
MATH 465, LECTURE 11: THE WHITNEY TRICK, SECOND PART

J. FRANCIS, NOTES BY H. TANAKA

Recall from the preceding lecture that we gave a proof of the Whitney trick predicated on the
existence of a fairly specific embedding of U × Rr−1 × Rs−1 into our ambient manifold V , Lemma
6.7 of [1]. In order to construct this embedding, we wanted to prove a lemma that allowed us to
bring to bear some Riemannian geometry to the construction. This lemma was the following:

Lemma 0.1 (Lemma 6.8 of [1]). There exists a Riemannian metric on V such that

• M and M ′ are totally geodesic submanifolds;
• There exist coordinate neighborhoods Nx and Ny of x and y where the metric is Euclidean,
and in which the line segments Nx ∩ C0, Nx ∩ C ′0, Ny ∩ C0, Ny ∩ C ′0 are all straight.

It appeared that the surprising part of this result was an arbitrary submanifold can be made to
be totally geodesic, given an appropriate choice of metric. I’ll just prove that result here, which can
be fine-tuned to yield this more involved result. Again, see [1].

Lemma 0.2. For any closed submanifold M ⊂ V , one can choose a Riemannian metric on V with
respect to which M is a totally geodesic submanifold.

Proof. First, choose any Riemannian metric 〈–, –〉 on V . Additionally, choose a tubular neighbor-
hood Nν of M :

Nν
open

  A
AA

AA
AA

A

M

==|||||||| ν // V

We have an action of O(1) = Z/2 on Nν given by the antipodal map, σ. Let us define a new metric
〈–, –〉σ on the tubular neighborhood Nν , defined by averaging

〈v, w〉σ :=
1

2
〈v, w〉+

1

2
〈σv, σw〉.

By choosing a partition of unity subordinate to the cover of V by Nν and V − Nν , this metric
〈–, –〉σ can be extended over all of V by scaling the contribution of the term 〈σ –, σ –〉 to zero at the
periphery of Nν , away from M . Consequently, to establish the lemma it now suffices to show that
M is a totally geodesic submanifold of (Nν , 〈–, –〉σ).

With respect to this new metric, σ is clearly an isometry. Now let ω be a geodesic of Nν ,
ω : [0, 1]→ Nν , such that there is a single t0 ∈ [0, 1] such that both the value ω(t0) is contained in
M , and the derivative vector dω(t0) is contained in the subspace and Tω(t0)M of Tω(t0)Nν . We now
show that the geodesic ω must lie entirely in M , and thus that M is totally geodesic.

Since σ is an isometry, it sends geodesics to geodesics. Thus, the antipodal reflection of the
geodesic ω, σ(ω), is also a geodesic. Since the point ω(t0) lies in M , which is the fixed points

N
O(1)
ν of the action of O(1), thus the geodesics ω and σ(ω) intersect at the point ω(t0) = σω(t0).

Furthermore, the tangent vector at this point is also the same: d(σω(t0) = dω(t0)) ∈ TM . If two
geodesics share the same tangent vector at the same point, they must be the same geodesic, so ω
and σ(ω) are the same. Therefore ω is fixed by the map σ, implying that ω lies entirely in M . This
shows M is totally geodesic. �
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Our aim in the rest of this lecture is the prove the following very plausible looking result. First,
let V r+s, Mr, M ′s, and x, y ∈ M ∩M ′ satisfy the hypotheses stated for the Whitney trick. I.e.,
M and N are transversally intersecting submanifolds of V ; the tangent bundle TM and normal
bundle of M ′ are both oriented; r + s ≥ 5 and s ≥ 3; if r = 1 or r = 2, then π1V −M ′ → π1V is
assumed injective; points x, y ∈M ∩M ′ have opposite intersection signs; C ⊂M and C ′ ⊂M ′ are
appropriate paths connecting x and y and the loop C ∪ C ′ is contractible V . Then:

Lemma 0.3 (Lemma 6.7 of [1]). Given C0 and C ′0 smooth paths bounding a disk D in the plane,
and a map φ1 so that

C0
//

��

C

��
C0 ∪ C ′0

φ1 // V

C ′0 //

OO

C ′

OO

then there is an extension φ of φ1

φ : U × Rr−1 × Rs−1 ↪→ V

such that
φ−1(M) = C0 × Rr−1 × {0}
φ−1(M ′) = C ′0 × {0} × Rs−1

where U is an open neighborhood of the disk D.

