] \\ &\rightarrow \mathbb{A}_{\{f_1=e_2, e_1=f_2=e_3=f_4, f_3=e_4\}}[2N] \end{aligned}$$

$$\begin{aligned} \mathbf{B} : (p_1^1)^{-1}\mathcal{P} \otimes (p_2^1)^{-1}\mathcal{Q} \otimes (p_1^2)^{-1}\mathcal{P} \otimes (p_2^2)^{-1}\mathcal{Q} &\xrightarrow{A \otimes B} \mathbb{A}_{\{\phi^1=\phi_2, f_1=e_4, e_1=f_4, f_2=e_3, e_2=f_3\}}[2N] \\ &\rightarrow \mathbb{A}_{\{f_1=e_4, e_1=f_4, f_2=e_3, e_2=f_3\}}[2N][2N] \end{aligned}$$

We also have a map

$$\delta : \mathbb{A}_{\{f_1=e_2, e_1=f_2=e_3=f_4, f_3=e_4\}}[2N] \rightarrow \mathbb{A}_{\{f_1=e_4, e_1=f_4, f_2=e_3, e_2=f_3\}}[2N][2N]$$

As follows from (??), we have a homotopy equivalence:

$$\mathbf{B} \sim \delta \mathbf{A}.$$

This can be rewritten as follows: we have an object

$$\mathcal{P} \circ_F \mathcal{Q} \circ_{F \times E} \mathcal{P} \circ_F \mathcal{Q} \in \text{sh}_q(E^6)$$

The map \mathbf{A} induces a map

$$\mathcal{A} : \mathcal{P} \circ_F \mathcal{Q} \circ_{F \times E} \mathcal{P} \circ_F \mathcal{Q} \rightarrow \mathbb{A}_{e_1=e_6, e_2=e_3, e_4=e_5}[-3N];$$

The map \mathbf{B} induces a map

$$\mathcal{B} : \mathcal{P} \circ_F \mathcal{Q} \circ_{F \times E} \mathcal{P} \circ_F \mathcal{Q} \rightarrow \mathbb{A}_{e_1=e_6, e_2=e_5, e_3=e_4}[-2N]$$

we also have a map

$$\delta_1 : \mathbb{A}_{e_1=e_6, e_2=e_3, e_4=e_5} \rightarrow \mathbb{A}_{e_1=e_6, e_2=e_5, e_3=e_4}[N]$$

and we have a homotopy equivalence

$$\mathcal{B} \sim \delta_1 \mathcal{A}. \quad (49)$$

Let $\gamma \in \text{sh}_{\pi R^2}(E \times E)$ and $\gamma \rightarrow \mathbb{A}_{e_1=e_2} \otimes \Lambda[2N]$. be as in Sec. 9.1.5.

Let $\mathcal{F} \in \text{sh}_{\pi R^2}(E \times E)$ be such that $\text{SS}\mathcal{F} \subset V \times V$.

We then have the following maps

$$\begin{aligned} \mathcal{P} \circ_F \mathcal{Q} \circ_{F \times E} \mathcal{P} \circ_F \mathcal{Q} \circ_{E^6} (p_{23}^{-1} \gamma \otimes p_{45}^{-1} \gamma \otimes p_{16}^{-1} \mathcal{F}) \\ \sim \mathbb{A}_{e_1=e_6, e_2=e_3, e_4=e_5}[-3N] \circ_{E^6} (p_{23}^{-1} \gamma \otimes p_{45}^{-1} \gamma \otimes p_{16}^{-1} \mathcal{F}) \\ \sim \Lambda \otimes (\mathbb{A}_{e_1=e_6} \circ_{E \times E} \mathcal{F})[-3N + 4N - 2N] \end{aligned} \quad (50)$$

$$\begin{aligned} \mathcal{P} \circ_F \mathcal{Q} \circ_{F \times E} \mathcal{P} \circ_F \mathcal{Q} \circ_{E^6} (p_{23}^{-1} \gamma \otimes p_{45}^{-1} \gamma \otimes p_{16}^{-1} \mathcal{F}) \\ \xrightarrow{\sim} \mathbb{A}_{e_1=e_6, e_2=e_5, e_3=e_4}[-2N] \circ_{E^6} (p_{23}^{-1} \gamma \otimes p_{45}^{-1} \gamma \otimes p_{16}^{-1} \mathcal{F}) \\ \rightarrow \mathbb{A}_{e^1=e^4, e^2=e^3} \circ_{E^4} (p_{23}^{-1} \gamma \otimes p_{14}^{-1} \mathcal{F})[-2N] \\ \rightarrow \mathbb{A}_{e^1=e^4} \circ_{E^2} (\mathcal{F})[-2N + 2N - N] \end{aligned} \quad (51)$$

