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Abstract. We prove that certain integrals
∫
M P (x)Â take only integer values

on spin manifolds. Our method of proof is to calculate the real connective the-

ory ko∗K(Z, 4) and ko∗BSpin through dimension 15 and determine an explicit

set of spin manifolds whose image under the Â-genus generate these groups.
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1. Introduction

This paper uses homotopy theory to prove that certain integrals take only integer
values. These are integrals of the form∫

M

P (x)Â

on a spin manifold M , in which: P is a polynomial with rational coefficients,

x is an integral closed 4-form; and the Â-genus is a multiplicative sequence of
characteristic classes, defined by the curvature of the manifold. The particular
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integrality result we prove for spin 12-manifolds has relevance to mathematical
physics, to the quantization of the action in M-theory, [DMW].

Integrality results of a similar form have had great conceptual and practical im-
plications. We sketch a few: In geometry, for instance, Milnor applied an integrality
theorem of Thom’s for 8-manifolds in order to define an invariant of 7-manifolds
with vanishing middle cohomology groups; he then used this invariant to distinguish
certain 7-manifolds which were homotopic to the 7-sphere, i.e., to prove the exis-
tence of exotic 7-spheres. Later, in the 1980s, Freedman constructed a large number
of topological 4-manifolds whose unsmoothability was a consequence of Rohklin’s
theorem, that the signature of a smooth spin 4-manifold is an integral multiple of
16. Both Thom’s and Rohklin’s integrality theorems were later subsumed by the
Atiyah-Singer index theorem, which interpreted them in terms of the index theory
of differential operators (for example, in terms of dimensions of spaces of holomor-
phic sections). In mathematical physics, integrality have also had deep significance:
At the most basic level, a classical mechanical system modeled by a symplectic man-
ifold may be quantized only if its symplectic form is integral. Then, relatedly, from
the perspective of Chern-Weil theory, the integrality of Chern classes is related to
the quantization of electromagnetic charge as interpreted in Yang-Mills gauge the-
ory. Index theory has subsequently had further, related, applications, such as to
anomaly cancellation.

The particular integrals which we consider in this work, however, do not arise
straightforwardly in classical index theory, although Diaconescu, Moore, and Wit-
ten have interpreted them in terms of E8 gauge theory in [DMW]. Stable homotopy
theory can also applied to the study of these invariants, and the method is inter-
esting in part because it can be applied quite generally, wherever one might want
an integrality result. Below I overview the argument used in this paper.

The initial problem is roughly inverse to the original index theorem: determine

the polynomials P such that
∫
M
P (x)Â is an integer, where M is a spin manifold,

x is a differential 4-form representing an element of H4(M ;Z). Were x an integral
2-form, the Atiyah-Singer index theorem theory would immediately provide the
answer: Every element x ∈ H2(M,Z) is the first Chern class of a complex line

bundle L, and Ch(L) = exp(x), hence
∫
M

exp(x)Â is takes integer values. However,
if one does not already know that the polynomial P is the Chern character of a

bundle, the question of whether
∫
M
P (x) or

∫
M
P (x)Â is necessarily an integer

appears opaque from the more rigid perspective of index theory.
The yoga of homotopy theory is to try to interpret the integral within the realm of

stable homotopy theory and then apply the well-established machinery for compu-
tation available there. This is the outline of how Milnor produced exotic 7-spheres,
Thom classified which manifolds are the boundaries of other manifolds, Hirzebruch
proved the signature theorem, and how Adams determined the number of indepen-
dent vector fields on spheres.

To begin this interpretation, note that the 4-cocycle x is equivalent to the data of
a map to an Eilenberg-MacLane space, x : Mn → K(Z, 4). The manifold together
with the 4-class thus defines an element of the nth spin bordism group of K(Z, 4),

MSpinn K(Z, 4). The Â-genus defines a ring homomorphisms from the bordism ring
of a point to Q, and likewise any polynomial in a 4-class P defines a homomorphism

π∗ MSpin ∧K(Z, 4)→ Q
2



defined on an element of MSpinnK(Z, 4) by picking representative (M,x) of that

element and evaluating the integral
∫
M
P (x)Â. Fixing n, one can thereby prove

that integral is always an integer by finding a set of spin n-manifolds together with
4-forms that generate the group MSpinnK(Z, 4): The integrality result obtains just
by checking that the integral takes only integer values on these generators. The
requisite steps are therefore to compute the bordism group and to find explicit
generators.

The work of Atiyah, Bott, and Shapiro constructs the Â-genus as a map of
ring spectra from MSpin to the connective real K-theory spectrum, ko. Building
on this work, Anderson, Brown, and Peterson gave a splitting of spin bordism in
terms of connective covers of real K-theory. Standard tools of homotopy, such as
the Adams spectral sequence, then allow one to begin the problem in earnest along
these lines. The spectral sequence not only allows the computation of the group,
but the relation between the group and the Adams filtration allow one to determine
when a given set of manifolds are generators. Determining generators for a bordism
ring is difficult in general; even for the spin bordism of a point complete generators
are unknown. The existence of differentials in the spectral sequence computing the
ko-theory of K(Z, 4) further complicates the analysis: The bulk of [Fr] was devoted
to navigating these issues.

This paper circumvents some those technical intricacies by lifting the problem of
4-classes to one of spin bundles, i.e., by representing the 4-dimensional cohomology
classes by spin bundles, a geometric result of independent interest. This motivation
comes in part from the general issue of representing cohomology classes geomet-
rically, e.g., every 2-dimensional cohomology classes is the first Chern classes of a
line bundle. Naively, one might imagine every 4-class on a spin manifold to be rep-
resentable as half the first Pontryagin class of a spin bundle. Unsurprisingly, this is
false. However, through a range of dimensions the answer is true up to cobordism.
The proof is via homotopy, proving that the spin bordism of BSpin, the classifying
space for spin bundles, surjects onto that of K(Z, 4). (The integrals then become
the indices of differential operators.) A consequence of the proof is a new proof the-
orem of Stong’s computing the low dimensional spin bordism groups of K(Z, 4), in
particular that that MSpin11 K(Z, 4) vanishes. This result is of independent result
for M-theory, where the model of spacetime involves a spin 11-manifold equipped
with a 4-class. The integrality result we prove has further relevance to M-theory,
to the issue of quantization of the action. That is, we prove that if M is a spin

12-manifold with an integral closed 4-form x, then
∫
M

( 1
6x

3 ± x2 + 30x)Â is an
integer.

We now give a more detailed overview of the contents of this paper: We use the
Adams spectral sequence to compute the ko-theory of K(Z, 4) through 15 dimen-
sions after completion at each prime p. This entails first computing the E2 term of
the sequence, which requires knowing the structure of the cohomology of K(Z, 4)
as a module over a certain subalgebra of the Steenrod algebra. Section 2 does this,
based on Serre’s original computation of the cohomology of K(Z, n) as a polynomial
algebra. This computation alone is sufficient to reprove a certain integrality theo-
rem for 8-manifolds, a proof which is then sketched. Further computation requires
understanding several differentials in the spectral sequence, which is facilitated by
analysis of the map λ : BSpin → K(Z, 4), where λ corresponds to half of the first
Pontryagin class. We prove that the spin bordism of BSpin surjects onto that of
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K(Z, 4) by working at each prime and for each spectrum in the Anderson-Brown-
Peterson splitting of the spin bordism spectrum MSpin. This surjectivity allows
certain ill-defined invariants for K(Z, 4) to be lifted to well-defined invariants in the
spin bordism of BSpin. This, coupled with the relative simplicity of the ko-theory
of BSpin, resolves the differential for computing the 12th spin bordism group of
K(Z, 4). We are simultaneously able to find explicit manifolds and prove they gen-
erate this group using the relation between values of invariants and the Adams
filtration. A Massey product relates the differential in 13 to a lower differential,
thereby reproving a theorem of Stong’s that the 11th spin bordism group of K(Z, 4)
is zero.

