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Abstract

This thesis studies integrals on 4n-dimensional spin manifolds M given
by integrating a closed integral differential 4-form against the Â-genus:
that is, integrals of the form

∫
M

xkÂ. The longer range goal, in analogy

with the Atiyah-Singer index theorem, is to show that
∫
M

P (x)Â is an
integer, for a specific P (x) a polynomial with leading term 1

n!
xn. A spin

manifold M together with an integral 4-form can be interpreted as an
element of the spin bordism of the Eilenberg-MacLane space K(Z, 4). The

Â-genus is induced by Atiyah-Bott-Shapiro orientation, Â : MSpin → bo.
By the Anderson, Brown, Peterson splitting of MSpin, this integral then
factors through the connective real K-theory of K(Z, 4). Using an Adams
spectral sequence, the thesis offers new proofs for such integrality in 8 and
12 dimensions.

1 Introduction

The goal of the work presented here is to use methods of stable homotopy
theory to show that on spin manifolds certain integrals take only integer values.
I relate certain analytic invariants of a manifold equipped with a specific 4-form
to objects in the realm of stable homotopy. Construing the Â-genus both as
the index of a Dirac operator and as a map from spin bordism to connective
K-theory allows the application of a fairly computable Adams spectral sequence
to these analytic invariants.

Historically, the notion of spin arose in two fundamental ways. First, in
studying representations of the Lie algebra of the special orthogonal group,
Elie Cartan discovered that there were certain “spin” representations of this
Lie algebra that were not induced by SOn but came rather from its double
cover, the spin group. Ten years later, in search of a relativistic theory of the
electron, Paul Dirac discovered the most basic case of a Dirac operator in order
to squareroot a Laplacian. Physicists then developed the notion of the spin
(i.e., intrinsic angular momentum) of subatomic particles and found that of two
basic types, fermions and bosons, bosons could be modeled on a vector bundle
whose structure comes from a representation of SOn, but fermions can only be
modeled by a spin structure on a space, i.e., a vector bundle whose structure
comes from a spin representation.

Mathematicians found this remarkable intersection of ideas even more en-
gaging for two reasons: first, a large class of operators could be realized as Dirac
operators on spinor bundles; and second, a large class of manifolds (“spin mani-
folds”) naturally admitted a spin structure (that is, the structure group of their
tangent bundle could be lifted from the orthogonal group to the spin group).
These spaces had already long been studied for purely geometric interest, and
the property of a manifold being spin has intuitive geometric meaning as a sec-
ond order notion of orientability. The old picture of orientability is that one
can say whether an n-dimensional person living on your space is right- or left-
handed. That is, a local orientation cannot be reversed by traveling through
your space. (If on a Möbius strip, for instance, a 2-dimensional man with a
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flag in what seems to be his right hand moves through the strip once and re-
turns to where he has started, the flag will then appear to be in his left hand.)
Technically, a space is orientable if the restriction of its tangent bundle to any
embedded loop is not twisted. Analogously, a space is spin if additionally the
bundle on any embedded surface induced by the tangent bundle is not twisted
(i.e., is a product of the tangent space and the surface). This is true, for in-
stance, of any orientable space for which every embedded circle and 2-sphere
can be contracted to a point. Examples include higher dimensional spheres, Lie
groups, projective spaces, hypersurfaces, and homogeneous spaces.

Atiyah and Singer, in studying the fundamental invariant of a Dirac op-
erator (the index), found that it had a topological rigidity. Their result, the
Atiyah-Singer index theorem, widely regarded as one of the great mathematical
achievements of the past century, asserts that the index may be computed from
purely topological data by integrating the Â-genus associated to a spinor bun-
dle against a specific polynomial in a differential 2-form (the Chern character).
Furthermore, it was found that the natural home of this index theory and the
Â-genus was in K-theory.

One facet of this result is that, for a 4n-dimensional spin manifold, inte-
grating the Â-genus against this polynomial yields an integer (as opposed to
just a rational number). This integrality is a deep topological fact about spin
manifolds.

One may ask the question whether there is not a similar integrality result
for differential 4-forms over a spin manifold. In analogy with the result for 2-
forms, one might like to produce polynomial functions with rational coefficients
λi in an integral 4-form x on a 4n-dimensional spin manifold, P (x) = ( 1

n!x
n +

λ1 x
n−1+ · · ·+λn−1x) such that when integrated over the manifold against the

total Â-class, Â =
∑
k Â4k, the result is an integer:

∫
M P (x)Â ∈ Z.

There exists a classical result of this form for 8-dimensional spin manifolds.
Recently, an expression for 12-manifolds was shown by Diaconescu, Moore, and
Witten using a particular low-dimensional coincidence. The exceptional Lie
group E8 has only one nontrivial homotopy group through 13 dimensions, which
is π3E8 = Z. This coincidence ends up meaning that an integral 4-form on a
space of dimension less than 13 classifies a vector bundle with structure groupE8

over that space. Using index theory particular to E8, in [6] and [16] Diaconescu,
Moore, and Witten prove an expression for 12-manifolds. This method, how-
ever, cannot generalize to higher dimensional manifolds because E8 has higher
homotopy groups.

The purpose of the present work is to formulate a homotopy-theoretic method
that will apply to higher dimensional manifolds, and using this method re-prove
these results for 8- and 12-dimensional spin manifolds.

A sequence of steps is required to reinterpret the problem in terms of homo-
topy. First, for a 4-form x on a 4n-dimensional spin manifold M , the integrals
we are interested in,

∫
M xiÂn−i, depend not on x specifically but only on the

cohomology class of x. Secondly, there is homotopy realization of cohomology as
homotopy classes of maps into Eilenberg-MacLane spaces. Thus, a spin manifold
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equipped with a 4-form gives an element in the spin bordism of the Eilenberg-
MacLane space that classifies 4-dimensional cohomology classes, K(Z, 4) (where
spin bordism is the relation given by saying that two spin n-manifolds are equiv-
alent if their disjoint union is the boundary of a spin (n+1)-manifold). Further,
this integral is an invariant of that spin bordism class. The spin bordism group
ΩSpin

∗ (K(Z, 4)) has an interpretation as a homotopy group, and the Â-genus can
be realized by a map from the spectrum representing spin bordism to the real
K-theory spectrum or the connective real K-theory spectrum. This allows the
application of powerful, but fairly technical, tools of homotopy theory, namely
the Steenrod algebra and the Adams spectral sequence.

It is surprising that these methods should be applicable to this problem.
Topology and homotopy first arose to attack problems in classical analysis:
Poincaré devised the foundations of modern topology not because he was espe-
cially interested in higher dimensional spaces themselves, but out of interest in
problems in celestial mechanics, where questions of the stability and periodicity
of planetary orbits can be answered by considering the topology of the higher
dimensional phase space of the mechanical system. Homotopy, likewise, was
born from the calculus of variations, when Lagrange considered maximization
problems over spaces of paths. Later generations of mathematicians, however,
decided that higher dimensional spaces and spaces of maps between spaces (and
their homotopy groups) were not just tools for analytic problems, but were
intrinsically interesting.

Over the past century topological notions have been essential in studying
analysis and particularly differential operators, but the technical tools of homo-
topy theory rarely come into play in addressing these sorts of questions. Homo-
topy theory applies most effectively to stable phenomena, meaning something
that can occur in any dimension or in large enough dimension. Most geometric
and analytic questions, in contrast, appear completely unstable. However, there
exists a history of approaching unstable problems by finding a relation to some
stable phenomenon, and then applying the tools of stable homotopy to solve the
equivalent stable problem. This is how Thom classified which manifolds are the
boundary of another manifold, and how Adams solved the question of vector
fields on spheres. The work of this thesis takes a similar form.

2 Preliminaries

The volume of background material that supports this thesis is considerable
and precludes complete treatment here. In particular, singular cohomology,
which assigns algebraic objects and homomorphisms to spaces and maps be-
tween spaces, is fundamental to the study. It is developed in the standard
textbooks. The reader’s knowledge of singular cohomology and topology will
be assumed throughout, but I will review the necessary homotopy theory and
properties of the Â-genus.

The mathematical machinery fundamental to the purpose and methods at
hand lies entirely in the mainstream of homotopy theory: particularly, the Steen-
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rod algebra and the Adams spectral sequence. The proofs of the fundamental
results concerning these tools of stable homotopy are found in the standard
texts. I will try to give a sense of how stable homotopy and its algebraic tools
work, omitting many of the technical details.

2.1 Vector bundles and spin structures

The special orthogonal group SOn of n-by-n self-adjoint matrices with determi-
nant one has fundamental group Z/2 (for n > 2). From the theory of covering
spaces, there then exists a simply-connected cover. Since SOn is connected,
this cover comes naturally equipped with a group structure of loops on SOn.
This group is Spinn. A vector bundle is orientable if the structure group can be
reduced from GLn to SOn. It is spin if there then exists a lift to Spinn.

A great asset of the theory of vector bundles is that the spaces that arise
naturally from the homotopic viewpoint have natural geometric structure. Un-
like most Eilenberg-MacLane spaces, which classify singular cohomology groups,
the spaces that classify vector bundle structures over a given base, Grassmann
manifolds, were of interest long before it was known that they possessed this
powerful homotopy aspect. I will elaborate.

Given a particular fiber bundle p : E → B with fiber F and a map f from
another space X into B, the pullback construction canonically constructs a fiber
bundle over X with the same fiber and structure group as that given over B,
given by the fiber product.

The total space of the bundle, f−1E = E ×B X , is defined as {(e, x) :
p(e) = f(x)}, and the map f−1p projects each point (e, x) onto its second
coordinate, x.

Homotopy enters into this world because of the following fact: up to isomor-
phism, the pullback bundle over X depends only on the homotopy class of the
map f in [X,B], not on the specific choice of the map. Further, maps which are
not homotopic lead to distinct fiber bundle structures on X . This intuitively
leads to the idea that for a given structure group and fiber, there may exist a
‘universal’ bundle by which we can construct all such fiber bundles as pullbacks.

For the case of vector bundles, the classifying space is the infinite Grassman-
nian of k-planes in R∞. The Grassmann manifold Gk(R

n+k) is defined to be the
space of k-planes in Rn+k, topologized appropriately. Thus, homotopy classes of
maps [X,Gk(R

∞)] are in one-to-one correspondence with isomorphism classes
of vector bundles over X (say, with a choice of inner product on the fibers so as
to reduce the structure group to On). By this correspondence, the problem of
classifying all vector bundles over a space is equated with a homotopy problem,
that of determining the homotopy classes of maps into a space.

A space BG is the classifying space for principal G-bundles if there exists
a fibration G →֒ EG → BG with EG contractible: we can show that the
infinite Grassmannian satisfies this property because of the following principal
Ok-bundle: Ok →֒ Vk(R

n) → Gk(R
n), where Vk(R

n) is the Stiefel manifold
consisting of orthonormal k-frames in Rn. There is a canonical map from the
Stiefel manifold to the Grassmann manifold defined by sending each k-frame to
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the k-dimensional subspace it defines. The fiber is exactly Ok, which is also the
structure group. By the inclusion of Rn into Rn+1, we derive maps Vk(R

n) →
Vk(R

n+1) and Gk(R
n) → Gk(R

n+1) which preserve the fiber Ok. Taking the
limit of this sequence produces a bundle Ok →֒ Vk(R

∞) → Gk(R
∞). By a

spectral sequence argument, the total space is contractible, which thus implies
that the infinite Grassmannian is the classifying space for the orthogonal group.
An analogous argument works for the special orthogonal group by considering
the oriented Grassmannian.