As follows from (49) and Sec 9.1.11

Lemma 9.13 *the maps (50) and (51) are homotopy equivalent.*

9.3 Pair of consequitive families

Let $u : F \times B_r \rightarrow B_R$, $v : F \times B_R \rightarrow E$ be graded families of symplectic embeddings. Let $w : F \times B_r \rightarrow E$ be defined by $w(f, b) = v(f, u(f, b))$. The gradings define liftings $g_u : F \times B_r \rightarrow \overline{\mathbf{Sp}}(2N)$; $g_v : F \times B_R \rightarrow \overline{\mathbf{Sp}}(2N)$ of the corresponding differential maps.

Let $g_w : F \times B_r \rightarrow \overline{\mathbf{Sp}}(2N)$ be given by $g_w(f, b) = g_v(f, u(f, b))g_u(f, b)$. It follows that g_w lifts the differential map $F \times B_r \rightarrow E$ determined by w . Therefore, g_w is a grading of w .

Proposition 9.14 *We have a homotopy equivalence $\mathbb{P}_v \circ \mathbb{P}_u \xrightarrow{\sim} \mathbb{P}_w$.*

Sketch of the proof As above, let us extend the family v to a family

$$v_t : F \times [-1, 1] \times B_R \rightarrow E,$$

where

$$v_t(f, t, b) = \frac{v(f, tb) - v(f, 0)}{t} + v(f, 0).$$

Let $w_t : F \times [-1, 1] \times B_r \rightarrow E$, where $w_t(f, t, b) = v_t(f, t, u(f, b))$. The gradings from v and w extend to v_t, w_t . We will show that there exists a homotopy equivalence

$$\mathbb{P}_{v_t} \circ \mathbb{P}_u \xrightarrow{\sim} \mathbb{P}_{w_t}. \quad (52)$$

Restriction to $t = 1$ will then show the Proposition.

To show the existence of (52), it suffices to establish the homotopy equivalence of the restriction to $t = 0$. Observe that v_0 comes from a family of linear symplectomorphisms $F \rightarrow \mathrm{Sp}(2N)$ whose grading defines a lifting $V_0 : F \rightarrow \overline{\mathrm{Sp}}(2N)$. Let $V \in \mathrm{sh}_\infty(F \times E \times E)$ be the corresponding object. We have a homotopy equivalence

$$\mathbb{P}_{v_0} \circ \mathbb{P}_u \sim V \circ \mathbb{P}_u$$

so the problem reduces to establishing a homotopy equivalence $V \circ \mathbb{P}_u \xrightarrow{\sim} \mathbb{P}_{v_0 u}$.

In a similar way (via considering the family u_t), one reduces the problem to the case when the family u is linear. The grading then defines an object $U \in \mathrm{sh}_\infty(F \times E \times E)$. Similarly, the linear family $v_0 u$, along with its grading, defines an object $W \in \mathrm{sh}_\infty(F \times E \times E)$.

Next, we have homotopy equivalences $U \circ \mathbb{P}_{B_r} \xrightarrow{\sim} \mathbb{P}_u$; $W \circ \mathbb{P}_{B_r} \xrightarrow{\sim} \mathbb{P}_{v_0 u}$ so that the problem reduces to establishing a homotopy equivalence

$$V \circ U \xrightarrow{\sim} W,$$

which follows from Sec 8.

9.4 Mobile families

9.4.1 Definition

Let $U \subset T^*E$ be an open subset let $j : U \rightarrow T^*E$ be the corresponding open embedding. Let $I : U \times B_R \rightarrow T^*E$ be a family of symplectic embeddings, where we assume $I|_{U \times 0} = j$.