Technically, the bulk of the text is devoted to proving that a specific set of man-
ifolds with spin bundles generates the ko-theory of BSpin and that their images
under the map λ generate the ko-theory of K(Z, 4). Once this set of manifolds is
determined, all possible integrality results follow in the range of dimensions com-
puted. For the reader’s convenience, we briefly enumerate the various calculations
and arguments contained in this paper:

• Description of H∗(K(Z, 4),Fp) as a module over the appropriate subalgebra
A(1) of the Steenrod algebra. Computation of the E2 term of the Adams
spectral sequence converging to the p-adic ko-theory of K(Z, 4).
• Computation of the E2 term of the ko-theory spectral sequence fromH∗(BSpin,Fp)

and evaluation of the maps H∗(λ) and Ext(λ) where λ : BSpin → K(Z, 4)
classifies half the first Pontryagin class.
• Proof of the surjectivity of the ko-theory and spin bordism of BSpin onto

that of K(Z, 4) through 15 dimensions at each prime, and thus integrally.
• Determination of generators of π4n ko∧K(Z, 4) and π4n ko∧BSpin through

14 dimensions. Determination of the groups.
• Relation of values of integrals on spin manifolds to the Adams filtration

in the Adams spectral sequence for ko∗K(Z, 4). Determination of all in-

tegrality results for integrals of the form
∫
M
P (x4)Â for spin manifolds of

dimension less than 16.
• Massey product argument connecting the differential coming from dimen-

sion 13 to that determining the 11-stem. Alternative proof of Stong’s the-

orem, that ΩSpin
11 K(Z, 4) = 0. Computation of Bockstein of Pontryagin

square determining the d2 differential in the spectral sequence.

Remark 1. Throughout, the homology theories will be reduced, i.e., the quotient
of actual homology theory by the homology of a point.

1.1. Acknowledgements. This work is a slight adaptation of my undergraduate
thesis, [Fr]. I am enormously grateful to my advisor, Mike Hopkins, for guiding me
in this work and for all his support and encouragement.

2. 2-local spin bordism

The cohomology of BSpin can be computed from that of BSO or BO by standard
arguments. A short exact sequence of topological groups gives rise to a fibration
after apply the classifying space functor B, which is in this case BZ/2 ↪→ BSpin→
BSO. The Serre spectral sequence then applies, and one can shortly see that the
mod 2 cohomology of BSpin is exactly the cohomology of BSO quotiented out by the
ideal generated by the Stiefel Whitney class w2. All this is done explicitly in [St2].
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The result is a polynomial algebra in the Stiefel-Whitney classes: H∗(BSpin;F2) ∼=
F2[wn : n 6= 2i + 1, n ≥ 4]. The action of the Steenrod algebra is induced from that
of BSO, given by the Wu relations.

BSpin is evidently 3-connected, and the cohomology class w4 gives a map to the
Eilenberg-MacLane space K(Z/2, 4). This class has a lift to integral cohomology.
We will denote this integral lift by λ, since it is half of the pullback of the first
Pontryagin class p1 to BSpin. A main focus of this paper will be the effect of this
map λ in spin bordism. Our approach will be to use the cohomology of these two
spaces to compute their spin bordism by the Adams spectral sequence, and to relate
the effect of the map in cohomology to the map in spin bordism.

Serre first computed the mod p cohomology of Eilenberg-MacLane spaces induc-
tively using the results of Borel’s thesis. The result, at 2, is a polynomial algebra
in terms of Steenrod operations on a single generator. The induced map in mod 2
cohomology, H∗(λ), is a map of modules of the Steenrod algebra, and so is com-
pletely determined by the action of the Steenrod operations in H∗(BSpin;F2) and
in H∗(K(Z, 4);F2).

Thus, we have some command of this situation in classical cohomology. The
next step is to pass to spin bordism. Spin bordism is a difficult homology theory
to manage. At odd primes it is identical to oriented bordism, since Spin is a
double cover of SO the map is an odd prime homotopy equivalence. At the prime
2, Anderson, Brown, and Peterson [ABP] constructed a splitting of the homology
theory as a sum of copies of connective real K-theories, ko〈n〉. That is, there is a
map

MSpin −→ ko ∨ ko〈8〉 ∨ ko〈10〉 ∨ ko〈12〉 ∨ . . .
where the maps are given by KO-theory characteristic numbers. The first map is
a lifting to spectra of the classical Atiyah-Bott-Shapiro orientation. This map of

ring spectra, MSpin → ko, we will denote Â since its effect in homotopy (modulo

torsion) is exactly the classical Â-genus. There is more information in the map
than the genus, however, so the map should be thought of as a rigidified, homotopy-
theoretic improvement of the genus. For instance, given a map from a spin manifold
f : M → X and a cohomology class in x ∈ H∗(X) we may think of the integral∫
M
f∗(x)Â as factoring

π∗ MSpin ∧X+

∫
M
f∗(x)Â

��

Â

((QQQQQQQQQQQQQ

π∗ ko ∧X+

vvm m m m m m m m

Z
and, in particular, think of X as BSpin or K(Z, 4).

The Bott periodicity of real K-theory implies that Σ8ko ' ko〈8〉. Therefore, to
understand spin bordism in this range of dimensions at the prime 2, it completely
suffices to look at ko-theory.

The tool of choice is the Adams spectral sequence. The Adams spectral sequence
takes as inputs the mod p cohomologies of ko and X as modules over the Steenrod
algebra and outputs, if computed correctly, the p-adic completion of π∗ ko∧X. The
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first term of this spectral sequence is Exts,tA (H∗(ko ∧X;Fp);Fp). From [Ad1] and
[St1], the spectrum cohomology of ko can be given by the quotient of the Steenrod
algebra by the ideal generated by Sq1 and Sq2, so H∗(ko;F2) ∼= A//A(1). At odd
primes, ko splits as a wedge of spaces with simpler cohomology.

Computing Ext over the Steenrod algebra is generally daunting. However, in the
specific case of ko-theory, a hom-tensor interchange massively simplifies this task.

First, the Künneth formula implies that

H∗(ko ∧X) ∼= H∗(ko)⊗H∗(X) ∼= A//A(1)⊗H∗(X)

However, A//A(1) ∼= A⊗A(1) F2. So substituting this into the first term of our
spectral sequence gives:

Exts,tA (H∗(ko ∧X),F2) ∼= Exts,tA (A⊗A(1) F2 ⊗H∗(X),F2)

∼= Exts,tA (A⊗A(1) H
∗(X),F2)

The final step in simplifying our Ext term is the derived hom-tensor interchange,
so

Exts,tA (A⊗A(1) H
∗(X),F2) ∼= Exts,tA(1)(H

∗(X),F2).

Now, instead of computing Ext over the whole infinite-dimensional Steenrod alge-
bra, we can instead work over the finite subalgebra A(1) generated by Sq1 and Sq2.
We will now do this for BSpin and K(Z, 4).

The cohomology of BSpin is a polynomial algebra, as stated before. Its structure
as a module over A is given by the Wu relations. H∗BSpin becomes a module over
A(1) by restriction. The explicit computation is easy to do, and the result through
the range of dimensions is given in the diagram at the end of the paper.

Likewise, Serre has expressed H∗K(Z, 4) as a polynomial algebra on admissible
sequences of Steenrod operations on a generator in degree 4. Its structure as an
A(1) module, i.e., the action of Sq1 and Sq2, is given by the Adem relations. The
outcome of this routine computation is given in an upcoming diagram.