This notion of lifting the structure group to Spinn may not seem geometric.
Also, the equivalent notion via characteristic classes that we will deal with (that
the second Stiefel-Whitney class, w2, is zero), probably does not clarify matters,
despite its computational convenience. However, having a spin structure is very
geometric, and essentially constitutes a second order notion of orientability.
Where a bundle is orientable if the restriction of the bundle to any embedded
circle S1 is trivial, it has a spin structure if any map of a compact surface has
trivial pullback bundle. In the case that the base space is simply-connected,
then it is sufficient for the restriction of the bundle to an embedded 2-sphere to
be trivial. See [8].

While this is a nice geometric characterization, the helpful computational
perspective is that provided by characteristic classes, which will henceforth be
central to the work here.

The most direct ways to get at Stiefel-Whitney classes is as follows: the mod
2 cohomology of BOk (i.e., Gk(R

∞)) is a polynomial algebra on k elements.
Call them w1, . . . , wk, where wi has degree i, and with no polynomial relations
between them. A Rk-bundle ξ over a space X is classified by a map f : X →
BOk, and thus induces a map on mod 2 cohomology going in the opposite
direction f∗ : H∗(BOk;Z/2) → H∗(X ;Z/2). Then the Stiefel-Whitney classes
wi(ξ) of ξ are the images in H∗(X ;Z/2) of the generators wi of the classifying
space under the map on cohomology f∗ induced by the map f classifying the
vector bundle ξ. (References to the characteristic classes of a manifold refer to
the characteristic classes of the tangent bundle of the manifold.)

The Steenrod squares provide two other ways of getting at Stiefel-Whitney
classes: first, in terms of the Thom isomorphism and the action of the Steenrod
squares on the Thom class of the vector bundle; second, as the total Steenrod
square of the total Wu class. There is, further, an Euler class characterization,
which has the advantage of making clear the relation between Stiefel-Whitney
classes and the Chern and Pontryagin classes: for instance, for a complex vector
bundle the Stiefel-Whitney classes are the mod 2 reductions of Chern classes.
All of these approaches are done in [12].

For each vector bundle ξ over a base space X , there exist unique cohomology
classes wi(ξ) ∈ Hi(X ;Z/2) that satisfy:

(1) Naturality: Given ξ and η Rn-bundles and a commutative diagram:
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E(ξ)
f̃

−−−−→ E(η)

pξ

y
ypη

B(ξ) −−−−→
f

B(η)

where f̃ restricted to each fiber is an isomorphism. (In other words, f̃ is a
bundle map.) Then f∗(wi(η)) = wi(ξ).

(2) For η and ξ vector bundles over the same base space X , the Stiefel-
Whitney classes of their Whitney sum are given by the expression: wk(η⊕ ξ) =∑
i+j=k

wi(η)⌣ wj(ξ).

(3) For w the total Stiefel-Whitney class of the tangent bundle of the circle,
then w = 1. Also, if ξ is an Rn-bundle, then wi(ξ) = 0 for i > n.

It is further the case, and will be important for our purposes, for Stiefel-
Whitney classes (and also for Chern and Pontryagin classes) that w(η × ξ) =
w(η)w(ξ).

Definition 1. A vector bundle possesses a spin structure if its classifying map

can be lifted to BSpin. More geometrically, this is the case if the transition

functions can be defined by an action of the Spin group on the fibers compatible

with the action of the special orthogonal group.

It is a fact that a vector bundle ξ is orientable if and only if w1(ξ) = 0. ξ
admits a spin structure if and only if it is orientable and w2(ξ) = 0. For a proof
see [8].

These axioms characterize the Stiefel-Whitney classes uniquely. As men-
tioned, one way of realizing them is as the pullbacks of the generators of the
classifying space for vector bundles, but there exist other ways to construct
them: by the inverse of the Thom isomorphism on the action of the Steenrod
squares on the Thom class; by the total Steenrod square of the Wu class; and
as an Euler class.

2.2 Spin bordism, spectra, and Thom spaces

The machinery of algebraic topology seems most powerful and well suited to the
computation of stable homotopy groups. Stable homotopy, while an intricate
and fascinating world by itself, is perhaps not one into which a differential ge-
ometer or others interested in spin manifolds alone normally venture. However,
bordism theories are generalized homology theories, and thus admit techniques
of stable homotopy. This is an example of an important avenue of algebraic
topology, that of relating geometric phenomena (which is ostensibly unstable)
to stable phenomena.

A cornerstone of homotopy theory is the notion of a spectrum, due to Lima
and Whitehead. The usefulness of spectra comes from two fundamental facts
about homotopy classes between maps. First, for two spaces X and Y such
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that Y is n-connected and the dimension of X is less than 2n − 1, the set
of homotopy classes of maps [X,Y ] is stable, that is, naturally equivalent to
[ΣkX,ΣkY ]. (Here, Σ is the suspension operation, which takes the product
of a space with the unit interval and then collapses the boundary to points.)
This implies that for any two spaces, regardless of connectivity and dimension,
[ΣkX,ΣkY ] is stable for large k. The second fact is that looping and suspension
satisfy an adjoint relation : [ΣX,Y ] ∼= [X,ΩY ].

Furthermore, the set homotopy classes of maps between spaces, [X,Y ], can
come by a group structure in two ways: X may be the suspension of some other
space (this is why maps from spheres have a group structure), or Y can have
some continuous multiplicative structure (such as a topological group or loops
on some space). Where both of these conditions are met, the group structures
coincide. For this reason, stable homotopy has a group structure, whereas the
unstable homotopy classes of maps between arbitrary spaces need only be a set.

This leads to two different conceptions of a spectrum:

Definition 2. An Ω-spectrum E is a sequence of spaces with basepoint, Ei, and
based maps τi : Ei−1 → ΩEi that are homotopy equivalences.

Definition 3. A suspension spectrum K is a sequence of spaces with basepoint,

Ki, and based maps κi : ΣKi → Ki+1 that are homotopy equivalences.

These definitions are not equivalent. For example, the spheres obviously
form a suspension spectrum, but they are not an Ω-spectrum.

The original, and perhaps most important, example of an Ω-spectrum is that
made up of the Eilenberg-MacLane spaces K(Z, n). A space X is a K(G,n) if,

by definition, π∗X =

{
G if ∗ = n
0 otherwise

A fibration (e.g., a fiber bundle) F →֒ E → X induces a long exact se-
quence on homotopy groups. One of the most important examples of fibrations
in homotopy theory is the path space fibration, where the total space is the
contractible space of all paths in a space X (maps of the interval into X) and
the fiber is the space of all loops with fixed basepoint, ΩX →֒ PX → X that
if X is a K(Z, n). Since PX is contractible and its homotopy groups are zero,
then π∗X ∼= π∗−1ΩX . By considering the path space fibration for X = K(Z, n)
we see that ΩX is a K(Z, n− 1).

Eilenberg-MacLane spaces do not generally admit nice geometric represen-
tatives. That is, nice geometric spaces typically have many and complicated
higher homotopy groups. There are several exceptions in low dimensions: the
circle S1 is a K(Z, 1); infinite real projective space RP∞ is a K(Z/2, 1); and
CP∞ is a K(Z, 2).

These results are not hard to see. For instance the universal covering space
of S1 is R1, and it is a classical result of covering space theory that a map
X → Y lifts to the universal cover of Y if X is simply connected. Therefore,
all maps from higher dimensional spheres into S1 factor through R1, which is
contractible. Therefore the higher homotopy groups of S1 are zero.
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Following an argument similar to that we used to show that the infinite
Grassmannian is the classifying space for the orthogonal group, we can look at

the fibration Z/2 →֒ Sn
f
→ RPn, where f identifies antipodal points. There

is an obvious action of Z/2 on the fiber, which consists of 2 points and hence
may be identified with Z/2. We can then include Sn into Sn+1 as the equator,
and consider the limit of the sequence. S∞ is contractible, so from the long
exact sequence on homotopy we see that π1RP

∞ ∼= π0Z/2 ∼= Z/2, and the other
homotopy groups of Z/2 vanish, implying that they also do for RP∞. The same
argument works for CP∞. (This does not, however, work for HP∞, which has
higher homotopy and is therefore not a K(Z, 4).)

An important property of these spaces is that they classify singular coho-
mology. That is:

Theorem 1. There exist canonical isomorphisms Hn(X ;G) ∼= [X,K(G,n)] and
Hn(X ;G) ∼= colimkπn+kK(G, k) ∧X+.

Stable homotopy is a generalized homology theory, and we can see that this
definition is what we want because Sk ∧ X+ = ΣkX+, that is, smashing with
the k-sphere is exactly the same as taking the kth suspension. The definition of
a K(G,n) defines the space up to homotopy.

Similarly, a generalized cohomology theory E∗ is a functor which satisfies all
the Eilenberg-Steenrod axioms except the dimension axiom specifying E∗(pt.).

The Brown representability theorem states that for any such theory there
exists a spectrum which classifies it. Generalized (co)homology theories come
up in a variety of places, often very geometrically, and this result allows the
application of the tools of stable homotopy theory to be applied to their study.
For instance, complex K-theory can be thought of geometrically as stable iso-
morphism classes of complex vector bundles over a given base space, together
with Whitney sums and tensor products. Formulated this way the theory has
great geometric significance in a variety of problems concerning manifolds (such
as vector fields on spheres). The application of the spectrum approach to this
geometric theory is a deep combination of geometry and homotopy.

In the case of bordism theories, these spaces can be constructed quite ex-
plicitly from the classifying spaces of the (B, f)-structure as Thom spaces. [15]
is the standard reference for all of this material.

The Thom space of a vector bundle is the total space E with all vectors of
length greater than, say, 1 contracted to a point. Alternatively, it is the disk
bundle quotiented out by the sphere bundle, D(E)/S(E). If the base space
is compact, the Thom space is just the one-point compactification of the total
space.

The spectrum that represents spin bordism can be constructed this way:
there is a universal bundle with base space BSpin classifying spin bundles. By
taking the Thom space of the contractible total space ESpin, we get our Thom
spaceMSpin. The Thom spectrum can then be constructed based on this term,
and work of Thom shows that the generalized (co)homology theory defined by
this spectrum coincides with the original geometric bordism theory defined by
a (B, f)-structure.
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2.3 The Â-genus

A primary focus of topology is finding invariants of spaces that are reason-
ably computable and that behave nicely under basic operations on spaces (e.g.,
products). A genus is a particularly nice type of invariant: it is an invariant not
just of a manifold, but of the oriented bordism class of the manifold, and it is
additive under disjoint union and multiplicative under products. Every genus
can be given by as a multiplicative sequence. The Â-genus is defined by that

coming from the formal power series of
√
x

sinh(
√
x/2)

in terms of Pontryagin classes.

In dimensions less than 16, Â can be computed from the Pontryagin classes of
manifold by the following formulas.

Â4 =
−p1
24

Â8 =
7p21 − 4p2
27 · 32 · 5

Â12 =
−31p31 + 44p1p2 − 16p3

210 · 33 · 5 · 7

and the value of the Â-genus on a 4k-dimensional manifold M is

Â(M) =

∫

M

Â4k.