The family I defines a Lagrangian sub-manifold

$$L_I \subset T^*U \times \mathbf{int}B_R \times T^*E.$$

Set $F = E \oplus E^*$.

We have a natural identification $T^*U = U \times F$. For each $\xi \in U$ let $L_\xi := T_\xi^*U \times \mathbf{int}B_R \times T^*E \cap L_I \subset F \times \mathbf{int}B_R \times T^*E$. Let $P_\xi \subset F \times \mathbf{int}B_R$ be the image of L_ξ under the projection along T^*E . Call I *mobile* if for every ξ , P_ξ is a graph of an embedding $\mathbf{int}B_R \rightarrow F$.

9.4.2 Main proposition

We have objects $\mathcal{P}_I, \mathcal{Q}_I \in \text{sh}_q(U \times E \times E)$. Let $p_1, p_2 : U \times E \times E \times E \rightarrow U \times E \times E$ be the projections

$$p_1(u, e_1, f_1, e_2, f_2) = (u, e_1, f_1); \quad p_2(u, e_1, f_1, e_2, f_2) = (u, e_2, f_2).$$

Consider

$$R_I := p_1^{-1} \mathbb{P}_I \circ p_2^{-1} \mathbb{Q}_I.$$

Let $i : E^3 \rightarrow E^4; p : E^3 \rightarrow E^2$ be given by $i(a, b, c) = (a, b, b, c); p(a, b, c) = (a, c)$. According to the previous subsection, we have a map

$$p_! i^{-1} R_I \rightarrow \mathbb{A}_{[U \times \Delta_E, 0]}$$

where $\Delta_E \subset E \times E$ is the diagonal.

By the conjugacy, we have a map

$$R_I \rightarrow \mathbb{A}_{[U \times \Delta_{14} \times \Delta_{23}, 0]}[N],$$

where $N = \dim E$ which, in turn, gives rise to a map

$$\alpha : \pi_{U!} R_I \rightarrow \mathbb{A}_{[\Delta_{14} \times \Delta_{23}, 0]}[-N],$$

where $\pi_U : U \times E^4 \rightarrow E^4$ is the projection along U .

Let $V \subset U$ be an open subset satisfying: for every $u \in U$, if $I(u \times B_R) \cap V \neq \emptyset$, then $I(u \times B_R) \subset U$.

Let $p_i : T^* E^4 \rightarrow T^* E$ be the projections $i = 1, 2, 3, 4$. Let $p_{ij} := p_i \times p_j : T^* E^4 \rightarrow T^* E^2$.

Proposition 9.15 *Let $A, B \in \text{sh}_q(E \times E)$ and assume that $SSA \subset B_R \times B_R \times \mathbb{R}; SSB \subset V$. Then $H := (\text{Cone } \alpha) *_{E^4} (p_{23}^{-1} A \circ p_{14}^{-1} B) \sim 0$.*

Sketch of the proof. Let us define a family of symplectic embeddings

$$J : U \times (-1, 1) \times B_R \rightarrow T^* E$$

by means of dilations, same as above. One then defines an object $\pi_{U!} R_J \in \text{sh}_q((-1, 1) \times E^4)$, a map

$$\alpha_J : \pi_{U!} R_J \rightarrow \mathbb{A}_{[(-1, 1) \times \Delta_{14} \times \Delta_{23}, 0]}[-N],$$

and an object

$$H_J := (\text{Cone } \alpha_J) *_{E^4} (p_{23}^{-1} A \otimes p_{14}^{-1} B) \in \text{sh}_q((-1, 1)).$$

Singular support estimate (see below) shows that

$$\text{SSH}_J \subset T_I^* I \times \mathbb{R}.$$

Therefore, it suffices to show that $H_J|_0 \sim 0$, in other words, the problem reduces to the case when I is a family of linear symplectic embeddings. The latter case can be reduced to the case when every embedding is a parallel transfer which is straightforward.