The induced map is also evident, since the map commutes with Steenrod oper-
ations. The cohomology of K(Z, 4) injects into that of BSpin. As A(1)-modules,
through 15 dimensions, K(Z, 4) is a direct sum of five smaller A(1)-modules. Four
of these modules are also direct summands in the cohomology of BSpin, but the
image of one of them sits in a larger module of which it is not a summand. This
has an enormous effect in homotopy.

From the effect of λ in cohomology, we can immediately see the effect in Ext,
the first term of the Adams spectral sequence. The computation of Ext for these
types of modules is standard in stable homotopy theory, and one can check, e.g.,
[AP].

2.1. K(Z, 4)(2) and BSpin(2). The following picture shows the structure of the F2-

cohomology of BSpin and of K(Z, 4) as an A(1)-module, i.e., the action of the
Steenrod squares Sq1 and Sq2, and the effect of the map λ in cohomology. The
elements (and operations) of the cohomology of BSpin that are not in the image
of K(Z, 4) are dotted. The map is an injection. (Dually, one may think of the
diagrams as describing the cellular structures of the spaces.)
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K(Z, 4) BSpin

2.2. Exts,tA(1)(H
∗K(Z, 4);F2) and Exts,tA(1)(H

∗BSpin;F2). The decomposition of

the mod 2 cohomology of K(Z, 4) developed in the previous section reduces the
computation of the E2 term of the Adams spectral sequence to a routine computa-
tion of the bigraded Ext using minimal resolutions. The result of this computation
looks as follows:
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0 4 8 12

0

2

4

The upward arrow indicate an infinite “Z-tower.” In the target of the spectral
sequence this Z-tower represents the 2-adically complete integers, with the action
of h0 corresponding to multiplication by 2, and with associated graded in each
horizontal degree being the group Z/2. The vertical Adams filtration thus relates
to what values a homomorphism from the bordism group to Z may take. This fact
will be exploited.

One should note that there is the possibility of exactly two differentials, one
supported by the Z-tower in dimension t − s = 13 and one of degree 2 supported
on the pair of Z/2s related by an h1 in t − s = 10 and 11. These differentials do
exist and are both of degree 2, as will be described later.

The decomposition of the mod 2 cohomology of BSpin developed in the previous
section reduces the computation of the E2 term of the Adams spectral sequence to
a routine computation of Ext using minimal resolutions. This result is as follows.

0 4 8 12

0

2

4

There are no differentials in this spectral sequence, because the differentials are
derivations with respect to the action of the hi. Therefore one can immediately
read off the low dimensional spin bordism groups of BSpin.

2.3. The map Ext(λ). The map on Ext induced by the map λ is a consequence
of the effect of λ on cohomology. From the decomposition of the cohomologies
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of BSpin and K(Z, 4) as A(1)-modules, it is evident that the Ext term of BSpin
surjects onto that of K(Z, 4) in degrees which are a multiple of four.

The issue is to show surjectivity on ko-theory from this: in this range of dimen-
sions, π∗ ko ∧ K(Z, 4) is a quotient of a direct summand of π∗ ko∧BSpin, that is,
that π∗ ko∧BSpin is isomorphic to N ⊕ P and π∗ ko ∧ K(Z, 4) is isomorphic to
(λ∗N)/d∗M , where the d∗ are the differentials in the Adams spectral sequence.

We establish this surjectivity by using the first term of the Adams spectral
sequence: in this range of dimensions we can fairly obviously express π∗ ko∧K(Z, 4)
as a quotient N/(d∗M), where A ⊕ B is a splitting of Ext into the part which
supports a nontrivial differential (i.e., M) and the part that does not (i.e., N). We
will then see that the E2 map composition below is a surjection:

ExtA(H∗BSpin⊗H∗ko;Fp)
E2(λ) // ExtA(H∗K(Z, 4)⊗H∗ko;Fp) // N

where the first map the Ext functor of the map on spaces, λ : BSpin → K(Z, 4),
and the second map s is projection onto the first term of the splitting defined
above. That is, s ◦ (E2(λ)) is a surjection. Since there are no differentials in the
Adams spectral sequence for π∗ ko∧BSpin, therefore π∗ ko∧BSpin surjects onto N ,
and we know N surjects onto N/(d∗M) = π∗ ko ∧ K(Z, 4). This will imply that
π∗ ko ∧ BSpin surjects onto π∗ ko ∧K(Z, 4), once worked out at each prime.

The induced map λ∗ : H∗(K(Z, 4);F2)→ H∗(BSpin;F2) is an injection on mod
2 cohomology, sending ι to w4. Since the cohomology of K(Z, 4) is a polynomial
algebra with generators given by Steenrod operations on ι, therefore the homomor-
phism λ∗ is determined by the value λ∗ι, which can be computed with knowledge
of the ring structure of H∗(BSpin;F2) and the action of Steenrod operations.

The induced map Ext(λ) is easy to compute. Ext(K(Z, 4)) is a direct sum of
Ext(M) and Ext(N) where N supports a differential. Our result will follow from
showing that Ext(λ) surjects onto Ext(M) and that there are no differentials in the
spectral sequence computing π∗ ko∧BSpin.

In fact, the map is surjective on 2-torsion spin bordism as a consequence of the
differentials in the spectral sequence for K(Z, 4). First, the Z-tower in dimension
13 cannot survive the spectral sequence, because if it did it would imply that the
13th spin bordism group of K(Z, 4)is nonzero rationally. This can be easily seen to
be false, by because rational homotopy of spectra is equal rational homology, which
is nonzero only in degrees 4n by the Künneth formula. This has the upshot that
the Z-tower in 13 supports a differential. A more precise description will follow in
section 3.

3. Manifold generators

In this section, we will determine an explicit set of manifolds with bundles that
generate the spin bordism of BSpin through dimension 15 and whose image gener-
ates the spin bordism of K(Z, 4), all after localization at 2. Because of the connec-

tivity of the maps Â : MSpin → ko and λ : BSpin → K(Z, 4), therefore ko-theory
may serve as proxy for spin bordism throughout. The proof that these manifolds
generate at all primes, hence over Z, will be completed in the odd primes section.

To better explain the interplay between the algebra and the geometry at work in
these arguments, we start with two warm up cases: the ko-theory of a point, and
then ko4 for BSpin. The second case is identical for any other 3-connected space
X with π4X ∼= Z.
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This interplay between manifold theory and algebraic topology is first realized

in the following coincidence. First, for any spin 4-manifold, the Â-genus is an even
integer. Second, the map on spectra defined by comlexification, ko → ku, induces
multiplication by 2 on the homotopy group π4. These two factors of 2 are identical
in a fundamental way.

This analogy is a consequence of the ko-orientability of spin bundles, which one

may think of as a lift of Â from being valued in complex K-theory to being real K-
theory valued. This subsumes Rohklin’s theorem for spin 4-manifolds, and further

proves that the Â-genus is even for all spin 8n+ 4-manifolds, and takes all integer
values for spin manifolds of dimension 8n. One vehicle for expressing this is the
Adams spectral sequence, which allows a more general relation between the Adams
filtration of bordism groups and the invariants used to measure the groups.

As described in the previous section, the spectrum cohomology of ko allows one
to compute the value of π∗ ko∧ as being:

0 4 8 12
0

2

4

6

8

We have a map induced on Adams spectral sequences to that of connective
complex K-theory, ku∗:

0 4 8 12
0

2

4

6

8

This map is an isomorphism in dimensions divisible by 8, and multiplication by
2 in dimensions equivalent to 4 modulo 8 since, e.g., the Z-tower in dimension 4
for ko starts in Adams filtration 3 and maps to h0 applied to the generator of the
Z-tower in ku starting in Adams filtration 3. (Note: h0 is an operation induced by
Sq1 and it corresponds to multiplication by 2 in the target of the spectral sequence.)