For any real vector bundle ξ, we can consider its complexification, i.e., we can
tensor each fiber with C to get a complex vector bundle over the same base space.
The complexification of a real bundle is its own conjugate bundle. This complex
bundle then has Chern classes ci(ξ ⊗ C). However, for any complex bundle ζ,
the Chern classes of the conjugate bundle ζ satisfy: ci(ζ) = (−1)ici(ζ). Thus for
ξ⊗C, which is its own conjugate bundle, ci(ξ⊗C) = ci(ξ ⊗ C) = (−1)i(ξ⊗C).
For i odd, ci(ξ⊗C) = −ci(ξ⊗C) implies that 2ci(ξ⊗C) = 0. That is, ci(ξ⊗C)
is 2-torsion for i odd. The total Pontryagin class of the real vector bundle ξ is
then given by p = cc.

This then gives the relation to the Stiefel-Whitney classes that pi ≡ w2
2i (mod 2).

If a manifold is spin then its first Pontryagin class is even.
For most of the manifolds of interest in this work, computing the Pontryagin

classes is fairly straightforward. For CPn, p(CPn) = (1 + u2)n+1 where u is
a generator of H2(CP2;Z), the first Pontryagin class of the tautological line
bundle. For quaternionic projective space, p(HPn) = (1 + y)2n+2(1 + 4y)−1,
and where y is the first Pontryagin class of the tautological SU2 bundle, a
generator of H4(HPn;Z). These results are done in [12].

For a hypersurface V in CPn of degree d, the results follow directly from
that of CPn. The Lefschetz hyperplane theorem asserts that the embedding of
i : V →֒ CPn induces an isomorphism in cohomology in dimension less than n.
Stably, the Whitney sum of the normal bundle of the embedding and tangent
bundle of V is equivalent to the restriction of the tangent bundle of CPn, that is,
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Ni⊕TV ≡ TCPn|V . From this the Pontryagin classes can be directly computed,

and the value of the Â-genus can be obtained. See [8]. From these calculations,
CPn is a spin manifold whenever n is odd. Vd ⊂ CPn is spin if |d− n| is odd.

One can also obtain a spin 8-manifold B8 with Â(B8) = −1. It is constructed
by first plumbing together the boundaries of eight copies of the tangent disk
bundle over S4 according to the Dynkin diagram of the exceptional Lie group
E8. This makes an 8-dimensional manifold with boundary a homotopy sphere.
After taking the connect sum of 28 copies, the boundary is then no longer exotic.
B8 is the closed manifold obtained by additionally gluing together this boundary
with the boundary of the disk D8. The tangent bundle is trivial away from a
point, therefore its first Pontryagin class is zero. Details of the construction can
be found in [7].

By [5], the Â-genus is induced by a K-theory orientation of the spin bordism

spectrum, that is, as a map Â : MSpin → bo. There is an injection j : bo →֒ bu
such that a spin manifold M ∈ ΩSpin, the following diagram commutes:

π4n MSpin
Â //

∫
M
Â

��=
==

==
==

==
==

==
==

==
==

==
==

==
=

π4n bo

j

��
π4n bu

Z

where π4n bu ∼= Z, and j is an isomorphism when n is even and corresponds to
multiplication by 2 when n is odd.

2.4 Stable cohomology operations

Definition 4. A cohomology operation ψ of type (G,n;π,m) is a function

Hn( ;G) → Hm( ;π) changing coefficients and degree, and defined canonically

on spaces. That is, for any map f : M → N and any ψ, then ψ ◦Hn(f ;G) =
Hm(f ;π) ◦ ψ.

Definition 5. A cohomology operation ψ of type (G,n;π,m) is stable if there

exists a family of cohomology operations ψk of type (G,n+k;π,m+k) extending
ψ and commuting with the suspension operation Σ on spaces.

Unpacking this somewhat, for any space X , suspension induces an isomor-
phism on reduced cohomology (with any coefficients): H̃n+1(ΣX) → H̃n(X).
(This isomorphism can be understood as the connecting homomorphism in a
Mayer-Vietoris sequence.) Then the ψk are stable if the following diagram com-
mutes:
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Hn+k+1(ΣX ;G)
ψk+1

−−−−→ Hm+k+1(ΣX ;π)
y

y

Hn+k(X ;G) −−−−→
ψk

Hm+k(X ;π)

(In this case ψ is usually just referred to as a single stable cohomology operation,
and the subscripts are omitted.) The set of stable cohomology operations of type
(Z/p, n;Z/p,m) fit together in a near miraculous fashion, called the Steenrod
algebra, which are uniquely characterized by the these additional properties:

(1) Sqnx =

{
x2 if |x| = n
0 if |x| < n

(2) Coproduct structure: Sqn(x ⌣ y) =
n∑
i=0

Sqix ⌣ Sqn−iy.

(3) Adem relations: if a < 2b then SqaSqb =
[a/2]∑
i=0

(
b−1−i
a−2i

)
Sqa+b−iSqi.

The Steenrod algebra has a basis, as an algebra, of {Sqi : i is a power of 2}.
From this, and the Adem relations, we can see easily that it has a basis as
a vector space consisting of so-called admissible monomials Sq{an,...,a1} :=
Sqan . . . Sqa1 such that ai ≥ 2ai−1 (that is, the an, . . . , a1 form an admissible se-
quence). The Adem relations give a rule for expressing inadmissable monomials
as linear combinations of admissible monomials, so these elements clearly gen-
erate the entire Steenrod algebra. The admissible monomials then form a basis
since our axioms provide no additive relations between them. The excess e(A)
of an admissible sequence an, . . . , a1 is defined to be e(A) = an−an+1− . . .− a1.

The existence of operations that satisfy these relations has powerful and
immediate consequences about the possible structures of the cohomology ring
of a space. For instance consider the truncated polynomial ring with generator y
in dimension 2k such that k is not a power of 2. One may ask whether this ring
can be the cohomology ring of a space. Since the Sq2

i

are an algebra basis for
the Steenrod algebra, therefore Sq2k can be expressed as a sum of compositions
of Sq2

i

. By our axioms, Sq2ky = y2, but this Sq2k operation can be factored
through terms in intermediate degrees. By assumption on the structure of our
cohomology, these are zero, however, which gives a contradiction and implies
that this ring structure cannot be the cohomology ring of any space.

Another geometric question that the existence of these Steenrod operations
answers is whether the suspensions of CP2 and S2∨S4 can be homotopy equiva-
lent. The ring structure of a cohomology ring cannot carry over to the cohomol-
ogy ring of the suspension of the space (for obvious reasons of degree), so while
it distinguishes these spaces, it does not obviously distinguish their suspensions.
However, the action of Sq2 on the third cohomology class will give the generator
of H5 for ΣCP2 but zero for Σ(S2 ∨ S4) because of the stability condition.

For M a connected n-dimensional manifold, then there exist classes vi ∈
Hi(M ;Z/2) such that Sqiy = vi ⌣ y and for any class y ∈ Hn−i(M ;Z/2).
This is clear, since Hn(M ;Z/2) ∼= Z/2 and Sqi, in this narrow context, is then

12



an element of HomZ/2(H
n−i(M ;Z/2),Z/2). By Poincaré duality, we then get

the existence of vi representing this element. The total Stiefel-Whitney class is
then the total Steenrod square of the sum of the vi (called the total Wu class),
w = Sq(v).

There exists another way to realize the Stiefel-Whitney classes in terms of
the Steenrod squares and Thom isomorphism φ. In this case for ξ an Rn-bundle
over X , φ : Hi(X ;Z/2)

∼
−→ Hi+n(E,E0;Z/2). Then wi(ξ) = φ−1(Sqiu), where

u is the Thom class.
Considering stable cohomology operations with Z/p coefficients, p odd, yields

an analogous algebra satisfying similar axioms, with slight variation. For one,
the degree of Pn is 2n(p− 1). Also:

(1) Pnx =

{
xp if |x| = 2n
0 if |x| < 2n

(3) P aP b =
[a/p]∑
j=0

(
(p−1)(b−j)−1

a−pj
)
P a+b−jP j .

A sequence I = (ε0, s1, ε1, s2, . . . sn, εn) is called admissible if si+1 ≥ psi +
εi+1. The excess e(I) is the defined by e(I) = 2s1 + εn − εn−1 − . . .− ε0.

For a module M over the Steenrod algebra, one can define the Qi-homology
H(M ;Qi) = Ker Qi/Im Qi. The Qi are defined inductively by successive com-
mutators (e.g., Q1 is the commutator of Q0 and P 1) and act as differentials
on A-modules. Qi-homologies are known as the Margolis homologies, and they
play an important role in the stable structure theory of modules over A(1) and
E[Q0, Q1], as in [3], particularly in computations involving the Adams spectral
sequence.

2.5 Classical Adams spectral sequences

Spectral sequences were invented by Jean Leray in a German concentration
camp during World War II. They are formal way of organizing information, and
have proved an essential tool for tackling topological problems over the past 40
years. One can construct a spectral sequence via an exact couple or a filtered
complex to make a computation whose steps are the refinement of an initial over-
approximation of an object by sequence of differentials. For example: the Serre
spectral sequence relates the cohomologies of the base, fiber, and total space of
fibration; the Bockstein spectral sequence computes rational cohomology from
mod p cohomology; there exists a spectral sequence generalizing the Mayer-
Vietoris short exact sequence.

There is also a spectral sequence due to Adams which addresses, as he puts
it, the basic question of what can be known about stable homotopy classes of
maps [ΣtY,X ] given knowledge of H∗(Y ;Z/p) and H∗(X ;Z/p).

Theorem 2. There exists a spectral sequence converging to the p-completion

of the stable homotopy group [Σt−sY,X ], i.e., [Σt−sY,X ] ⊗ Zp. The spectral

sequence has first term Et−s,s2 = Exts,tAp
(H∗(X ;Z/p), H∗(Y ;Z/p)) and has dif-

ferentials d−1,n
n .
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The spectral sequence is bigraded, where s (the Adams filtration) is the
homological degree, and t is the internal degree of a homomorphism based on
the gradation (lowering degree by t).

Actually, it converges to the stable homotopy group once it has been localized
with respect to the Eilenberg-MacLane spectrum, but this localization does not
do anything, i.e., it does not result in any loss of information. Novikov later
proved a similar theorem for complex cobordism, and there exists a so-called
Adams-Novikov spectral sequence for a broad range of generalized cohomology
theories.

The spectral sequence is constructed by filtering a map through maps to
spheres that are zero on the level of homology. The Ext functor is then applied,
giving a filtration to the first term of the spectral sequence. This construction
can be found in [10] or [2]. The idea of cohomology is to provide a partial dictio-
nary between spaces and algebra, so that certain statements about spaces and
maps between them can be translated into statements about algebraic objects
and homomorphisms (which will frequently be more tractable). Cohomology
is an obviously useful tool for showing the nonexistence of maps with specific
properties. It is not obviously useful for showing the existence of maps. Supple-
menting cohomology with cohomology operations, however, gives an algebraic
structure sufficient to detect the existence of maps, which is precisely what the
Adams spectral sequence is designed to do.