Estimate of SSH_J . It suffices to show that

$$\text{SS}(\pi_{U!} R_J *_{E^4} (A \boxtimes B)) \subset T_{(-1,1)}^*(-1,1).$$

Let us identify

$$T^*(U \times \mathbb{R} \times E^4) \times \mathbb{R} = (U \times \mathbb{R}) \times (F \oplus \mathbb{R}) \times F^4 \times \mathbb{R}.$$

We have

$$\begin{aligned} \text{SS}(R_J) \subset & \{(\tau, \eta_J(\tau, v_1) - \eta_J(\tau, v_2), v_1^a, J(\tau, v_1), v_2^a, J(v_2)) | \tau \in U \times \mathbb{R}, v_i \in F, |v_i| < R\} \times \mathbb{R} \\ & \cup \{(\tau, \zeta, v_1, w_1, v_2, w_2) | |v_1|, |v_2| \leq R; \max(|v_1|, |v_2|) = R\} \times \mathbb{R}. \end{aligned}$$

Consider now $\text{SS}(R_J *_{E \times E} A)$. As $\text{SS}(A) \subset \{(v_1, v_2) | |v_1|, |v_2| < R\}$, it follows that

$$\text{SS}(R_J *_{E \times E} A) \subset \{(\tau, \eta_J(\tau, v_1) - \eta_J(\tau, v_2), J(\tau, v_1), J(\tau, v_2)) | |v_1|, |v_2| < R\} \times \mathbb{R}.$$

Let us estimate

$$\text{SS}((R_J *_{E \times E} A) *_{E \times E} B).$$

It follows that there exists a compact subset $K \subset U$ such that

$$\text{SS}((R_J *_{E \times E} A) *_{E \times E} B) \subset \{(\tau, \eta_J(\tau, v_1) - \eta_J(\tau, v_2)) | \tau \in K \times (-1, 1), |v_1|, |v_2| < R\} \times \mathbb{R}.$$

Namely, one can choose $K = \overline{\{u \in U | I(u, B_R) \cap V \neq \emptyset\}}$.

Let now $\tau = (u, x) \in U \times (-1, 1)$. We have $\eta_J(\tau, v) \in F \oplus \mathbb{R}$. Let $f(\tau, v)$ be the F -component and $x(\tau, v)$ be the \mathbb{R} -component. Let us now estimate

$$\text{SS}(\pi_{U!}(R_J *_{E^4} (A \boxtimes B))).$$

As π_U is proper on the support of $R_J *_{E^4} (A \boxtimes B)$, the singular support in question is determined by the condition $f(\tau, v_1) - f(\tau, v_2) = 0$. As the family I is mobile, this condition implies $v_1 = v_2$, which implies $\eta_J(\tau, v_1) - \eta_J(\tau, v_2) = 0$ and

$$\text{SS}(\pi_{U!}(R_J *_{E^4} (A \boxtimes B))) \subset T_{(-1,1)}^*(-1,1) \times \mathbb{R}.$$

10 Tree operads and multi-categories

10.1 Planar/cyclic trees

Let us introduce a notation for a tree \mathbf{t} . Denote by $\text{inp}(\mathbf{t})$ the set of inputs of \mathbf{t} , $V_{\mathbf{t}}$ the set of inner vertices of \mathbf{t} , for $v \in V_{\mathbf{t}}$, denote by E_v the set of inputs of v . Let $p_{\mathbf{t}}$ be the principal vertex of \mathbf{t} .

10.1.1 Planar trees

Define a *planar tree* as a tree with a total order on every set E_v ; we then have an induced total order on $\text{inp}(\mathbf{t})$.

We have a unique identification of ordered sets $E_v = \{1, 2, \dots, n_v\}$, where $n_v = \#E_v$; $\text{inp}_{\mathbf{t}} = \{1, 2, \dots, n_{\mathbf{t}}\}$, where $n_{\mathbf{t}} = \#\text{inp}_{\mathbf{t}}$.

10.1.2 Cyclic trees

Define a *cyclic tree* as a tree with a total order on every set E_v , $v \neq p_t$, and a cyclic order on p_t . We then have an induced cyclic order on \mathbf{inp}_t , in particular, we assume $\mathbf{inp}_t \neq \emptyset$.