To prove this, we will make use of two lemmas:

Lemma 0.4. Let M1 ↪→ V1 be a submanifold of codimension at least three. Then the induced map
π1(V1 −M1)→ π1V1 is injective.

This will allow the embedding of a certain disk D in V . Once D has been embedded, we’ll also
use:

Lemma 0.5. There exists an orthonormal basis

ξ1, . . . , ξr−1, η1, . . . , ηs−1

of sections of the normal bundle N of the disk D ⊂ V , where N ∼= TV |D − TD is the orthogonal
complement of the tangent bundle of D in TV , and such that:

• ξ1, . . . , ξr−1 restricted to C form a basis for TM |C − TC;
• η1, . . . , ηs−1 restricted to C ′ form a basis for TM ′|C − TC ′.

Remark 0.6 (Remark on Lemma 0.5). Once we have these bases, we will construct our embedding
by exponentiation along these tangent vectors.

Proof of Lemma 6.7. We first construct an embedding of the disk D ↪→ V so that D◦, the interior of
the disk, misses the image of M and M ′, and such that the boundary ∂D identifies with C∪C ′. (An
embedded disk that intersects M and M ′ at other places will assuredly not satisfy the conditions
of Lemma 6.7.) This is where a couple of the dimension requirements come in. (Look at the proof
of Lemma 0.4.)

As a corollary of Lemma 0.4, we first show that the map

π1(V − (M ∪M ′))→ π1(V )

is an injection. so that we can find an nullhomotopy D of the loop ∂D ∼= C0 ∪ C ′0, and so that D
misses M and M ′.

To prove this, we will apply Lemma 0.4 twice, to each of the successive embeddings

V − (M ∪M ′) ↪→ V −M ′ ↪→ V.
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Let us first consider the second map: If r = dimM is greater than or equal 3, then the codimension
of M ′ is likewise greater than or equal to 3, so we can apply Lemma 0.4 for V1 = V and M1 = M ′

obtain that the map π1(V −M ′) → π1V is injective. If, to the contrary, the dimension of M is
equal to 1 or 2, then this map was assumed to be injective in the assumptions listed above.

Now consider the first map: Since the dimension s = dimM ′ was assumed to be at least 3,
therefore the codimension of M − (M ∩M ′) in V − (M ∪M ′) is at least 3, and by applying the
lemma to case of V1 = V − (M ∪M ′) and M1 = M − (M ∩M ′), we again obtain that that the
induced map on π1 is injective.

Thus, we we have that composite map

π1(V − (M ∩M ′)) ↪→ π1V

is an injection. Since the dimension of V is at least 5, we can chose the nullhomotopy D ↪→ V so
as to be an embedding. (Select this embedding so that its tangent vectors are orthogonal at the
boundary to M and M ′.)

We now construct the embedding of U ×Rr−1×Rs−1 into V , which will make use of Lemma 0.5.
The construction is merely by exponentiation along the vector fields ξi and ηj . That is, define the
embedding

φ : U × Rr−1 × Rs−1 ↪→ V

in two steps. (Here, U is an open neighborhood of the disk D) First, to triplet of u ∈ U, a =
(a1, . . . , ar−1) ∈ Rr−1, b = (b1, . . . , bs−1) ∈ Rs−1), make the assignment of

(u, a, b) expu(
∑

aiξi +
∑

bjηj).