Thus we can see that the Â-map has ‘slope’ 1/2 as realized in the Adams spectral
sequence. This allows the interplay of certain geometric versus algebraic facts.
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Consequently, to represent elements generating ko4n as manifolds in the preimage

of the Â-map, we need only pick a spin 4-manifold M such that
∫
M
Â4 = ±2 and

a spin 8-manifold B such that
∫
B
Â8 = ±1. An example of the first manifold is

a K3 manifold, a degree 4 hypersurface in CP3. An example of the second can
be constructed as follows: plumb together sphere bundles according to the Dynkin
diagram of E8; take connect sums until the boundary is no longer an exotic sphere;
finally, glue on a disk smoothly along the boundary S7 to obtain a compact closed 8-
manifold. The resulting manifold is called the Bott manifold, since taking products

with it represents real Bott periodicity in the image of the Â-map.
Now, having discussed this intersection of the geometric and algebraic perspec-

tives in the case of a point, we turn to the second case, of π4 ko∧BSpin ∼= π4 MSpin∧
BSpin. As computed by the Adams spectral sequence, π4 MSpin∧BSpin ∼= Z. The
mod 2 cohomology of BSpin is generated by w4, and thus evaluating the Kronecker
pairing 〈[M ], w4(V )〉 gives an isomorphism between Z/2 and the mod 2 spin bordism
of BSpin. To explicitly lift this invariant to an integral giving an the isomorphism
π4 MSpin ∧ BSpin → Z is equivalent to lifting the mod 2 cohomology class w4 to
an integral cohomology class. It is easy to check that λ is an integral lift of w4.

Therefore, the isomorphism π4 MSpin∧BSpin→ Z is given explicitly by taking
the integral

∫
M
λ(V ) over the spin 4-manifold M . Thus, a pair (M,V ) generates

π4 MSpin ∧ BSpin if and only if λ(V ) generates H4(M ;Z). It suffices to take the
manifold M to be S4, and the bundle V to be pulled back from BSpin by picking
a map generating π4BSpin ∼= Z. Alternatively, this bundle can be constructed in
terms of the tautological bundle over HP1 ∼= S4.

3.1. π8 MSpin ∧ BSpin. Again, π12 ko ∧ BSpin ∼= Z3. The invariants in Ext are
induced by the classes w2

4, 1
4w4v

2
1 , and w8. These invariants must now be interpreted

geometrically as integrals on manifolds. Our first step is to relate these invariants
to the Z-towers in the spectral sequence: This is crucial, because then the Adams
filtration in which the towers begin will then bound the values that the resulting
integrals.

In the absence of differentials, as is the case here, there is a straightforward rela-
tion between the Q0-homologies in H∗(BSpin;F2) and the homomorphisms giving
an isomorphism (π∗ ko ∧ BSpin)(2) → Zn(2). We need only two ingredients, the

Hurewicz homomorphism and the Künneth formula.
Take a minimal CW complex structure for the space BSpin. Denote the n-

skeleton BSpin(n), and consider the cofiber sequence BSpin(7) ↪→ BSpin(8) →
BSpin(8)/BSpin(7). BSpin(8)/BSpin(7) is 7-connected, and onH8(BSpin(8)/BSpin(7))

injects into H8BSpin(8). Identify w8 and w2
4 in H8(BSpin(8)/BSpin(7)) by their im-

ages in H8BSpin(8).

π8 ko ∧ BSpin

〈w2
4,[M ]〉

��
〈w8,[M ]〉

��

π8 ko ∧ BSpin(8) // // π8 ko ∧ BSpin(8)/BSpin(7)

h

��
Z/2⊕ Z/2 H8(ko ∧ BSpin(8)/BSpin(7))

u⊗w2
4

oo
u⊗w8oo

11



where u is a Thom class in H0ko and u ⊗ w is a homomorphism of H8(ko ∧
BSpin(8)/BSpin(7)) identified with the class inH8(ko∧BSpin(8)/BSpin(7)) ∼= H0ko⊗
H8(BSpin(8)/BSpin(7)).

Essentially, this uses the fact that the Z-towers represented by theseQ0-homologies
start in Adams filtration 0, and thus are elements of Ext0 =Hom. The conclusion
is that these homomorphisms of the bordism groups are expressed in terms of co-
homology in such a way as to be comparable to the Adams spectral sequence.
Further refinement of these invariants obtains by lifting w8 and w2

4 to the integral
cohomology of BSpin. Integrating these integer cohomology classes will then give
a homomorphism to Z⊕ Z that is surjective after localization at 2.

The class λ lifts w2
4, and we can pick the invariant

∫
M
λ(V )2 as an integral

lift of 〈w4(V )2, [M ]〉. Lifting w8 requires a minor trick, which is to consider the
map Bi : BSU → BSpin. We know exactly how lift Stiefel-Whitney classes in the
cohomology of BSU. The formula for the total Pontryagin class, p = cc, implies that
Bi∗λ equals −c2 and that Bi∗p2 equals c22 + 2c4. Therefore Bi∗ 12 (p2 − (λ)2) = c4.
Since c4 reduces to w8 and Bi∗ is a monomorphism on the 8th cohomology group
with both integral and F2 coefficients, therefore 1

2 (p2− (λ)2) is an integral lift of w8

in the cohomology of BSpin, and the integral
∫
M
p2(V )− λ(v)2 lifts 〈w8(V ), [M ]〉.

Finally, we analyze the invariant in dimension 8 coming from the class w4, or
rather h0v

2
1 [w4], where h0v

2
1 is an element of ExtA(1)(F2;F2) ∼= π∗ ko. which [ABS]

shows is lifted integrally by Â4. Thus, the lift of the second invariant is given by
1
4

∫
M
λ(V )Â.

Now (after inverting odd primes, but this will prove unnecessary), we have
shown that the three integrals listed above geometrically define the isomorphism
π8 MSpin ∧ BSpin→ Z3.

Three manifolds together with bundles generate this group if manifolds together
with their invariants can be written in a 3x3 matrix which, over the integers, can
be made upper diagonal such the values of the diagonal entries are those dictated
by the Adams filtration that in which the relevant Z-towers.

Now, consider the manifolds HP2, CP1×CP3, and S8 together with the bundles
specified below.

To HP2, we assign the tautological bundle γ, oriented so that λ(γ) = u the
canonical generator of H4(HP2;Z). Together with the ring structure of HP2, this

gives the values of our three invariants:
∫
λ2 = 1,

∫
λÂ =...

To CP1 × CP3, we assign the bundle LL′ − L − L′, where L and L′ are the
canonical line bundles over each of projective spaces, and their first Chern classes
are minus the canonical generators of H2 for each of the spaces. Thus, its total
Chern class is (1− a− b)(1− a)−1(1− b)−1. Its total Pontryagin class is then given
by the product of the Pontryagin classes for each of the bundles,

p(LL′ − L− L′) = (1 + a2 + 2ab+ b2)(1 + a2)−1(1 + b2)−1

and since a2 = 0 and b4 = 0

p(LL′ − L− L′) = (1 + 2ab+ b2)(1− b2) = 1 + 2ab− 2ab3.

We can now compute the relevant invariants easily:
∫
λ2 = 0,

∫
λÂ =

∫
ab(−4b2/24) =

−1/6, and
∫

1
2 (p2 − λ2) = −1.