A *rigid cyclic tree* is a cyclic tree along with identifications $E_{p_t} = \{1, 2, \dots, n_{p_t}\}$; $\mathbf{inp}_{p_t} = \{1, 2, \dots, n_t\}$ which agree with the cyclic order on both sets.

10.1.3 Inserting trees into a tree

Let t be a planar tree. Let t_v , $v \in V_t$ be planar trees where $n_{t_v} = n_v$. One then can insert the trees t_v into t . Denote the resulting tree by $t\{t_v\}_{v \in V_t}$.

Similarly, let t be a rigid cyclic tree. Let t_v , $v \in V_t \setminus p_t$ be planar trees with $n_{t_v} = n_v$; let t_{p_t} be a rigid cyclic tree with $n_{t_{p_t}} = n_{p_t}$. One then can define a similar insertion, to be denoted by $t\{t_v\}_{v \in V_t}$.

10.1.4 Isomorphism classes of trees

Let \mathbf{trees} be the set of isomorphism classes of planar trees and $\mathbf{trees}^{\text{cyc}}$ be the set of isomorphism classes of rigid cyclic trees. Let \mathcal{A} be a SMC enriched over **ground**. $\mathcal{T}(\mathcal{A})$ be the **ground**-category of all families of objects in \mathcal{A} parameterized by $\mathbf{trees} \sqcup \mathbf{cyctrees}$.

Let also $\mathbf{trees}_n \subset \mathbf{trees}$ be the subset consisting of all isomorphism classes of trees with $n_t = n$ and likewise for $\mathbf{cyctrees}_n$. The above defined insertions are defined on the level of isomorphism classes.

10.1.5 Famililes parameterized by isomorphism classes of trees

Let \mathcal{A} be a \bigoplus -closed SMC. Let $\mathcal{T}(\mathcal{A})$ be a category, enriched over sets, whose every object is a family of objects $X_t \in \mathcal{A}$, $t \in \mathbf{trees} \sqcup \mathbf{cyctrees}$. Let $X, Y \in \mathcal{T}(\mathcal{A})$. Let us define a new family $X \circ Y \in \mathcal{T}(\mathcal{A})$ as follows:

$$X \circ Y(\mathbf{T}) = \bigoplus_{\mathbf{T} = t\{t_v\}_{v \in V_t}} X(t) \otimes \bigotimes_{v \in V_t} Y(t_v).$$

This way, $\mathcal{T}(\mathcal{A})$ becomes a monoidal category. The unit object $\mathbf{unit} \in \mathcal{T}(\mathcal{A})$ is defined by setting $\mathbf{unit}(t) = \mathbf{unit}_{\mathcal{A}}$ for all isomorphism classes of planar trees with one vertex (corollas) and all isomorphism classes t of rigid cyclic trees with one vertex and matching numberings of E_p and \mathbf{inp}_t . Otherwise, $\mathbf{unit}(t) = 0$.

10.2 Collections of functors

Let \mathcal{C} be a **GZ**-category tensored over \mathcal{A} .

Let us define a category over **Sets**, $\mathcal{F}(\mathcal{C})$, as follows

$$\mathcal{F}(\mathcal{C}) := \prod_{n=0}^{\infty} \mathbf{swell}(\mathcal{C}^n \otimes \mathcal{C}^{\text{op}}) \times \prod_{n=1}^{\infty} \mathcal{C}^n$$

so that an object $F \in \mathcal{F}(\mathcal{C})$ is a collection of objects $F^{[n]} \in \mathbf{swell}(\mathcal{C}^{\otimes n} \otimes \mathcal{C}^{\text{op}})$, $n \geq 0$, and $F^{(n)} \in \mathbf{swell}(\mathcal{C}^{\otimes n})$, $n \geq 1$.

Let \mathbf{t} be a planar tree. Define an object

$$F(\mathbf{t}) \in \mathbf{swell}(\mathcal{C}^{\otimes n_{\mathbf{t}}} \otimes \mathcal{C}^{\text{op}}).$$

A) Let $h : \mathcal{C}^{\text{op}} \otimes \mathcal{C} \rightarrow \mathbf{ground}$ be the hom functor.