This defines a diffeomorphism in a neighborhood of 0 ∈ Rr−1×Rs−1. Now choose a diffeomorphism

α : Nε ∼= Rr−1 × Rs−1

and then define the long desired φ as the composite exp ◦α.
To conclude the proof, the final point is to show that φ−1M and φ−1(M ′) do indeed lie in the

subspaces we claimed, C0×Rr−1×{0} and C ′0×{0}×Rs−1, respectively. It suffices to demonstrate
just one of them, the case being identical for the other. Recall that M ⊂ V is totally geodesic
(an unused property, until this point). This implies that, for each x ∈ M , the following diagram
commutes:

TxM
exp //

��

M

��
TxV

exp // V

That is, since the exponential map is defined by tracing tangent vectors along their associated
geodesics, and since geodesics in M are the same as those of V in M , the two exponential maps
coincide for tangent vectors in the subspace TxM ⊂ TxV .

By the condition that ξi ∈ TxM , we see that the image of φ

φ(C × Rr−1 × {0}) ⊂M.

This, finally, proves the lemma. �

We now turn to the subsidiary results, Lemmas 0.4 and 0.5, used in the proof above.

Proof of Lemma 0.4. Let the composite ` : S1 ↪→ V1 −M1 ↪→ V1 be nullhomotopic in V1. We show
that l is nullhomotopic in V1 −M1. Choose a nullhomotopy in V1 given by a map of pairs

(D2, S1)→ (V1, V1 −M1).

By transversality, we can find an arbitrarily close map of D2 into V1 such that D2 intersects M
transversally. By the assumption that the codimension of M1 was at least 3, a transverse intersection
of D with M1 must be empty, the sum of dimensions of M1 and D2 being less than that of V1. �
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Remark 0.7. The same proof implies that if M1 has codimension at least k, then πi(V1−M1)→ πiVi
is an injection for i ≤ k − 2.

And now, lastly:

Proof of Lemma 0.5. Choose the sections ξ1|C , . . . , ξr−1|C . (For instance, one can first select a basis
of tangent vectors at TxM − TxC, and then parallel transport these vectors along the curve.) For
each point c ∈ C, this defines an element of the Stiefel manifold of (r − 1)-framed subspaces in
Rr+s−2. This gives a map

C → Vr−1(Rr+2−1) ∼= O(r + s− 2)/O(s− 1)

The only conditions on the restriction of ξ1 . . . , ξr−1 to C ′ was that they lie in the complement of
TM ′|C′ . So we may arbitrarily choose a basis for this complement, and assign the restrictions of
ξ1, . . . , ξr−1 to be this basis. Thus, we obtain a map

S1 ∼= C ∪ C ′ → Vr−1(Rr+s−2).

To define the ξi over the entire disk D, we need to extend this map to the disk. This map will
always extend if the fundamental group of Vr−1(Rr+s−2) is zero. For this to be the case, in the fiber
sequence

O(s− 1)→ O(r + s− 2)→ Vr−1(Rr+s−2)

it suffices for the first map on π1 to be surjective (by looking at the long exact sequence on homotopy
groups). Since it was assumed that s ≥ 3, and π1O(2) → π1O(k) is surjective for k ≥ 2, it follows
that the group π1Vr−1(Rr+s−2) is zero. Thus, we can extend ξ1|C∪C′ , . . . ξr−1|C∪C′ over all of D.

Finally, we can just choose η1, . . . , ηs−1 as a basis for the orthogonal complement to the subspace
spanned by the ξi, and this basis will necessarily satisfy the stipulated conditions. �

This completes our treatment of the Whitney trick.

Remark 0.8. Note that for r + s = 4 and s = 2, the argument at end of our proof of Lemma 0.5
breaks down, and V1(R2) has a nontrivial fundamental group. This technical failure underlies the
radically different behavior of smooth 4-manifold topology versus higher dimensions.
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