On S8, we consider the bundle V pulled back from BO by the generator of
π8 BSO ∼= Z compatible with a chosen orientation of S8. This can also be thought

12



of as the canonical bundle over the octonionic projective space OP 1 ∼= S8. Then
p(V ) = 1 + 2z, where z is the preferred generator of H8(S8;Z). One sees this by
looking at BString, the 7-connected cover of BSO or BSpin. w8 pulls back to a gen-
erator of H8(BString;F2). Then, since 1

2 (p2−λ2) reduces to w8 in the cohomology
of BSpin, therefore their respective pull backs are so related in the cohomology of
BString. The final piece of the argument is to use the Hurewicz homomorphism:
since BString is 7-connected, π8 BString is isomorphic to H8BString. This com-
putes the characteristic classes of the bundle over S8 pulled back by this map: the
image of w8 generates H8(S8;F2) and its lift generates over Z.

These manifolds together with their invariants are summarized in the table be-
low, which shows that they do indeed generate the bordism group in question.

.
∫
w̃8

∫
λ2

∫
λÂ4

S8 1 0 0
HP2 -4 1 -1/12

CP1 × CP3 -1 0 -1/6

Since these elements generate the group π8 MSpin ∧ BSpin, this gives a new
proof of the previously known result that the integral∫

M

λ2 ± 12λÂ4 ∈ 2Z

takes only even integer values for any spin 8-manifold and spin bundle V with
λ = 1

2p1(V ).
Together with the surjectivity of the spin bordism of BSpin on to that of K(Z, 4)

in this dimension, this proves the also well known fact that for any spin 8-manifold
M and any 4-dimensional cohomology class x, then∫

M

x2 ± 12xÂ4 ∈ 2Z

or in other words, that for any spin 8-manifold M , λ(TM) is a characteristic element
of the bilinear form module H4(M ;Z). In the next section these methods extend
to deal with spin 12-manifolds.

3.2. π12 MSpin ∧ BSpin. The Adams spectral sequence in the last section gave
the computation that π12 ko ∧ BSpin ∼= Z6. From the construction of spectral
sequence coming from the direct sum decomposition of the cohomology of BSpin as
A(1)-modules, we can associate Z/2-invariants to each Z-tower that measure the
position of a manifold (representing a class in the target of spectral sequence) in
the respective Z-towers.

The invariants defined, coming from the Q0-homologies w4, w
2
4, w8, w

3
4, w

2
6, w4w8

in the cohomology of BSpin, can be lifted to integer invariants exactly by the
considerations of the previous section. These may be expressed by the integrals∫
λÂ8,

∫
λ2Â4,

∫
w̃8Â4,

∫
λ2,

∫
p3,

∫
λw̃8. We should note that p3 is an integral lift

of w2
6, a standard fact about the cohomology of BO that pulls back to BSpin.

The fact that Q0-homologies for BSpin lift to integer invariants, in contrast to
K(Z, 4), facilitates these sorts of arguments in the spectral sequence. An additional
convenience is the last of differentials in the Adams spectral sequence computing
π∗ ko ∧ BSpin. The differentials for K(Z, 4) significantly complicate the process
of relating the Adams filtration to bounding values of integral; nonetheless, this is
doable in cases, and was the approach in [Fr].
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The manifolds listed in the following table will generate the 2-local spin bordism
of K(Z, 4). As a consequence, their images under the map λ generate the 12th spin
bordism group of K(Z, 4), 2-locally. In the last section of this paper, we will prove
that they also generate p-local spin bordism group of K(Z, 4) for odd p, and hence
they generate over this group over Z.

.
∫
λw̃8

∫
w̃8Â4

∫
λ3

∫
p3

∫
λ2Â4

∫
λÂ8

(HP1 × S8, γ × f) 1 0 0 2 0 0

(CP1 × CP5) 0 −1/4 0 2 0 9/24 · 5
(HP3, γ) 0 0 −1 0 −1/6 −1/2 · 32 · 5

(CP3 × CP3) −1 2/3 1 −2 0 1/23 · 3 · 5
(HP2 ×K3, γ) 0 6 0 0 2 −1/6
(HP1 ×B8, γ) 0 0 0 0 0 1

(V,L) 3 −1/3 1 −4 −1/6 −1/18

Here, the manifold V is a Milnor manifold, a hypersurface of bidegree (2, 1) in
the product of projective spaces CP3 × CP4. The bundle L on V is the restriction
of the bundle LL′ − L− L′ on CP3 × CP4.

The invariants above are listed in order of ascending Adams filtration: 0, 0,
0, 1, 3, 4. In order for a list of manifolds to generate the group, lower filtration
invariants should vanish on the manifolds generating the Z-towers starting higher
filatrion. More concretely, one should be able to write the values of the manifolds as
an upper triangular matrix such that the diagonal values are exactly those dictated
by the Adams filatration of the associated Z-tower. Again, these values can be

determined by comparison of the behavior of Â on ko∗. Thus, the invariant
∫
λ3

must take value 1 on the manifold generating its associated Z-tower, since that
Z-tower starts in Adams filtration 1. Likewise,

∫
λw̃8 must take value 1/4 on the

manifold generating its associated Z-tower.
In order to verify that a subset of the manifolds above generate (π12 MSpin ∧

BSpin)(2), we take the following linear combinations. One can easily verify that the
diagonal values are exactly those proscribed the filtrations in the Adams spectral
sequence.

.
∫
λw̃8

∫
w̃8Â4

∫
λ3

∫
p3

∫
λ2Â4

∫
λÂ8

HP1 × S8 1 0 0 2 0 0

CP1 × CP5 0 −1/4 0 2 0 9/24 · 5
HP3 0 0 −1 0 −1/6 −1/2 · 32 · 5

V − 3HP1 × S8 − 4
3CP1 × CP5 + HP3 0 0 0 −2 · 19/3 −1/3 −13/22 · 4 · 5

HP2 ×K3 0 0 0 0 2 −1/6
HP1 ×B8 0 0 0 0 0 1

Together with the results of the final section, we have the following:

Theorem 1. The manifolds with bundles listed above generate the 2-local ko-

homology of BSpin. Under the image of the map Â∧λ, the manifolds S4×B8, HP2×
K(Z, 4)3, V, CP3 × CP3, and HP3 generates π12 ko ∧K(Z, 4) integrally.
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4. Surjectivity and integrality

We can put the results above to work to understand several things about spin
manifolds equipped with 4-dimensional cohomology classes. Firstly, we have used
algebra to give conditions sufficient for a set a manifolds with 4-classes to generate
the ko-theory of K(Z, 4). However, we did not resolve the issue of differentials in this
spectral sequence. By reapplying some geometry, coupled to standard homological
algebra, we can resolve the exact images of the differentials in terms of manifolds,
providing a concrete hold on the low dimensional ko-theory of K(Z, 4).

A consequence of knowing explicit generators, as explained in the introduction,
is that it allows the proof of integrality theorems simply by checking them on
that generating set. Thus, another corollary of the work of the last section is the

computation of all integrality theorems for integrals of the form
∫
P (x)Â previously

mentioned. One may ask for more, however, by wanting the integral to not just be
an integer, but also the index of a differential operator. The surjectivity of the spin
bordism of BSpin on to the spin bordism of K(Z, 4) allows for such a result. We
show using standard homotopy that when the 4-class x is equal λ of a spin bundle,
then the integer-valued integral expresses the index of an operator. Thereby, a spin
manifold with a 4-class may be moved through a cobordism, preserving the 4-class,
to a spin cobordant manifold whose associated 4-class is λ of a spin bundle, and
for whom the integrals express indices.