B) We have an equivalence of categories

$$\left(\bigotimes_{v \in V_{\mathbf{t}}} (\mathcal{C}^{\otimes n_v} \otimes \mathcal{C}^{\text{op}}) \cong \bigotimes_{v \in V_{\mathbf{t}} \setminus p_{\mathbf{t}}} \mathcal{C} \otimes \mathcal{C}^{\text{op}} \right) \otimes (\mathcal{C}^{\otimes n_{\mathbf{t}}} \otimes \mathcal{C}^{\text{op}}),$$

coming from the bijection

$$\bigsqcup_{v \in V_{\mathbf{t}}} E_v \cong V_{\mathbf{t}} \sqcup \mathbf{inp}_{\mathbf{t}} \setminus p_{\mathbf{t}}$$

which associates to an edge its target.

As a result we have a through map

$$\circ_{\mathbf{t}} : \left(\bigotimes_{v \in V_{\mathbf{t}}} \mathbf{swell}(\mathcal{C}^{\otimes n_v} \otimes \mathcal{C}^{\text{op}}) \rightarrow \mathbf{swell} \bigotimes_{v \in V_{\mathbf{t}} \setminus p_{\mathbf{t}}} \mathcal{C} \otimes \mathcal{C}^{\text{op}} \right) \otimes (\mathcal{C}^{\otimes n_{\mathbf{t}}} \otimes \mathcal{C}^{\text{op}}) \rightarrow \mathbf{swell}(\mathcal{C}^{\otimes n_{\mathbf{t}}} \otimes \mathcal{C}^{\text{op}}).$$

C) Set $F(\mathbf{t}) := \circ_{\mathbf{t}}(\bigotimes_{v \in V_{\mathbf{t}}} F^{[n_v]})$.

Let now \mathbf{t} be a rigid cyclic tree. Define a functor $F(\mathbf{t}) \in \mathbf{swell}(\mathcal{C}^{n_{\mathbf{t}}})$ in a similar way. Let

$$\circ_{\mathbf{t}} : \mathcal{C}^{\otimes n_{p_{\mathbf{t}}}} \otimes \bigotimes_{v \in V_{\mathbf{t}} \setminus p_{\mathbf{t}}} (\mathcal{C}^{\otimes n_v} \otimes \mathcal{C}^{\text{op}}) \rightarrow \mathcal{C}^{\otimes n_{\mathbf{t}}}$$

be defined similar to above and set

$$F(\mathbf{t}) := \circ_{\mathbf{t}}(F^{(n_{p_{\mathbf{t}}})}) \otimes \bigotimes_{v \in V_{\mathbf{t}} \setminus p_{\mathbf{t}}} F^{[n_v]}.$$

10.3 Schur functors

Suppose \mathcal{C} is tensored over \mathcal{A} . Let $X \in \mathcal{T}(\mathcal{A})$ and $F \in \mathcal{F}(\mathcal{C})$. Define an object $\mathbb{S}_X(F) \in \mathcal{F}(\mathcal{C})$ as follows

$$\mathbb{S}_X(F)^{[n]} := \bigoplus_{\mathbf{t} \in \mathbf{trees}_n} \mathbf{t}(F); \quad \mathbb{S}_X(F)^{(n)} = \bigoplus_{\mathbf{t} \in \mathbf{cyctrees}_n} \mathbf{t}(F).$$

We have natural isomorphisms

$$\mathbb{S}_X \mathbb{S}_Y F \cong \mathbb{S}_{X \circ Y} F; \quad \mathbb{S}_{\mathbf{unit}} F \cong F.$$

In fact, we have a $\mathcal{T}(\mathcal{A})$ -action on $\mathcal{F}(\mathcal{C})$.

10.4 Tree operads

A tree operad in $\mathcal{T}(\mathcal{A})$ is the same as a unital monoid in $\mathcal{T}(\mathcal{A})$.

10.4.1 A tree operad \mathbf{triv}

Let $\mathbf{triv} \in \mathcal{T}(\mathcal{A})$ be given by $\mathbf{triv}(\mathbf{t}) = \mathbf{unit}_{\mathcal{A}}$ for all \mathbf{t} .