3 The Adams spectral sequence

I want to apply this homotopy theory to understand certain maps on spin man-
ifolds given by integrating powers of integral 4-forms against the Â-genus. The
first step is to interpret this phenomenon in homotopy-theoretic terms. For a
manifold M , de Rham’s theorem gives an isomorphism between the de Rham
cohomology of differential forms and singular cohomology with real coefficients,
H∗
DR(M ;R) ∼= H∗(M ;R). The inclusion Z →֒ R induces a monomorphism

H∗(M ;Z)/T →֒ H∗(M ;R) of integer singular cohomology modulo torsion into
singular cohomology with real coefficients. The images in de Rham cohomology
H∗
DR(M ;R) of this map are called integral.
There exists yet another characterization of singular cohomology as ho-

motopy classes of maps into Eilenberg-MacLane spaces, so that Hn(M ;Z) ∼=
[M,K(Z, n)]. Thus, a closed integral n-form x on M yields a map x : M →
[M,K(Z, n)] (modulo torsion) representing that same cohomology class. (I will
use the same symbol to represent the differential form and the map, with the
understanding that all subsequent constructions will use only properties of the
homotopy class of the map, not the map itself.)

So a k-dimensional manifold M together with a fixed integral n-form, by
considering the n-form as a map into K(Z, n), represents an element of the
unoriented bordism ring of K(Z, n) (because this depends only the homotopy
class of the map into K(Z, n)). If M is a spin manifold, (M,x) can also be
thought of as representing a unique element of the spin bordism ring of K(Z, n),
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i.e., (M,x) ∈ ΩSpin
k (K(Z, n)). Hereafter, the concern is with 4-forms on a 4n-

dimensional spin manifold, elements of ΩSpin
4n (K(Z, 4)).

Spin bordism is a generalized homology theory represented by the Thom
spectrum MSpin, realizing the spin bordism of a spaceM as a stable homotopy
group, ΩSpin

∗ (M) ∼= π∗ MSpin∧M+. (Note: the disjoint basepoint notation will
be typically omitted.)

The Atiyah-Bott-Shapiro orientation gives a map Â : MSpin → bo, where
bo is the connective K-theory spectrum, obtained from the usual real K-theory
spectrum by killing its negative homotopy groups, see [2]. So the Q-valued maps

given by integrating an integral 4-form against the total Â-class factor through
the connective K-theory of K(Z, 4), giving a commutative diagram:

π∗ MSpin ∧K(Z, 4)

∫
M
xnÂ

��

Â

)) ))SSSSSSSSSSSSSS

π∗ bo ∧K(Z, 4)

uukkkkkkkkkkkkkkkkk

Q

The purpose of this chapter is to partially compute the connective K-theory
of K(Z, 4), the stable homotopy group πn bo∧K(Z, 4)+ = [ΣnS0, bo∧K(Z, 4)+],
after completion at the prime 2. This will be the most important case, due to
the complexity of bo at 2 and the fact that spin bordism has no odd torsion. In
the next chapter, these results will be applied to integrals on spin manifolds.

The tool for this computation is an Adams spectral sequence that is partic-
ularly effective for connective K-theory. The first term of this spectral sequence
is Exts,tA (H∗(bo ∧ K(Z, 4);Z/p). From [1] and [14], the spectrum cohomology
of bo can be given by the quotient of the Steenrod algebra by the subalgebra
generated by Sq1 and Sq2, so H∗(bo;Z/2) = A//A(1). At odd primes, bo splits
as a wedge of spaces with simpler cohomology.

Computing Ext over the Steenrod algebra is generally daunting. However, in
the specific case of computing connective real K-theory, we have a Hom-tensor
interchange for simplifying this term. (Cohomology for the rest of this chapter
will be mod 2, so this is frequently omitted from the notation.)

First, we have a Künneth formula so that

H∗(bo ∧K(Z, 4)) = H∗(bo)⊗Z/2 H
∗(K(Z, 4))

= A//A(1)⊗Z/2 H
∗(K(Z, 4))

However, A//A(1) = A ⊗A(1) Z/2. So substituting this into the first term
of our spectral sequence gives:

Exts,tA (H∗(bo ∧K(Z, 4)) = Exts,tA (A⊗A(1) Z/2⊗Z/2 H
∗(K(Z, 4)),Z/2)
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= Exts,tA (A⊗A(1) H
∗(K(Z, 4)),Z/2)

The final step in simplifying our Ext term is the Hom-tensor interchange (in
this case an Ext-tensor interchange), so

Exts,tA (A⊗A(1) H
∗(K(Z, 4)),Z/2) = Exts,tA(1)(H

∗(K(Z, 4)),Z/2).

Now, instead of computing Ext over the whole infinite-dimensional Steenrod
algebra, we can instead work over the finite subalgebra A(1) generated by Sq1

and Sq2.

3.1 H∗(K(Z, 4);Z/2) as an A(1)-module

The mod p cohomology of Eilenberg-MacLane spaces can be computed induc-
tively using the Serre spectral sequence for the pathspace fibration relating
K(Z, n) and K(Z, n−1). That is, the based loopspace ΩK(Z, n) is a K(Z, n−1),
and so one has the pathspace fibration

ΩK(Z, n) // PK(Z, n)

��
K(Z, n)

where PK(Z, n) is the space of paths in K(Z, n) and thus is contractible. Serre
first made this computation shortly after Steenrod’s introduction of the Steenrod
algebra in the early 60’s, expressing the mod p cohomology of K(Z, n) as a freely
generated polynomial algebra with generators given by Steenrod operations on
a single element in degree n. In particular, the mod 2 cohomology of K(Z, 4) is:

H∗(K(Z, 4);Z/2) = F2[Sq
Iι : 1 < e[I] < 4]/(Sq1ι = 0)

where SqI is an element of the Cartan basis, i.e., I is an admissible sequence.
These computations can be found in [10].

Although one can then understand the action of Sq1 and Sq2 just by using
the Adem formula, decomposing this cohomology, which is a left A(1)-module,
into a direct sum of simpler A(1)-modules may be complicated. However, the
present purpose for applications to 8- ands 12-manifolds does not require much.
A general understanding of this cohomology and higher-dimensional manifolds
entails significant further work, which will be addressed in the epilogue.

This gives us, with only moderate effort, the structure of the action of Sq1

and Sq2 over a small range of dimensions.
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7654012313 7654012314 7654012315

'&%$ !"#1 '&%$ !"#2 '&%$ !"#3 '&%$ !"#4

7654012310 7654012311 7654012312

'&%$ !"#5 '&%$ !"#6 '&%$ !"#7 '&%$ !"#8 '&%$ !"#9
The digits represent the following elements of the cohomology:

1 – ι 6 – ι(Sq3ι) 11 – Sq5Sq2ι
2 – Sq2ι 7 – (Sq2ι)2 12 – Sq6Sq3ι
3 – Sq3ι 8 – (Sq3ι)(Sq2ι) 13 – ι3

4 – ι2 9 – (Sq3ι)2 14 – ι2(Sq2ι)
5 – ι(Sq2ι) 10 – Sq4Sq2ι 15 – ι2(Sq3ι)

3.2 ExtA(1) of stably invertible A(1)-modules

The A(1)-modules comprising the mod 2 cohomology of K(Z, 4) through dimen-
sion 15 (neglecting an unimportant free module) all share the property of being
stably invertible. That is:

Definition 6. A(1)-module X is stably invertible if there exists an A(1)-module

Y such that as A(1)-modules X ⊗Z/2 Y = Z/2 ⊕ F where F is a free A(1)-
module.

The stable inverses for the above modules are not hard to find. For instance,
for X := {x0, x1, x3 : Sq1x0 = x1, Sq

2x1 = x3, and otherwise Sqixj = 0}, then
we can define Y := {y−3, y−1, y0 : Sq2y−3 = y−1, Sq

1y−1 = y0}, and then the
tensor product X ⊗ Y ∼= Z/2⊕ F .

These stably invertible modules have a well developed structure theory due
to Margolis, Adams, and Priddy. For instance, it is not hard to prove that a
finite A(1)-module is stably invertible if and only if both its Q0-homology and
its Q1-homology are 1-dimensional. Using this structure theory as in [3], or
otherwise [11], it is straightforward to compute ExtA(1) for them.

The mod 2 cohomology of a point has the structure of an A(1)-module
consisting of a single copy of Z/2 in degree 0. In this case, Ext looks as follows:
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As is customary in drawing Adams spectral sequences, s is measured along
the vertical axis, and t− s is measured along the horizontal axis. This Ext term
is easy to compute just by writing down a projective (i.e., free) resolution of
Z/2. This resolution is periodic, reflected by the periodicity in the Ext chart,
and the relation of this Ext chart to Ext for other stably invertible modules
can be seen by the fact that they occur as kernels in each others projective
resolutions. Thus, their Ext charts are translates of each other.

The ring structure and the action of h0 ∈ Ext1,1 and h1 ∈ Ext2,1 come from
the action of Sq1 and Sq2 in the kernels of the resolution. The action of h0 on
h0v

2
1 generates the Z-tower in t−s = 8. These computations can be found in [11]

as well as [9]. The action of h0 in each Z-tower corresponds to multiplication
by 2 in the limit of the spectral sequence. (The Z-towers converge to the 2-
adic integers.) The differentials in the spectral sequence are derivations with
respect to this multiplication, therefore there can be no differentials (because
only Z-towers can map into Z-towers, and this is impossible because there are
no adjacent Z-towers).

For the module Σ3Y , obtained by shifting the degree of the elements in Y
(as defined above) by 3, the Ext chart is:
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For the joker (as Adams termed it), J := {j0, j1, j2, j3, j4 : Sq1j0 = j1, Sq
1j3 =
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j4, Sq
2Sq2j0 = Sq2j2 = j4, Sq

2j1 = j3}, a translate of which starts in dimension
10 in the mod 2 cohomology of K(Z, 4), the Ext term is:
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And for X as above, Ext is:
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All of these computations are stable. Namely, shifting the degree of the A(1)-
modules results only in a translation of the Ext chart. Thus, the beginning of
the Ext term forH∗(K(Z, 4);Z/2) can be obtained from the above computations
simply by observing the degrees of the A(1)-submodules in the decomposition.

3.3 Exts,t
A
(H∗(bo ∧K(Z, 4);Z/2),Z/2)

The Ext term for the Adams spectral sequence converging to the connective
K-theory of K(Z, 4) through 15 dimensions is a direct sum of the Ext terms
just computed:
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Additionally, there must exist a differential from the Z-tower in t−s = 13 to
t− s = 12. We know this in two ways: first, from rational homotopy, we know
that once we tensor this homotopy group with Q, nonzero homotopy groups
occur only in dimensions 4n by Bott periodicity. Secondly, the computations of
the Ext term at any odd prime (see chapter 5) will have no Z-tower in t−s = 13.
Therefore, π13 bo∧K(Z, 4), modulo torsion, is zero. This means that the Z-tower
in t− s = 13 cannot survive the sequence of differentials. Generally, a Z-tower
may get killed either by supporting a nontrivial differential or by being in the
image of a differential. Since there is no Z-tower in t − s = 14, the Z-tower
in 13 cannot be in the image of differential. Thus, there exists a differential
coming from the bottom of the Z-tower in t − s = 13 and hitting some linear
combination of the Z-towers in t− s = 12.

4 Applications to spin manifolds

Our purpose is to understand the relation between integrals of the form
∫
M
xnÂ

on a spin manifold. By [5], the Â-genus has a realization as a map on spectra
from the spin bordism spectrum MSpin to the real K-theory spectrum BO
given by the difference bundle construction. By the splitting of the spin bordism
spectrum due to Anderson, Brown, and Peterson [4], on the level of homotopy

this map Â : MSpin → bo is surjective after completion at 2.
In [4] it is proved that at the prime 2 the spin bordism spectrum splits as

product of connective covers of the real K-theory spectrum BO and Eilenberg-
MacLane spaces K(Z/2, n). That is, there exists a map from MSpin to such a
product, and it induces an isomorphism on mod 2 cohomology. Additionally,
spin bordism has no odd torsion, so this determines the structure of the spin
bordism spectrum.