4.1. The differentials for kon<16 K(Z, 4) and Stong’s theorem. Rational sta-
ble homotopy theory provides a quick argument showing that the Z-tower in dimen-
sion t− s = 13 necessarily supports a differential. As a functor on spectra, rational
homotopy is canonically identical to rational homology, i.e., πQ∗ ∼= HQ∗, which can
be proved just by checking on spheres. (The argument proves more generally that,
Q-locally, all spectra split as a wedge sum of ∨ΣiHQ.) Since rational homology
satisfies a Kunneth formula, which facilitates a quick computation for our case:

(π∗ ko ∧K(Z, 4))⊗Q ∼= HQ∗(ko ∧K(Z, 4)) ∼= HQ∗(ko)⊗HQ∗(K(Z, 4))

and therefore in the ko-theory of K(Z, 4), Z’s occur only in degrees 4n.
Thus the Z-tower in t−s = 13 cannot survive the spectral sequence. Additionally,

it must support a differential, since there is no Z-tower in dimension 14 to map into
it. While rational stably homotopy does not help in determining the order of the
differential, together with knowledge of spin manifolds and their rational invariants,
it can tell us what the image is exactly up to multiplication by a power of 2.

By our computations with BSpin, we found a list of manifolds that generate
π12 ko ∧ BSpin and whose image under the map λ generated π12 ko ∧ K(Z, 4). In
fact, the subset of these associated to the invariants involving λ suffice to generate
π12 ko∧K(Z, 4). We can thus choose HP3,CP3×CP3,HP2×K3, andS

4×B8, which
generate the group 2-locally. (Since this differential occurs at 2, we can ignore odd
prime factors.)

Our rational Kunneth formula proved that fact that π12 ko∧K(Z, 4)⊗Q ∼= Q3.
We can think of this isomorphism as being defined by evaluating the integrals∫
x3,

∫
x2Â4,

∫
xÂ8 on an element of π12 ko ∧ K(Z, 4) represented by an element

(M,x). By evaluating these rational invariants on the four chosen elements of our
generating set, we may find some linear combination of these four elements such all
of the rational invariants vanish. This linear combination would therefore represent
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a torsion class in π12 ko∧K(Z, 4), and therefore some 2i multiple of it is the image
of the differential supported by the Z-tower in dimension 13.

We have already computed the values of these invariants on these manifolds, and
therefore can check that

23 · 32 · 5(HP3 − CP3 × CP3) + 2 · 3 · 5(HP2 ×K3) + 11(S4 ×B8)

evaluates to zero under all three of the rational invariants. The factors of 2 involved
imply that this combination represents an element in Adams filtration 4, and it
contains the generator for the Z-tower beginning in Adams filtration zero. Next we
will show by algebraic means that the differential must be a d2, of order 2. This
will imply, for instance, that π12 ko ∧K(Z, 4) is isomorphic to Z3, i.e., it is torsion
free.

The order of the differential is determined by the order of the Bockstein β2i
such that β2i(Sq

2ι)2 is nonzero. Here the Bockstein is defined as the connecting
homomorphism in the long exact sequence of cohomology groups induced by the
short exact sequence of coefficients: Z/2 ↪→ Z/2i → Z/2i−1. Thus, if b and c
are integer singular cochains such that δ(c) = 2ib, where δ is the coboundary
differential, then the Bockstein has the property that β2i [c] = [b]. Note that β2 =
Sq1.

By our rational homotopy argument (Sq2ι)2 cannot lift to a nontorsion class,
and therefore there exists a Bockstein of some order on which it is nonzero. This
can be determined as follows:

Since Sq1(Sq2ι)2 is equal zero, this implies that the class lifts to a class in mod
4 cohomology. The mod 4 lift of this class may be represented by the Pontryagin
square P(Sq2ι), where here P denotes the family of nonadditive cohomology op-
erations of type (n,Z/2; 2n,Z/4) defined on integer cochains in terms of the cup-i
product,

P(x) := x ` x+ δx `1 x

where this cup-1 product x `1 y is expressed on integer cochains by a choice of
cochain homotopy between x ` y and y ` x.

One can compute which order Bockstein is nonzero on P by checking the power
of 2 in the evaluation of the coboundary δ on P(x) where x is an integer cocycle
whose reduction mod 2 represents the cohomology class Sq2ι. We can further pick
an integer cocycle lift y for Sq3ι by 2y = δx. Therefore

δP(x) := δ(x ` x) + δ(δx `1 x)

= 2δx ` x− δx `1 δx = 4y ` x− 4y `1 y

and thus the cocycle y ` x − y `1 y represents the class β4P(Sq2ι). Since
generally Sq2ny2n+1 can be defined by the cup-i product y2n+1 `1 y2n+1, which
proves that:

Lemma 1. For x a 2n-dimensional integer cocycle, then β4P(x) = Sq1(x) `
x+ Sq2nSq1x

And in the specific case of x = Sq2ι, therefore

β4P(Sq2ι) = Sq1(x) ` x+ Sq6Sq1x

= Sq3ι ` Sq2ι+ Sq6Sq3ι
16



and this allows the determination of the order of the differential in the Adams
spectral sequence.

This determination happens by a general relation between differentials in the
Bockstein spectral sequence and those in Adams spectral sequence: the composition
PSq2 defines a map of Eilenberg-MacLane spaces K(Z, 4)→ K(Z/4, 12) and thus a
natural map of the ko-theory Adams spectral sequences, ExtA(1)(H

∗K(Z, 4);F2)→
ExtA(1)(H

∗K(Z/4, 12);F2), commuting with the differentials.
The beginning of the E2 term of this spectral sequence for K(Z/4, 12) is given

by the same techniques used earlier for K(Z, 4). Through dimension 14, the mod 2
cohomology of K(Z/4, 12) breaks up as an A(1)-module direct sum as A⊕S where S
is a 1-dimensional module in dimension 13, and A consists of the generator in degree
12 and the nonzero element Sq2 on it. The generalized Hurewicz homomorphism
gives and isomorphism π12 koK(Z/4, 12) ∼= π12K(Z/4, 12) ∼= Z/4, so this dictates
the degree of the differential supported on the Z-tower in dimension 13: it is a d2.

By naturality, the d2 differential computing the 12-stem for ko ∧ K(Z/4, 12)
commutes with that for ko for K(Z, 4). Therefore that differential is also a d2. By
the manifold theory used earlier, the image of that differential can therefore be

represented by the Â-image of that linear combination manifolds. This proves:

Theorem 2. The 12th ko-homology group of K(Z, 4) is torsion free, and thus there
is an isomorphism π12 ko ∧K(Z, 4) ∼= Z3 given by the preceding integrals.

This differential implies a lower-dimensional differential that completes the com-
putation of the ko-theory of K(Z, 4) in this range, originally done by Stong. To-
gether with the Anderson, Brown, Peterson splitting of MSpin, this gives that
MSpin10K(Z, 4) ∼= Z/2⊕ Z/2 and MSpin11K(Z, 4) ∼= 0.

Here, we relate the differential computing the 12-stem to a lower differential by a
Massey product. Intuitively, one should think that the relation between the differ-
entials comes from the multiplicative structure on the spectral sequence. However,
because of the nature of the ‘question mark’ as an A(1)-module, the ring struc-
ture has been ‘forgotten’ in low degrees. However, there is a Massey product that
‘remembers’ this information, and the differentials are derivations with respect to
these Massey products.

More accurately, we have the following purely homological fact, which can checked
manually in the bar complex:

Lemma 2. In Exts,tA(1)(F2,F2), η = 〈h21, h1, h0〉.

We obtain the following picture.

0 4

0

2

4

h0 h1

h21

〈h21, h1, h0〉
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This allows us to use that the differentials in the Adams spectral sequence are
derivations with respect to the action of Exts,tA(1)(F2,F2): the computation with the

Bockstein in dimension t − s = 13 then implies the lower differential, as pictured
below.