10.4.2 Endomorphism tree operad

Let \mathcal{C} be enriched and tensored over \mathcal{A} . Let $F, G \in \mathcal{F}(\mathcal{C})$. Consider a functor $H_{F,G} : \mathcal{T}(\mathbf{swell}\mathcal{A}) \rightarrow \mathbf{Sets}$,

$$H_{F,G}(X) = \underline{Hom}(\mathbb{S}_X F; G)$$

The functor $H_{F,G}$ is representable. Denote the representing object by $\mathcal{H}_{F,G}$. We have (\mathbf{t} is planar):

$$\mathcal{H}_{F,G}(\mathbf{t}) = \underline{Hom}_{\mathbf{swell}(\mathcal{C}^{\otimes n_{\mathbf{t}}} \otimes \mathcal{C}^{\text{op}})}(F(\mathbf{t}); G^{[n_{\mathbf{t}}]});$$

if \mathbf{t} is a rigid cyclic tree, we have:

$$\mathcal{H}_{F,G}(\mathbf{t}) = \underline{Hom}_{\mathbf{swell}\mathcal{C}^{\otimes n_{\mathbf{t}}}}(F(\mathbf{t}); G^{(n_{\mathbf{t}})}).$$

Set $\text{End}_F := \mathcal{H}_{F,F}$. We have a natural tree operad structure on End_F . Furthermore, we have an $\text{End}_F - \text{End}_G$ -bi-module structure on $\mathcal{H}_{F,G}$ (where we interpret tree operads $\text{End}_F, \text{End}_G$ as monoids in $\mathcal{T}(\mathbf{swell}\mathcal{A})$).

10.4.3 Quasi-contractible tree operads

Let now $\mathcal{A} = \mathbf{pt}$ so that $\mathbf{swell}\mathcal{A} = \mathbf{GZ}$. Call a tree operad $\mathcal{O} \in \mathcal{T}(\mathbf{GZ})$ pseudo-contractible if
1) $\mathcal{O}(\mathbf{t}) \in \mathbf{GZ}$ admits a truncation for every $\mathcal{O}(\mathbf{t})$. We therefore have an induced tree operad structure on $\tau_{\leq 0}\mathcal{O}$ and a map of tree operads $\tau_{\leq 0}\mathcal{O} \rightarrow \mathcal{O}$.
2) Every object $\tau_{\leq 0}\mathcal{O}$ admits a truncation $\tau_{\geq 0}$, to be denoted $H^0\mathcal{O}(\mathbf{t})$ which is a finitely generated free \mathbb{A} -module; we have an induced map of tree operads $\tau_{\leq 0}\mathcal{O} \rightarrow H^0\mathcal{O}$. We require this map to be a term-wise homotopy equivalence.

A quasi-contractible tree operad is a pseudo-contractible operad \mathcal{O} endowed with a map of tree operads $\mathbf{triv} \rightarrow H^0(\mathcal{O})$.

In this case there exists a splitting of the map $\tau_{\leq 0}\mathcal{O}(\mathbf{t}) \rightarrow H^0\mathcal{O}(\mathbf{t})$, hence a pull-back of the diagram

$$\mathbf{triv} \rightarrow H^0(\mathcal{O}) \leftarrow \tau_{\leq 0}\mathcal{O},$$

to be denoted by $\mathbf{triv}_{\mathcal{O}}$ so that we have a diagram

$$\mathbf{triv} \xleftarrow{\sim} \mathbf{triv}_{\mathcal{O}} \rightarrow \mathcal{O}.$$

Let $\mathcal{O}_1, \mathcal{O}_2$ be quasi-contractible operads and \mathcal{M} a $\mathcal{O}_1 - \mathcal{O}_2$ -bi-module. Call \mathcal{M} pseudo-contractible if there exist truncations $\tau_{\leq 0}\mathcal{M}(\mathbf{t})$ and $\tau_{\geq 0}\tau_{\leq 0}\mathcal{M}(\mathbf{t}) =: H^0\mathcal{M}(\mathbf{t})$, where each $H^0\mathcal{M}(\mathbf{t})$ is a finitely generated free \mathbb{A} -module.