Using this work, one can prove certain results about all spin manifolds
equipped with a 4-form by finding a set of spin manifolds with 4-forms whose
image under the map Â generates the connective K-theory of K(Z, 4) and then
verifying the result for this generating set. This is the goal of this chapter.
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In dimension 8, this is relatively straightforward. However, in higher di-
mensions there are differentials in the spectral sequence, and this complicates
the procedure. Ideally, one could prove these results by working directly with
the Ext chart and not the final term of the spectral sequence (which will be a
complicated quotient of Ext).

One way to get around this problem in dimension 12 is by working with
filtrations of K(Z, 4) given by its mod 2 cell structure. Using quotients of this
filtration, one can work with more manageable spaces whose Ext terms nonethe-
less encode the same information as K(Z, 4) after completing at 2.

The prospect for 16 and higher dimensions is briefly discussed in the epilogue.

4.1
∫
M16n+8

x4n+2 ± 12 x4n+1Â4 ∈ 2Z

Before doing the hard work of defining analytic invariants of the spin bordism
of K(Z, 4) and determining a set of manifolds that generate its connective K-
theory, we can get some facts from this spectral sequence relatively easily. We
will need only a little information from this spectral sequence to prove the
following classical formula for spin 8-manifolds.

Theorem 3. M an 8-dimensional spin manifold, and x an integral 4-form,

then ∫

M

x2 ± 12xÂ4 ≡ 0 (mod 2).

Proof: First, for any spin manifold M , w4(M) ≡ 1
2p1(M) mod 2. This can

be shown simply by looking at the cohomology of the classifying space BSpin,
see [15], and observing that 1

2p1 generates H4(BSpin;Z) while w4 generates
H4(BSpin;Z/2), so that w4 must be the mod 2 reduction of 1

2p1. (This actually
shows something stronger: that w4(V ) ≡ 1

2p1(V ) mod 2, for any spin bundle
V .)

Therefore, for a spin 8-manifold M and an integral 4-form x,

〈w4 x, [M ]Z/2〉 ≡

∫

M

p1
2
x (mod 2).

Consider the map π8 bo∧K(Z, 4) → Z/2 given by (M,x) →
∫
M
x2 (mod 2).

This sits in filtration 0, thus is an element of Hom by definition of Ext as a
derived functor of Hom. The following diagram then commutes.

π8 bo ∧K(Z, 4)
∫
M
x2

**UUUUUUUUUUUUUUUUUUUU
// Hom8

A(A//A(1)⊗H∗(K(Z, 4)))

��
Z/2

By definition, a homomorphism over the Steenrod algebra ξ must commute
with the Steenrod operations, i.e., ξ ◦ Sqn = Sqn ◦ ξ. Consider u ∈ H0(bo) and
x ∈ H4(K(Z, 4)).
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Then from the coproduct structure of A and the Thom class definition of the
Stiefel-Whitney classes, Sq4(u⊗ x) = Sq4u⊗ x+ u⊗ Sq4x = w4u⊗ x+ u⊗ x4.
So for ξ as above, ξ(w4u⊗ x+ u⊗ x4) = ξ ◦ Sq4(u ⊗ x) = Sq4ξ(u⊗ x) = 0.

Therefore for an orientable manifold M equipped with an integral 4-form x
(whose mod 2 reduction will also be denoted x), it is true that

〈w4x+ x2, [M ]Z/2〉 ≡ 0 (mod 2).

This is the mod 2 reduction of
∫
M
x2 ± 1

2p1x for M a spin manifold, so∫
M
x2 ± 1

2p1x is even.
One can interpret this result in the language of lattices: the middle coho-

mology class of an even-dimensional manifold, equipped with the intersection
form, has the structure of a lattice, and the result above means that p1/2 is a
characteristic vector of that lattice if the 8-manifold is spin. It also means that
if p1/2 is even, then the intersection form of the manifold must be even.

This is promising, because it gives us an interesting analytic result while
seeming to require little from our spectral sequence. One would like to generate
further integrality results by first using the observation that certain elements lie
in the image of Steenrod operations, and must therefore be sent to zero under
some element of Hom, and secondly, by lifting this argument to talk about
integers instead of invariants defined only mod 2. The difficulty, however, is
that generally when a Steenrod operation is applied to an element of H∗bo ⊗
H∗K(Z, 4) the result will not be defined only in terms of powers of x and Stiefel-
Whitney classes, but also in terms of Steenrod operations Sqnx. This means
that our invariant will only be defined mod 2, and cannot be obviously lifted to
an interesting integer invariant. We do get a slew of mod 2 invariants, and the
above argument deduces similar results for these mod 2 invariants. However,
these are not the present subject of interest.

The exception is in this dimension: Again consider u ∈ H0bo and x as be-
fore. Then Sq4(ux4n+1) = w4ux

4n+1 +u
(
4n+1

2

)
(Sq2x)2x4n−1 +u

(
4n+1

1

)
x4n+2 =

w4ux
4n+1 + ux4n+2. An identical argument gives:

Theorem 4. For M a (16n+8)-dimensional spin manifold with a x a 4-form,

then
∫
M x4n+2 ± 12 x4n+1Â4 ≡ 0 mod 2.

This method is a nice way of interpreting elements in Adams filtration zero
but does not access the properties of elements in higher Adams filtration.

4.2 A second proof that
∫
M8

1
2
x2 ± 6xÂ4 ∈ Z

This proof will be a basic application of the method of finding a manifold basis
for our invariants. The method is fruitful in dimensions 12 and 16, so we apply
it here in t− s = 8 as an introduction.

Again, a d-degree element η of the cohomology of K(Z, 4) with coefficients

in Z/p produces a Z/p-invariant of (Md, x) ∈ ΩSpin
d (K(Z, 4)) given a lifting of

the class to a cohomology class defined rationally. For a map x : Md → K(Z, 4),
the induced map on cohomology x∗ : H∗(K(Z, 4)) → H∗(Md) is completely
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determined by what it does to the generator ι ∈ H4(K(Z, 4)), namely, the value
x∗(ι) ∈ H4(Md). But x∗(ι) = [x]. Since an element η in Hd(K(Z, 4)) can
be written in terms of the algebra basis (discussed earlier) as a polynomial in
Steenrod operations on ι, η = P (ι). Then x∗(η) ∈ Hd(Md), and since Steenrod
operations commute with induced maps on cohomology (that is, x∗ in this case),
therefore x∗(η) = x∗(P (ι)) = P (x∗(ι)) = P (x). Then the Kronecker pairing
〈x∗(η), [M ]〉 ∈ G (with the fundamental class [M ]) produces a spin bordism
invariant of the element (Md, x) coinciding with the mod p reduction of integral
of lift, ∈M x∗(η).

This is a spin bordism invariant (in fact, a bordism invariant for any bordism
theory with structure at least that of oriented) by a basic application of Stokes

theorem. (First let there exist another Nd f
→ K(Z, 4) and an oriented manifold

Ld+1 g
→ K(Z, 4) such that the boundary ∂L = M

∐
−N and g restricts to our

other maps g|M = x and g|N = f .)
With the Adams spectral sequence, we can work with each Z/p. However,

our main interest is in invariants that are defined rationally, namely as integrals
of 4-forms. By using the surjectivity of the map on the homotopy groups in-
duced by the natural map from MSpin to bo, we can pullback to find a basis
for Ext in terms of elements of the spin bordism of K(Z, 4), i.e., spin manifolds
equipped with four-dimensional cohomology classes. Our Ext term is a right
ExtA(1)(Z/2,Z/2)-module, and the right action of h0 corresponds to multiplica-
tion by 2. In terms of the structure of the spin bordism ring, this multiplication
by 2 is just what we would expect, the disjoint union of a manifold with itself.
Our Ext term also has a ring structure because K(Z, 4) is an H-space (coming
from the fact that it can be seen as the space of loops on a K(Z, 5)). This
ring structure is given in terms of manifolds as follows: if (M,x) and (N, y) are
manifolds with four-dimensional mod 2 cohomology classes, then their product
is given by (M ×N, x + y). If they sit in Exts,t and Exts

′,t′ respectively, then
their product lies in Exts+s

′+k,t+t′+k where k ≥ 0. (Typically k is zero, but
irregular things can happen with the Adams filtration s.)

Theorem 5. M an 8-dimensional spin manifold, and x an integral 4-form,

then ∫

M

x2 ± 12xÂ4 ≡ 0 (mod 2)

Proof: We have two spin bordism invariants of a spin manifoldM8 equipped
with x ∈ H4M that are defined rationally in t − s = 8. These are I1 =

∫
M x2

and I2 =
∫
M
xÂ4.

The idea of the proof is that these two invariants measure the placement of
a manifold in the two Z-towers in t − s = 8, and from this information we can
find manifolds that lie in the bottoms of the Z-towers and therefore generate
the homotopy group.

It is easy to see that I1 measures the Z-tower starting in Adams filtration
zero. Considering the 2-completion of the space K(Z, 4), it has a minimal skele-
ton (given by the same picture as that of its mod 2 cohomology, where the cells
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are now cones on 2-complete spheres instead of mod 2 cohomology classes).
Call the 8-skeleton X2 and the 7-skeleton X3. Then there is an inclusion map
X2 →֒ K(Z, 4), and this map is an isomorphism on homotopy in dimension 8
and lower. Further, the map that i : X3 →֒ X2 then induces on homotopy
π8 bo ∧ X2 → π8 bo ∧ X2/X3 is a surjection. X2/X3 is 7-connected, so the
generalized Hurewicz homomorphism h : π8 bo∧X2/X3 → H8(bo∧X2/X3) = Z

is an isomorphism. Here H8(bo ∧ X2/X3) = H0(bo) ⊗ H8(X2/X3), and this
isomorphism is just given by the generator of the dual of H8, which is u⊗ ι2 ∈
H8(bo ∧ X2/X3). (Here ι2 ∈ H8(X2/X3) can be identified with the image of
ι2 ∈ H8(K(Z, 4)).) This produces the commutative diagram. (Note: for the
rest of the chapter, all groups have been 2-adically completed.)

π8 bo ∧K(Z, 4)

∫
M
x2

  

π8 bo ∧X2

����
π8 bo ∧X2/X3

h

��
H8(bo ∧X2/X3)

u⊗ι2

��
Z

Thus, the value of the invariant
∫
M x2 determines the Adams filtration of

the image of the element (M,x) in the Z-tower coming from the A(1)-module
{ι2} (that is, the Z-tower in t− s = 8 starting in Adams filtration s = 0).