0 4

0

2

4

h0
h1

h21

a

h1a

〈h1a, a, h0a〉

〈h21, h1, h0〉

4.2. Integrality theorems. The Massey product argument of the last section
proves the 2-local surjectivity of ko∗λ in this range of dimensions. As a result of

[ABP], the map Â : MSpin → ko is 8-connected. From basic cohomology compu-
tations, the map λ : BSpin → K(Z, 4) is also 8-connected. Thus, in conjunction
with the results on the surjectivity of ko-homology at odd primes proved in the
final section, this provides the following theorem:

Theorem 3. For any M be a spin manifold of dimension less than 16, there exists
a spin manifold N and a spin bundle V → N with λ(V ) = y and such that (N, y)
represents the same element as (M,x) in π∗ MSpin ∧K(Z, 4).

Equivalently, one could say that for any spin manifold M , dim less than 16,
equipped with a 4-class, one can move M through a spin cobordism preserving the
4-class to another manifold N such that the map x lifts to BSpin. In other words,
if we work only up to cobordism, every four dimensional cohomology class of a spin
manifold is half the first Pontryagin class for a spin bundle over that manifold.

Using our knowledge of explicit generators, we may now determine all polyno-
mials P which satisfy an integrality result of the form: for any spin n-manifold M
equipped with an integral 4-class x, the integral∫

M

P (x)Â

is an integer. The following table of manifolds provides these results
18



*
∫
M
x3

∫
M
x2Â4

∫
M
xÂ8

HP3 1 −1
2·3

1
2·32·5

HP2 ×K3 0 2 -1/6
S4 ×B8 0 0 -1
V2,1 1 -1/6 -1/18

CP3 × CP3 1 0 1
22·32

This provides the following formulas simply by checking on generators:

Theorem 4. For M any spin 12-manifold and x an integral closed 4-form, then
the following integrals ∫

M

1

3!
x3 ± 3x2Â4 + 30xÂ8

180

∫
M

xÂ8 =
1

23 · 3

∫
M

x(7p21 − 4p2)

6

∫
M

x2Â4 =
−1

4

∫
M

x2p1

take only integer values. Here pi denote the Pontryagin classes of the tangent bundle
of M .

Several other results for spin manifolds along these lines may be found in [Fr].

5. Spin bordism at odd primes

To complete the proofs of the results stated in the last section, it remains to show
that through the given range the spin bordism of BSpin still surjects onto that of
K(Z, 4) after completion at odd primes. The reason this happens is somewhat
different than the reason at the prime 2. At 2, the cohomology of K(Z, 4) injects
into that of BSpin. At odd primes p, the cohomology of K(Z, 4) never injects into
that of BSpin, since BSpin has no odd torsion.

Nonetheless, our previous approach still applies. We use the Adams spectral
sequence with input the Fp cohomology of MSpin and K(Z, 4) or BSpin. The
map induced by λ on Ext is again computable by the map H∗λ, likewise a conse-
quence of the action of the Steenrod operations in the Fp cohomology of BSpin. To
understand spin bordism through this range of dimensions, it again suffices to un-
derstand a simple summand in a splitting of MSpin: For each p odd, there is a map
ko→

∨
0≤k≤ 1

2 (p−3)
Σ4kBP 〈1〉 that is a homotopy equivalence after localizing at p.

Here BP 〈1〉 is the Johnson-Wilson spectrum, constructed from the Brown-Peterson
spectrum BP by killing the higher vi. The spectrum cohomology H∗(BP 〈1〉;Fp)
is equal Ap//E[Q0, Q1], so using the Adams spectral sequence to compute ko we
again have a hom-tensor interchange to simplify the E2 term:

ExtAp
(A//E[Q0, Q1]⊗H∗(K(Z, 4);Fp),Fp)

∼= ExtAp((A⊗E[Q0,Q1]Fp)⊗H
∗(K(Z, 4);Fp),Fp) ∼= ExtE[Q0,Q1](H

∗(K(Z, 4);Fp),Fp)
and the relative simplicity of this exterior algebra relative to A(1) greatly eases the
necessary computations.

The Fp-cohomology of both spaces is well known, the E[Q0, Q1] module structure
easily computed. After completion at an odd prime, BSpin is homotopy equivalent
to BSO after localization at any odd prime, and therefore its Fp-cohomology is a
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polynomial algebra on the mod p reductions of the Pontryagin classes. Since all
cohomology is in even degrees, and the degree of the primitives is odd, therefore
the module structure is trivial. The Fp cohomology of K(Z, 4) was computed by
Serre and is well known, if complicated. The action of the Milnor primitives is a
computable consequence of the Adem relations.

5.1. Exts,tE[Q0,Q1]
for BSpin and K(Z, 4). In this section we compute p-local ko-

theory for BSpin and K(Z, 4), through dimension 14. The computation is quite
simple, once the basic facts have been cited. Simply by writing out a minimal
resolution of F2 by free E[Q0, Q1], it is easy to compute by hand Exts,tE[Q0,Q1]

(Fp;Fp).
The result is simply Z-towers in dimensions (2p− 2) · n, so for p = 3 we have:

0 4 8 12 16 20 24
0

2

4

6

8

This is the E2 term of the Adams spectral sequence computing the 3-completion
of BP 〈1〉∗ the BP 〈1〉-theory of a point, and the spectral sequence. Since the map
ko→ BP 〈1〉 is a 3-local homotopy equivalence, this spectral sequence also computes
the 3-completion of ko∗. Since the spectral sequence can have no differentials, this
unsurprisingly implies that (ko∗)

∧
3 consists of copies of Z3 in dimensions divisible

by 4.
For p = 5, we can similarly compute BP 〈1〉 by hand resolving Fp by a minimal

or bar resolution of projective (i.e., free) E[Q0, Q1]-modules. At p = 5, the Milnor
primitive Q1 has degree 9, which results in the Z-towers being spaced in every 8
dimensions. We have:

0 4 8 12 16 20 24
0

2

4

6

Since there is a 5-local homotopy equivalence ko → BP 〈1〉 ∨ Σ4BP 〈1〉, the
spectral sequence computing ko of a point at 5 consists of a direct sum of the term
above with another copy whose dimension has been shifted by 4. This looks like:
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0 4 8 12 16 20 24
0

2

4

6

Again, there are no differentials in this spectral sequence, so it verifies what we
already knew, that (ko∗)

∧
5
∼=

⊕
Σ4iZ5.

To return to the issue of computing the p-complete ko-theory of BSpin: since
the Qi act as zero on the cohomology H∗(BSpin;Fp), as an E[Q0, Q1]-module it is
a direct sum of suspensions of trivial modules, one for each cohomology class pni .
Ext for these modules was exactly what was computed above, so we have thereby
computed (π∗ ko ∧ BSpin)∧p for p odd. For p = 3, and through 15 dimensions, this
is:

0 4 8 12

0

2

The computation for (π∗ ko∧BSpin)∧5 , which we omit for the sake of brevity, is
virtually identical, except easier.

Considering primes greater than 5, the Z-towers through dimension 15 all lie in
Adams filtration zero. More precisely, at the prime p the first Z-tower in Adams
filtration greater than zero occurs in t− s = 2p+ 2, which is same degree as if we
were considering a 4-sphere S4 instead of BSpin. This has the consequence that
the p-local 14-skeleton of K(Z, 4) is summand of the p-local 14-skeleton of BSpin
for p greater than 5. Therefore, the spin bordism of K(Z, 4) is a p-local summand
of the spin bordism of BSpin through dimension 15 for p greater than 5. Thus, to
prove surjectivity at 3 and 5 is the only remaining part of the proof.