A quasi-contractible $\mathcal{O}_1 - \mathcal{O}_2$ -bi-module \mathcal{M} is a pseudo-contractible $\mathcal{O}_1 - \mathcal{O}_2$ -bi-module \mathcal{M} endowed with a map

$$(\mathbf{triv}, \mathbf{triv}, \mathbf{triv}) \rightarrow (H^0 \mathcal{O}_1, H^0 \mathcal{M}, H^0 \mathcal{O}_2)$$

of triples: a pair of tree-operads and their bi-module.

Similar to above, we have a pull-back of the diagram

$$(\mathbf{triv}, \mathbf{triv}, \mathbf{triv}) \leftarrow (\tau_{\leq 0} \mathcal{O}_1, \tau_{\leq 0} \mathcal{M}, \tau_{\leq 0} \mathcal{O}_2) \rightarrow (H^0 \mathcal{O}_1, H^0 \mathcal{M}, H^0 \mathcal{O}_2),$$

to be denoted by $(\mathbf{triv}_{\mathcal{O}_1}, \mathbf{triv}_{\mathcal{M}}, \mathbf{triv}_{\mathcal{O}_2})$ so that we have a diagram

$$(\mathbf{triv}, \mathbf{triv}, \mathbf{triv}) \xleftarrow{\sim} (\mathbf{triv}_{\mathcal{O}_1}, \mathbf{triv}_{\mathcal{M}}, \mathbf{triv}_{\mathcal{O}_2}) \rightarrow (\mathcal{O}_1, \mathcal{M}, \mathcal{O}_2).$$

10.5 Pull backs from $\mathcal{F}(\mathcal{D})$ to $\mathcal{F}(\mathcal{C})$

Let \mathcal{A} have internal hom. Let \mathcal{C}, \mathcal{D} be categories enriched over \mathcal{A} . Let $G \in \mathcal{F}(\mathcal{D})$. Let $L \in \mathbf{swell}(\mathcal{C}^{\mathbf{op}} \otimes \mathcal{D})$.

Consider the following functor $H : \mathcal{F}(\mathcal{C})^{\mathbf{op}} \rightarrow \mathbf{Sets}$ as follows.

1) We have functors

$$e_L : \mathcal{C}^{\otimes n} \otimes \mathcal{C}^{\mathbf{op}} \otimes (\mathcal{C}^{\mathbf{op}} \otimes \mathcal{D})^{\otimes n} \rightarrow \mathcal{D}^{\otimes n} \otimes \mathcal{C}^{\mathbf{op}},$$

via using the hom-functor $\mathcal{C}^{\otimes n} \otimes (\mathcal{C}^{\mathbf{op}})^{\otimes n} \rightarrow \mathbf{GZ}$, as well as

$$f_L : \mathcal{D}^{\otimes n} \otimes \mathcal{D}^{\mathbf{op}} \otimes \mathcal{C}^{\mathbf{op}} \otimes \mathcal{D} \rightarrow \mathcal{D}^{\otimes n} \otimes \mathcal{C}^{\mathbf{op}}.$$

via the hom functor $\mathcal{D}^{\mathbf{op}} \otimes \mathcal{D} \rightarrow \mathbf{GZ}$.

Similarly, one defines a cyclic version:

1)

$$e_L^{\text{cyc}} : \mathcal{C}^{\otimes n} \otimes (\mathcal{C}^{\mathbf{op}} \otimes \mathcal{D})^{\otimes n} \rightarrow \mathcal{D}^{\otimes n};$$

2) Set

$$H^{[n]}(F) := \text{Hom}(e_L(F^{[n]} \otimes \mathcal{L}^{\otimes n}; G^{[n]});$$

$$H^{(n)}(F) := \text{Hom}(e_L^{\text{cyc}}(F^{(n)} \otimes \mathcal{L}^{\otimes n}; G^{(n)}).$$

Set

$$H(F) = \prod_{n \geq 0} H^{[n]}(F) \times \prod_{n > 0} H^{(n)}(F).$$

It follows that the functor H is representable. Denote the representing object by $L^{-1}G$.

Let $X \in \mathcal{T}(\mathcal{A})$. We have a natural map $\mathbb{S}_X L^{-1}G \rightarrow L^{-1}\mathbb{S}_X G$.