Now, we can analogously make the same determination for the invariant∫
M
xÂ4, by considering the embeddingX3 →֒ K(Z, 4). From the Adams spectral

sequence it is the case that π8 bo∧X3 = Z. Working rationally, π8 bo∧X3⊗Q =
Q. The rational stable homotopy of a spectrum E coincides with its rational
spectrum homology, π∗E ⊗Q ∼= H∗(E;Q). Denote e ∈ π4 K(Z, 4) whose image
under the Hurewicz isomorphism is dual to ι. The inclusion bo →֒ bu induces
a map given by multiplication by 2 for π4 bo → π4 bu. Thus the generator of
π4 bo, represented by h0v

2
1 in the Ext term of the Adams spectral sequence,

maps to twice the Bott generator of π4 bu. Working rationally (which in this
context is equivalent to inverting h0), v

2
1 ∈ π4 bo⊗Q maps to the generator of

π4 bu ⊂ π4 bu⊗Q. By the Künneth formula, π8 bo∧X3⊗Q ∼= π4 bo⊗π4 X3⊗Q,
and so has a basis element v21 ⊗e. Since the Z-tower starts one Adams filtration
lower than v21 ⊗ e, the generator of π8 bo ∧X3 is 1

2v
2
1 ⊗ e.

Any element of H8(bo ∧X3;Q) gives an isomorphism π8 bo ∧X3 ⊗Q → Q.

Rationally, Â4 is induced by a map
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MSpin // bo

��
bu // K(Q, 4)

So this composition is given by an element uÂ4 ∈ H4(MSpin;Q). In addi-
tion, the element of H8(bo ∧ X3;Q) that maps v21 ⊗ e → 1 is in the image of

uÂ4x ∈ H8(MSpin ∧X3;Q). Therefore the image of (M,x) ∈ π8 MSpin ∧X3

under the map Â generates π8 bo ∧X3 if and only if
∫
M
xA4 = 1/2.

Two manifolds with 4-forms generate the homotopy group π8 bo ∧ K(Z, 4)
if one of each is sent to the bottom of these two Z-towers (and the values the
invariants take on them are linearly independent). We can then see that (HP2, y)
and (CP3×S2, ab) form a basis for this homotopy group, where y is a generator
of H4(HP2;Z), a is a generator of H2(CP3;Z) and b is a generator of H2(S2;Z).∫
HP2 y

2 = 1 and
∫
CP3×S2 abÂ4 =

∫
CP3×S2 ab(−p1(CP

3)/24). Since p1(CP
3) =

4a2, this integral becomes
∫
CP3×S2 ab(−4a2/24) = −1/6. And because I1 is zero

on (CP3 × S2, ab), these two elements form a mod 2 basis.
Any element of the spin bordism of K(Z, 4) is then sent to the same element

in this Ext term as a linear combination of (HP2, y) and (CP3 × S2, ab). Thus,
a linear formula concerning these invariants I1 and I2 can be proved simply
by verifying it for a linear combination of (HP2, y) and (CP3 × S2, ab). Since
p1(HP2) = 2y, we can compute I2 on (HP2, y) and obtain the following table of
values:

*
∫
x2

∫
xÂ4

(HP2, y) 1 -1/12

(CP3 × S2, ab) 0 -1/6

Even though the spin bordism ring has no odd torsion, here we have not
shown that these manifolds form a basis integrally, only after completion at 2.
They do, however, and this will be proved in the next chapter, where we compute
this Ext term at the necessary odd primes. These results will be assumed here.

Thus, we can now see that
∫
M8

x2 ± 12xÂ4 ≡ 0 (mod 2), since it is clearly
the case for a linear combination of our two basis elements. That is, for any
(M8, x) as before, there exist integers n and m so that:

∫

M8

x2 ± 12xÂ4 =

∫

nHP2
∐
mCP2×S2




n∑

i=1

yi +

m∑

j=1

ajbj




2

±12




n∑

i=1

yi +

m∑

j=1

ajbj


 Â4

= n

(∫

HP2

y2 ± 12yÂ4

)
+m

(∫

CP2×S2

(ab)2 ± 12abÂ4

)

= n±−n± 2m ≡ 0 (mod 2)
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Thus our formula holds for our basis, and once the manifold basis is checked
after completion at odd primes in chapter 5, that will complete the proof for
any (M8, x) an 8-dimensional spin manifold equipped with an integral 4-form.

4.3
∫
M12

1
3!
x3 ± 3x2Â4 + 30xÂ8 ∈ Z

Although the first proof of the integrality result for spin 8-manifolds may have
seemed easier than the second, as though we were getting more out of our spec-
tral sequence while doing less, this method has limited use in higher dimensions
for two reasons: as opposed to the simplicity of an element lying in Adams fil-
tration zero, it is unclear how to interpret elements in higher Adams filtration;
secondly, even working just in filtration zero we typically get invariants that
are only defined mod 2 and cannot be lifted to Z. Our second method of proof
for 8-manifolds, while comparatively more difficult in dimension 8, extends to
12-manifolds whereas the first proof does not.

However, the invariants produced by most elements of H∗(K(Z, 4)) are de-
fined in terms of Steenrod operations, and developing the previous relation
between the values of the invariants and the Adams filtration requires more
work.

An additional complication is that there is a differential from the Z-tower in
t−s = 13, so that the homotopy group π12 is not actually the t−s = 12 part of
the Ext term, but rather a quotient of it by the image of the differential. Thus,
we cannot directly write down a basis for the Ext term in terms of manifolds,
because part of that Ext term exists only algebraically. The most obvious way
to avert this problem is to work with the skeleton filtration of the space K(Z, 4)
and consider a subcomplex with the cells of the module with Q0-homology in 13
deleted. By this method, we get a modified sequence of spaces by which we can
isolate the effect of this differential, and can eventually write down a generating
set of manifolds with which to prove relations between our analytic invariants.

Again, each Q0-homology in dimension d produces a spin bordism invariant
for a d-dimensional spin manifold equipped with a map into K(Z, 4) (because of
the surjectivity of the induced map on homotopy groups). If this invariant can
be defined rationally (e.g., as an integral over a power of the associated 4-form∫
xn) then we further get a spin bordism invariant for a d + 4k-dimensional

element of the spin bordism of K(Z, 4) (i.e., a d+4k-dimensional spin manifold

equipped with an integral 4-form) by integrating against Â4k.
Given a spin manifold Md+4k equipped with x and a cohomology class η

in Hd(K(Z, 4);G), let us assume x∗(η) can be canonically lifted. Then we can

further define a canonical rational invariant of (M,x), that is 〈x∗(η)Â4k, [M ]〉,

which equals
∫
M
x∗(η)Â4k.

Now turning our attention back to spin 12-manifolds, the Z-towers in t−s =
12 come fromQ0-homologies ι, ι2, ι3, (Sq2ι)2 to which we can associate invariants∫
M
x3,

∫
M
x2Â4,

∫
M
xÂ8. For the fourth Q0-homology, the invariant will only

be mod 2, and to define it we will need the following lemma.

Lemma 1. For any additive mod 2 cohomology operation C, if Sq1 ◦ C = 0,
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then C lifts to a cohomology operation C′ of type (Z/2, ∗;Z/4, ∗) such that C is

the mod 2 reduction of C′.

Proof: Sq1, the Bockstein homomorphism, is by definition the connecting
homomorphism of the long exact sequence that results from the cohomology
functor applied to the short exact sequence Z/2  Z/4 ։ Z/2. If Sq1 ◦ C = 0
then the image of C is in the kernel of Sq1, which is exactly the image of the
map induced on cohomology by the mod 2 reduction of Z/4. Thus, the map
lifts.

This basic fact about lifting cohomology operations to different coefficients
will be key in defining the invariants that are defined in terms of Steenrod
operations.

For the cohomology operation C : z6 → (z6)
2, clearly Sq1◦C = 0 from the co-

product structure, and therefore C lifts to an operation of type (Z/2, 6;Z/4, 12).
By the Adem relations, Sq6 = Sq1Sq4Sq1+Sq2Sq4. Thus, for x ∈ H4(M12;Z/2),

(Sq2x)2 = Sq6Sq2x = Sq1Sq4Sq1Sq2x+ Sq2Sq4Sq2x.

Since this element lies in the top cohomology class of the manifold,

Sq1Sq4Sq1Sq2x+ Sq2Sq4Sq2x = v1Sq
4Sq1Sq2x+ v2Sq

4Sq2x

by definition of the Wu classes v1 and v2. By the Wu class characterization of the
Stiefel-Whitney classes (that w = Sq(v)), w1 = v1 and w2 = Sq1v1+v2. Now for
an orientable manifold w1 = 0 and thus v1 = 0. IfM12 is also spin, then w2 = 0,
and by working backward so v2 = 0. Therefore (Sq2x)2 = 0, meaning that the
operation C′ takes values 0 and 2 in Z/4. The invariant associated to the Q0-
homology (Sq2x)2 is thereby 〈(Sq2x)2, [M ]Z/4〉, the Kronecker pairing with the
[M ]Z/4, the orientation class ∈ H12(M

12;Z/4). For Sq2x the mod 2 reduction
of an integral class(as it is CPn) then this last invariant equals

∫
M (Sq2x)2. This

is denoted with the Pontryagin square, P , so that the invariant is
∫
M P(Sq2x)

The Adams filtrations in which these Z-towers start imply the values (mod-
ulo odd primes) of each invariant on a manifold (M,x) generating the associated
Z-tower. (If there is no differential, this works just as in dimension 8. The ex-
istence of the differential will complicate this procedure.)

The following are examples of spin 12-manifolds with specified elements of
H4: (HP3, y), (HP2 ×K3, y), (V2,1, vw), (S

4 ×B8, x) and (CP3 × CP3, vw).
12-dimensional quaternionic projective space, HP3, is a spin manifold be-

cause since it is 2-connected therefore the Stiefel-Whitney class obstructions to
being spin must vanish. Let y denote the first Pontryagin class of the tautolog-
ical SU2-bundle. Then y is a generator of H4(HP3;Z), and the pair (HP3, y) is
an element of the spin bordism of K(Z, 4).

(CP3 × CP3, vw), where v and w are the first Chern classes of each tauto-
logical complex line bundle over each CP3, is another such element.

Hypersurfaces of degree d in CPn are spin manifolds if the absolute value
|n − d| is odd. The K3 surface, a degree 4 hypersurface in CP3, is thus a
4-dimensional spin manifold, and can be equipped with the trivial class 0 ∈
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H4(K3;Z). For y the first Pontryagin class of tautological bundle over HP2,
one has the product given by taking the product of the manifolds and the direct
sum of their classes, (HP2 ×K3, y).

Hypersurfaces of bidegree a, b in CPn × CPm are spin if both |n − a| and
|m−b| are odd. For instance, V2,1 ⊂ CP3×CP4 is spin 12-manifold. For v and w
again the first Chern classes of each tautological line bundle over CP3 and CP4,
respectively, then vw ∈ H4(CP3×CP4;Z). The inclusion map i : V2,1 →֒ CP3×
CP4 induces a contravariant map on cohomology, so that i∗(vw) ∈ H4(V2,1;Z).

Let B8 be the spin 8-manifold with Â(B8) = −1 as mentioned in the section

on the Â-genus. Then equip S4 with a class x ∈ H4(S4;Z) dual to the orienta-
tion class, and (S4 ×B, x) constitutes another element of π12 MSpin∧K(Z, 4).

The purpose of the rest of this section is to show that the image of these
elements under the map Â : π12 MSpin ∧ K(Z, 4) → π12 bo ∧ K(Z, 4) generates
the group π12 bo∧K(Z, 4) after completion at the prime 2. (For the rest of the
section Z will mean the 2-adic integers, and, to exclude issues of odd torsion,
the cells in our skeleton filtration are actually cones on 2-complete spheres.)

In dimension 8, this was a straightforward procedure due to the absence of
differentials. There exists a differential coming from t − s = 13, so we cannot
work directly with the Ext term in t− s = 12 because the homotopy group is a
quotient of Ext, not Ext itself.