We can now turn our attention to the slightly more intricate case of π∗ ko ∧
K(Z, 4) at 3 and 5. The cohomology of BSpin has a trivial E[Q0, Q1]-module
structure, but this is not at all the case for K(Z, 4). Using the usual formula
for the cohomology of K(Z, 4) in terms of admissible sequences given by Serre,
the E[Q0, Q1] action can be compute using the odd prime Adem relations, using
that Q0 = β and Qi+1 = [Qi, P

i+1]. In low dimensions, H∗(K(Z, 4);F3) has the
structure:
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The picture above shows the decomposition of the cohomology as a module,
showing the modules starting in dimensions less or equal 13. The computation of
Ext is then equivalent to the direct sum of Ext for each of the submodules:

0 4 8 12

0

2

Likewise, doing the computations at the prime 5 give the spectral sequence:

0 4 8 12

0

2

Before dealing with the issue of the map between the induced map on the spectral

sequences, we verify that the Â-images of the spin manifolds listed in section 2 do
indeed generate the ko-homology of K(Z, 4) not only after inverting odd primes, but
also integrally. Due to the lack of differentials in the odd prime spectral sequence in
this range of dimensions, the verification is purely algebraic: one need only check
the degree of Adams filtrations and the value of the associated invariant on the
candidate manifold. At the prime 3, for instance, the Z-tower in t− s = 8 coming
from the Q0-homology ι sits in Adams filtration zero, and a spin manifold (M,x)

sent to the bottom of that tower must take value
∫
M
xÂ4 = 1/3, modulo factors of

other primes. However, since
∫
CP3×S2 abÂ4 = −1/6, our generating set of manifolds

for the prime 2 also works after completion at 3, giving the following:

Proposition 1. The elements (CP3×S2, ab), (HP2, y) generate the group (π8 ko∧
K(Z, 4))⊗ Z3.

Likewise, examining the Adams filtrations in which the Z-towers in t − s = 12
begin, a spin manifold sent to the bottom of the Z-tower starting in Adams filtration

1 should take value 1/3 on the invariant
∫
M
xÂ8 (modulo factors of other primes)

and value 0 on the two other invariants,
∫
M
x2Â4 and

∫
M
x3. This is precisely the

case of (HP3, u) − (V2,1, ab). Similarly, (HP3, u) and (CP3 × CP3, ab) − (HP3, u)
generate the Z-towers starting in filtration 0. (The cohomology classes are those
specified in section 3.)
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Proposition 2. The elements (CP3 × CP3), (HP3), (V2,1) generate the group
(π12 ko ∧K(Z, 4))⊗ Z3.

Similar considerations for the Z-towers at the prime 5 give:

Proposition 3. After completion at the prime 5, the elements (V2,1, vw), (HP3),

(CP3 × CP3) generate the homotopy group π12 ko ∧K(Z, 4).

Now, to turn to the issue of surjectivity from BSpin to K(Z, 4). For BSpin the
prime 3, the Z-tower in t− s = 8 starting in Adams filtration 1 maps to h0 of the
corresponding Z-tower in the spectral sequence for K(Z, 4), which starts in Adams
filtration 0. Thus, surjectivity for this group is determined by where the other
Z-towers in t− s = 8 in the BSpin spectral sequence map to in the K(Z, 4) spectral
sequence. A similar question determines the issue of surjectivity in dimension 12,
as well as the issue of surjectivity at the prime 5 in dimension 12.

The behavior of the map H∗λ determines the value of Ext(λ) on these ‘extra’
Z-towers, and we compute both of these in the next section, completing the proof
of surjectivity.

5.2. The map ExtE[Q0,Q1](λ) and surjectivity. The action of the Steenrod op-
erations on H∗(BSpin;Fp) completely determines H∗λ, as is the case with all maps
whose target is an Eilenberg-MacLane space. At the prime 2, this is easily com-
puted by the Wu formula. At odd primes, an expression like the Wu formula is not
common knowledge, so we will explicitly compute the Steenrod operations using
basic combinatorics.

First, consider the inclusion of a maximal torus i : Tn → Spin(2n), n sufficiently
large. Modulo 2-torsion, the induced map on the cohomology of the classifying
spaces, Bi∗, pulls the Pontryagin classes back to the elementary symmetric functions
of the squares of the generators ti in H2(BT ;Z). These symmetric functions are
the invariants under the action of the Weyl group on the cohomology of BT . We
compute the action of the Steenrod operations in BT and then work backward to
get the action on BSpin. This is equivalent, e.g., to complexifying and then using
the splitting principle.

To compute a Steenrod reduced power P i on H∗BT is purely an issue of com-
binatorics. H∗BT is a polynomial algebra on generators in degree 2, tn. Directly
from the axioms for cohomology operations, we have that P 1ti is equal to tpn, where
p is the prime we are working at, and P itn is zero for i greater than 1. Since all
the nonzero cohomology lives in even degrees, all the Milnor primitives, the Qi, act
as zero.

The Fp cohomology of BSpin is a polynomial algebra generated by the mod p
reductions of the Pontryagin classes. Pulling these classes back to the cohomology
of BT , Bi∗p1 = e1 =

∑
t2n the first elementary symmetric function in the squares

of the tn. Therefore, we have: Bi∗P 1p1 = P 1Bi∗p1 = P 1e1 = P 1
∑
t2n = 2

∑
tp+1
n ,

where the last step is by the Cartan formula. Thus, for p = 3, P 1p1 is the inverse
image of 2

∑
t4n. Determining this is a purely combinatorial problem, to rewrite the

Newton polynomial s2(t21, . . .) in terms of elementary symmetric functions ei(t
2
1, . . .).

Since s2 = e21 − 2e2, we have that P 1p1 = 2p21 + 2p2 at the prime 3. To compute
P 1pn at the prime p is likewise the purely combinatorial question of rewriting the
Newton polynomial 2s1,...,1,p+1/2 (where there are n− 1 1s) in terms of elementary

symmetric functions ei. Thus, P 1p2 is the inverse image of 2s1,2. Since s1,2 = e1e2
mod 3, therefore P 1p2 = 2p1p2 at the prime 3.
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At the prime 5, P 1 has degree 2(5−1) = 8, and P 1t2n = 2t6n. Therefore computing
P 1p1 is equivalent to rewriting 2s3 in terms of the ei. The answer, mod 5, is that
P 1p1 = 2(p31 + p1p2 − p3).

This is all the knowledge required to compute the map Ext(λ) between BSpin
and K(Z, 4) at all primes through 12 dimensions. Standard homological algebra
supplies the relation between the map on cohomology and the map on Ext. That
is, given a map of graded modules over the exterior algebra E[Q0, Q1], from a
module M to a direct sum of trivial 1-dimensional modules ΣiS, there is a certain
automatic surjectivity. In the example of the mod 3 cohomologies below:
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The maps between the modules as given above (where the subset of element in
the top module, the cohomology of BSpin, are those computed to be the image
of K(Z, 4)), Ext of the direct sum of the 1-dimensional modules surjects onto Ext
of the module below (the cohomology of K(Z, 4)), simply by looking at the long
exact sequence on Ext coming from the associated short exact sequence of modules.
This completes the theorem at the prime 3, and the result at 5 is identical. Thus,
the action of the reduced powers on the cohomology of BSpin show that the extra
Z-towers in the Ext terms in degrees 8 and 12 pick up the extensions in Adams
filtration zero for K(Z, 4).

6. Notes

The methods used here are not at all special to spin manifolds, ko-theory, or
4-dimensional cohomology classes. One could imagine them having application to
prove integrality results for oriented manifolds, using the Laures-McClure L-theory
lift of the signature Sig : MO → L, or string manifolds, using the tmf orientation
of String bordism, σ : MString→ tmf.

The formulas in this paper are quite reminiscent of those in the index theorem,
since the leading coefficient of xn is (n!)−1. So it would be very interesting if
there were a similar multiplicative family of polynomials, like the Chern character
of line bundles, taking integer values on spin manifolds. The integral lifts of the
spin Wu characteristic classes satisfy a product formula, which is highly suggestive.
The method used here, however, becomes more difficult in dimension 16, in the
determination of spin manifold generators of ko16K(Z, 4).
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