The basic idea is to use the obvious skeleton filtration of K(Z, 4) (after
completing at 2). First I define a cofibration sequence X3 →֒ X2 →֒ X1 →֒ X →

K(Z, 4), and show that the image of these manifolds under Â generates each of
the groups π12 bo ∧ Xi/Xj. This will then imply that the manifolds generate
the group π12 bo ∧K(Z, 4).

Let X be the 17-skeleton of K(Z, 4) (given by same diagram as its coho-
mology). Taking the cube of ι, the generator of H4(K(Z, 4);Z), defines a map

K(Z, 4)
ι3
→ K(Z, 12). Let X1 be the cofiber of this sequence. X1 therefore has a

cell structure given by the cells of X excluding the cells associated to ι3, ι2Sq2ι,
and ι2Sq3ι. Finally, X2 and X3 are as in the previous section; they are given
by the 8-skeleton and 7-skeleton of K(Z, 4), respectively.

Proposition 1. The image of (HP3, u) under Â generates the group π12 bo ∧
X/X1.

Proof: X/X1 is 11-connected, therefore we have the following commutative
diagram.

π12 bo ∧X

%%KKKKKKKKKKKKKKKKKKKKKKKKKK

p // π12 bo ∧X/X1

h

��
H12(bo ∧X/X1;Z)

u⊗ι3

��
Z
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where p is the map induced by X → X/X1, and h is the Hurewicz homo-
morphism, which is an isomorphism in this case since π12 is the first non-
trivial homotopy group. The map H12(bo ∧ X/X1;Z) → Z is given by the
generator of H12(bo ∧ X/X1;Z), which is u ⊗ ι3, where u is the Thom class
in H0(bo;Z). There are no other terms because X/X1 is 11-connected, and
H12(bo ∧X/X1;Z) ∼= H0(bo;Z) ⊗H12(X/X1;Z).

The composition of the maps is therefore an isomorphism given by

(u⊗ ι3) ◦ h : (M,x) −→

∫

M

x3

and under this map (HP3, y) is sent to the generator 1 ∈ Z. Therefore the image

of (HP3, y) under Â generates π12 bo ∧X/X1.
We therefore have a short exact sequence of homotopy groups induced by

the fibration X1 → X → X/X1,

π12 bo ∧X1 →֒ π12 bo ∧X
p
։ π12 bo ∧X/X1

p is surjective since p(HP3, y) generates π12 bo ∧X/X1.

Proposition 2. π12 bo ∧ X1/X2 is cyclic and nonzero, and is generated by

(HP3, y)− (CP3 ×CP3, vw). In addition, the following composition commutes,

π12 bo ∧X1

��

∫
M

P(Sq2x)

,,π12 bo ∧X1/X2

++ ++

//

**TTTTTTTTTTTTTTT
π12 bo ∧K(Z/4, 12) Z/4

(π12 bo ∧X1/X2)⊗ Z/2 Z/2
*



77ooooooooooooo

where P is the Pontryagin square, so that

K(Z, 4)
Sq2

−→ K(Z/2, 6)
P
−→ K(Z/4, 12)

Proof: The group is cyclic because there are Z-towers in 12 and 13, and
understanding the homotopy group rationally shows that the group Q ⊗ π13 is
trivial. Therefore there exists a differential dn, n ≥ 2, and, by simple inspection
of the Adams filtrations, the 2-component of π12 bo ∧X1/X2 is Z/2n+1.

In dimension 12 and 13, the minimal cell-complex for K(Z/4, 12) has a sphere
in dimension 12 and a sphere in dimension 13, so that in its Ext chart there is
a Z-tower in both dimensions 12 and 13.

The map P ◦ Sq2 induces a map on the Z-towers in t− s = 12 which must
be an injection by the following lemma. Since it is an injection, an element
(M,x) generates the group π12 bo∧X1/X2 if and only if it is sent to an element
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of Adams filtration 1 in the Z-tower for the Ext chart of K(Z/4, 12). This is
determined by the value of the map

∫
M P(Sq2x). On (HP3, y)−(CP3×CP3, vw),

the map takes value 2 (so the manifold is sent to Adams filtration 1), and thus
it generates the group π12 bo ∧X1/X2.

Lemma 2.

h−1
0 ExtA(1)(M,Z/2)/(h0v

2
1)

∼= h−1
0 ExtA(0)(M,Z/2)

Alternatively, define R := h−1
0 ExtA(0)(Z/2,Z/2) = F2[h

±1
0 , h0v

2
1 ] and S :=

R/(h0v
2
1). Then

h−1
0 ExtA(1)(M,Z/2)⊗R S ∼= h−1

0 ExtA(0)(M,Z/2)

Proof: Consider the short exact sequence of A(1)-modules S
i
→֒ Y

j
։ Z,

where S = {s2, s3 : Sq1s2 = s3}, Y = {y0, y2, y3 : Sq2y0 = y2, Sq
1y2 = y3},

Z = {z0}, the maps are defined by i(s2) = y2 and j(y0) = z0.
For M any finite A(1)-module, h−1

0 ExtA(1)(M ⊗ S;Z/2) = 0, since by the
stable structure theory of [3], the Q0-homology of M ⊗S will be 0-dimensional,
and thus h0 will not act freely on any element of ExtA(1)(M ⊗ S;Z/2) = 0.
Therefore, after inverting h0 every element will be in the image of the action of
h−1
0 of 0, and the new module is 0.
The A(1)-module Z is the identity under tensor multiplication, so thatM ⊗

Z ∼= M for any M . The short exact sequence M ⊗ S →֒ M ⊗ Y ։ M ⊗ Z
induces a long exact sequence in Ext. After inverting h0, the term involving S
becomes 0, and this implies the following isomorphism:

h−1
0 ExtA(1)(M ⊗ Y,Z/2) ∼= h−1

0 ExtA(1)(M,Z/2).

Therefore, the map ExtA(1)(M,Z/2)⊗EExtA(1)(Y,Z/2) → ExtA(1)(M⊗Y,Z/2),
where E := ExtA(1)(Z/2,Z/2), is an isomorphism after inverting h0.

Using this trick once more involving T := {t0, t2, t3, t5 : Sq2t0 = t2, Sq
1t2 =

t3, Sq
2t3 = t5}, and then using that T ∼= A(1)//A(0), proves the lemma.

That is, there exists a short exact sequence M ⊗ Z ′ →֒ M ⊗ T ։ M ⊗ Y ,
where Z ′ := {z5}, induced by the maps sending z5 to t5, and t0 to y0. This
produces two long exact sequences:

Ext(M)⊗E Ext(Z ′)

p

��

Ext(M)⊗E Ext(T )oo

q

��

Ext(M)⊗E Ext(Y )oo

r

��

. . .oo

Ext(M ⊗ Z ′) Ext(M ⊗ T )oo Ext(M ⊗ Y )oo . . .oo

where Ext(∗) denotes ExtA(1)(∗,Z/2). After inverting h0, p and r are isomor-
phisms as determined earlier. By the five-lemma, q is therefore an isomorphism.
Using the Hom-tensor interchange on T = A(1)//A(0) completes the proof.

Proposition 3. The image of (HP2 × K3, y) under Â generates the group

π12 bo ∧X2/X3.
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Proof: X2/X3 is 7-connected and in cohomology has only one Q0-homology
in dimension 8. Thus, π12 bo ∧X2/X3

∼= (π4 bo)⊗ (π8 bo ∧X2/X3).

π4k MSpin
Â // //

∫
M
Â

##F
FFFFFFFFFFFFFFFFFFFF
π4k bo� _

j

��
π4k bu

Z

where j is an isomorphism when k is even, and corresponds to multiplication by
2 when k is odd. The value of the Â-genus on a spin manifoldM4k, representing
an element of π4k MSpin, is given by the integer value (j◦Â)[M4k] =

∫
M
Â. For

k = 1, j corresponds to multiplication by 2. Since for the K3 surface,
∫
K3
Â = 2,

therefore Â maps [K3] ∈ π4 MSpin to the generator of π4 bo.
Exactly the same argument that shows that the image of (HP3, y) generates

π12 bo ∧ X/X1 applies to show that the image of (HP2, u) generates π8 bo ∧
X2/X3:

π8 MSpin ∧K(Z, 4)

Â

y

π8 bo ∧K(Z, 4)
∼

−−−−→ π8 bo ∧X2
p

−−−−→ π8 bo ∧X2/X3

h

y

H8(bo ∧X2/X3;Z)

u⊗ι2
y

Z

and the composition sends (M8, x) →
∫
M
x2. Since

∫
HP2 u

2 = 1, and (HP2, y)
generates π8 bo∧X2/X3. Therefore the product (K3, 0)(HP2, u) = (HP2×K3, u)
maps to a generator of (π4 bo)⊗ (π8 bo ∧X2/X3).

Proposition 4. The image of (S4×B8, u) under Â generates the group π12 bo∧
X3.

Proof: From the Adams spectral sequence, the π12 bo ∧X3
∼= Z. Rationally

then, it is the case that π12 bo∧X3⊗Q ∼= (π8bo)⊗(π4X3)⊗Q. By the argument

that if (M8, x) generates the group π8 bo ∧X3 only if
∫
M
xÂ4 = ± 1

2 , so we see

that (M12, x) generates π12 bo ∧ X3 only if
∫
M xÂ8 = ±1. Considering the

mapping Â : π8 MSpin → π8 bo, the image of B8 generates π8 bo (can see this
by looking at the Hurewicz homomorphism, just as in Lemma 2). Likewise, the
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image under the Â map of (S4, x) is an element of π4 bo ∧ X3. Their product
(S4, x)× (B8, 0) = (S4 ×B8, x+0) is not only in π12 bo∧K(Z, 4) but generates
π12 bo ∧X3, by evaluating the integral.

Combining propositions 1 through 4 proves:

Theorem 6. After completion at 2, the images under the Â map of (HP3, y),
(CP3 × CP3, vw), (HP2 ×K3, y), (S

4 ×B8, x) generate π12 bo ∧K(Z, 4).

Now, these manifolds plus 4-forms generate the 2-completed connective real
K-theory of K(Z, 4), so a linear relation between our invariants based on the
values they take on these elements will hold for any 12-dimensional spin manifold
equipped with a specified four dimensional cohomology class, after inverting odd
primes. We will then write down a relation, which we can then verify easily.
In addition to element (S4 ×B8, x), the hypersurface (V2,1, vw) is also included
in our table. This is not because it is needed to generate the 2-completed
homotopy group, but it is used in the consideration of odd primes in the next
chapter, which will show that the addition is sufficient to then have a set that
generates π12 bo ∧K(Z, 4) integrally.

*
∫
M x3

∫
M x2Â4

∫
M xÂ8 〈12 (Sq

2x)2, [M ]〉
HP3 1 −1

2·3
1

2·32·5 0
HP2 ×K3 0 2 -1/6 0
S4 ×B8 0 0 -1 0
V2,1 1 -1/6 -1/18 0

CP3 × CP3 1 0 1
22·32 1

We can rewrite this, since these invariants are additive:

*
∫
M
x3 〈12 (Sq

2x)2, [M ]〉
∫
M
x2Â4

∫
M
xÂ8

HP3 1 0 -1/6 1
2·32·5

CP3 × CP3 −HP3 0 1 1/6 1
22·3·5

HP2 ×K3 0 0 2 -1/6
S4 ×B8 0 0 0 -1

−V2,1 +HP3 0 0 0 1/15

With the manifolds above, the four dimensional cohomology classes are un-
derstood to be as previously defined. (The plus and minus come from the
structure of the spin bordism ring, namely disjoint union and disjoint union
and reversing orientation.) These manifolds plus classes x form a basis for
the connective K-theory of K(Z, 4) in dimension 12. Thus, by finding a linear
formula for the values of these invariants on these manifolds, and using the sur-
jectivity of the map from MSpin, we can find a rational polynomial of the type
sketched in the introduction, and prove that it must take integer values on spin
12-manifolds. This will re-prove the result of Diaconescu, Moore, and Witten.

That is, the values that our invariants take on a spin 12-manifold together
with 4-form (M,x) are determined by the image of (M,x) under the map from
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the spin bordism of K(Z, 4) to the connective K-theory of K(Z, 4). The mani-
folds above form a basis for the Ext term converging to that stable homotopy
group, thus they generate that final term. (M,x) is then sent to the same ele-
ment of π∗ bo ∧K(Z, 4) as a linear combination of our basis elements. Proving
a linear formula (mod 2) on a spin 12-manifold then constitutes checking it on
our manifold basis above.

This procedure easily produces such results as the following (modulo factors
of odd primes):

Proposition 5. (M12, x) as above, then
∫
M 6x2Â4 ∈ Z.

Proposition 6. (M12, x) again as above, then 〈12 (Sq
2x)2, [M ]〉 ≡ 180

∫
M
xÂ8 (mod 2).

Likewise, we can easily evaluate for each of these elements of ΩSpin
12 K(Z, 4)

that
∫
(x3/6)± 3x2Â4 + 30xÂ8 is an integer. Therefore, modulo factors of odd

primes (which we will deal with in the next chapter) we have proved:

Theorem 7. M12 an 12-dimensional spin manifold, and x an integral 4-form,

then ∫

M12

x3

6
± 3x2Â4 + 30xÂ8 ∈ Z

5 At odd primes

The purpose of this section is to check that the mod 2 bases used in the previous
chapter are actually bases integrally, completing the proofs of the formulas given.

The mod p cohomology of bo looks significantly different from the even prime
case. After completion at any odd prime p, bo splits as a wedge of suspensions
of Johnson-Wilson spectra BP 〈1〉. The cohomology of each is similar, but
simpler, to the mod 2 cohomology of bo. Where H∗(bo;Z/2) = A//A(1), it is
the case that H∗(BP 〈1〉;Z/p) = Ap//E[Q0, Q1] the mod p Steenrod algebra
quotiented out by an exterior algebra of elements which act as differentials.
See [13]. This is easier for two reasons. First, computing Ext over an exterior
algebra is cleaner than computing it over A(1). Second, through a range of
dimensions Ap//E[Q0, Q1] as a direct sum of E[Q0, Q1]-submodules is fairly
simple, while as a {Q0,P

1}-module it is complicated (and not at all the direct
sum of stably invertible modules).

5.1 H∗(K(Z, 4);Z/p) as an E[Q0, Q1]-module

At odd primes, bo splits as a sum of Johnson-Wilson spectra. More precisely,

there exists a map: bo →

1
2
(p−3)∨
k=0

Σ4kBP 〈1〉 that induces an isomorphism on

cohomology mod p, i.e., is a Cp-homotopy equivalence.
Taking Ext over the wedge of spaces is the same as the direct sum of the

Ext terms for each individual space. Further, there can be no differentials in
the spectral sequence relating the Ext terms of the wedged spaces.
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The trick that we used to simplify the Ext term for bo in the mod 2 case
works verbatim:

ExtAp
(A//E[Q0, Q1]⊗Z/p H

∗(K(Z, 4);Z/p),Z/p)

= ExtAp
((A ⊗E[Q0,Q1] Z/p)⊗Z/p H

∗(K(Z, 4);Z/p),Z/p)

= ExtE[Q0,Q1](H
∗(K(Z, 4);Z/p),Z/p)

Additionally, the structure of this Ext term for a p-complete sphere is simpler
in the odd prime case. The Ext chart for ExtE[Q0,Q1](Z/3,Z/3) is as follows.

0 4 8 12 16 20 24

0

2

4

6

8

•

•

•

OO

•ggggggggggg

•

•

OO

•ggggggggggg

•

•

OO

•ggggggggggg

•

•

OO

•ggggggggggg

•

•

OO

•ggggggggggg

•

•

OO

gggggggggggg
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The task of computation is then to determine the structure of the mod p
cohomology of K(Z, 4) as a direct sum of E[Q0, Q1]-modules. Taking suspen-
sions of BP 〈1〉 translate the resulting structure. The arguments at 2 relat-
ing the Adams filtration of the image of (M,x) ∈ π∗MSpin ∧ K(Z, 4) to the
values it takes under the given invariants carry over exactly. The Ext term
ExtE[Q0,Q1](Z/5,Z/5) is then:

0 4 8 12 16 20 24

0

2

4

6

•

•

OO

•cccccccccccccccccccccc

•

OO

•cccccccccccccccccccccc

•

OO

•cccccccccccccccccccccc

•

OO

Since then connective K-theory will be given by the wedge of two Johnson-
Wilson spectra, the second of which suspended 4 times, so:
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0 4 8 12 16 20 24

0

2

4

6

•

•

OO

•cccccccccccccccccccccc

•

OO

•cccccccccccccccccccccc

•

OO

ccccccccccccccccccccccc

11

•

•

OO

•cccccccccccccccccccccc

•

OO

ccccccccccccccccccccccc

11

5.2 Verifying the manifold basis by the mod p spectral

sequences

The purpose of this section is to determine that the particular spin manifolds
that generated the connective K-theory of K(Z, 4) in dimensions 8 and 12 after
completion at the prime 2 still generate the connective K-theory after comple-
tion at any odd prime p. This will prove that those manifolds generate the
connective K-theory integrally (that is, without completing at any prime), giv-
ing the final piece of the proof for the linear relations between our analytic
invariants

∫
M xnÂ. This will be much easier than the prime 2 case, because

in this range of dimensions there are no differentials at odd primes and all the
invariants measuring the Adams filtration are defined rationally (as opposed to
the invariant coming from the Q0-homology (Sq2ι)2 at the prime 2). Thus, all
that is required is to show that our previous manifolds map to the bottom of
each Z-tower at each prime p, which can be done just by noting the power of p
in the value that the associated invariant takes on that manifold.

Of course, first we must decompose the mod p cohomology of K(Z, 4) into
E[Q0, Q1]-modules. Just as at the prime 2, at each odd prime p the mod p
cohomology of K(Z, 4) is a free polynomial algebra on admissible monomials
(of excess less than 4 and not ending in Q0). The cell chart for K(Z, 4) after
completion at p = 3 is given below, showing the action of Q0 and Q1:

'&%$ !"#1 '&%$ !"#2 '&%$ !"#3 '&%$ !"#4

'&%$ !"#5 '&%$ !"#6 '&%$ !"#7 '&%$ !"#8 '&%$ !"#9

1 – ι 4 – ι3 7 – 2ι(Q1ι)
2 – P 1ι 5 – ι2 8 – (P 1ι)2

3 – Q1ι 6 – ι(P 1ι) 13 – 2(P 1ι)(Q1ι)

which gives the spectral sequence:

35



0 4 8 12

0

2

•

OO

•

OO

•

OO •jjjjjjjjjjjjjjjjj

OO

•

OO

•

OO

There can be no differentials in this range, because there are no adjacent
Z-towers. Since the Z-tower in t− s = 8 coming from the Q0-homology ι sits in
Adams filtration zero, a spin manifold (M,x) sent to the bottom of that tower

must take value
∫
M
xÂ4 = 1/3, modulo factors of other primes. However, since∫

CP3×S2 abÂ4 = −1/6, our generating set of manifolds for the prime 2 also works
after completion at 3, giving the following:

Proposition 7. The elements (CP3 × S2, ab), (HP2, y) generate the group

(π8 bo ∧K(Z, 4))⊗ Z3.

Likewise, examining the Adams filtrations in which the Z-towers in t−s = 12
begin, a spin manifold sent to the bottom of the Z-tower starting in Adams
filtration 1 should take value 1/3 on the invariant

∫
M xÂ8 (modulo factors of

other primes) and value 0 on the two other invariants,
∫
M
x2Â4 and

∫
M
x3. This

is precisely the case of (HP3, y) − (V2,1, vw). Similarly, (HP3, y) and (CP3 ×
CP3, vw) − (HP3, y) generate the Z-towers starting in filtration 0.

Proposition 8. The elements (CP3 × CP3, vw), (HP3, y), (V2,1, vw) generate

the group (π12 bo ∧K(Z, 4))⊗ Z3.

At the prime 5 there is a similar picture for the structure of the mod 5
cohomology of K(Z, 4) , again showing the action of Q0 and Q1, which gives:

0 4 8 12

0 •

OO

•

OO

•

OO

•

OO

•

OO

•

OO

This is also what the spectral sequence looks like through t− s = 13 for all
prime p greater than 5.

Also, we do not need to do any significant work at the prime 7 because the
slope of Â is 2(p1 − 1) = 2(7 − 1) = 12, which means that the first place that
we may conceivably need a 7 in the denominator of the value that our invariant
takes on the basis element associated to it is in dimension 4 + 12 = 16, outside
the range of dimensions for which we are presently working. Were the present
goal to understand these spectral sequences globally, we would have to deal with
all primes, but for the range of dimensions we are concerned with, we do not
need to look more than cursorily at p > 5.
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Proposition 9. After completion at the prime 5, the elements (V2,1, vw), (HP3, y),
(CP3 × CP3, vw) generate the homotopy group π12 bo ∧K(Z, 4).

This completes the proofs of Theorems 5, 6, and 7, that the previous set
of manifolds generate the connective real K-theory of K(Z, 4) at 8 and 12, and
that the given integrals are then always integers.

6 Epilogue

This work is conceived as the first step in a deeper investigation with three
goals: first, to find a general polynomial P (x) = ( 1

n!x
n + . . .) in a 4-form x for

a 4n-dimensional spin manifold M such that
∫
M P (x)Â is an integer for all M ;

second, to find a set of spin manifolds equipped with 4-forms that generate the
connective K-theory π4n bo ∧K(Z, 4), compute this group exactly, and thereby
obtain all such integrality results simply by checking formulas on the set of
manifolds; and third, to find some meaning for the polynomial P related to
index theory.

At present, these three things are far from accomplished. The obvious pre-
scription for their achievement would be to put the infinite dimensional structure
of K(Z, 4) into workable order at each prime and determine some regularity or
periodicity to move through each Ext term mapping manifolds to the bottom
of Z-towers in the families coming from each invertible module. This approach
encounters the immediate difficulty that the structure for K(Z, 4), past even a
small range of dimensions, is opaque. This can be dealt with using the Milnor
basis for Steenrod algebra, but it happens that at the prime 2, for instance, the
cohomology of K(Z, 4) is a direct sum of stably invertible modules only through
48 dimensions, after which noninvertible modules appear. This is likely the
case at all primes. There is the additional problem of even defining the invari-
ants coming from Q0-homologies that do not exist integrally. Further, there are
differentials at every prime p, and especially many at 2.

For spin 16-manifolds, these difficulties are manageable. Addressing these
issues, and explicitly dealing with 16-manifolds, will be the focus of future work.
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