
CHAPTER I

BASIC NOTIONS

1.1. (a) 86.66 . . . and 88.33 . . . .
(b) a1 = 0.6, a2 = 0.4 will work in the first case, but there are no possible such

weightings to produce the second case, since Student 1 and Student 3 have to end
up with the same score.

1.2. (a) x = 2, y = −1/3. (b) x = 1, y = 2, z = 2. (c) This system does not have a
solution since by adding the first two equations, we obtain x + 2y + z = 7 and that
contradicts the third equation. (d) Subtracting the second equation from the first
yields x + y = 0 or x = −y. This system has infinitely many solutions since x and
y can be arbitrary as long as they satisfy this relation.

2.1.

x + y =


−1

3
0


 , 3x− 5y + z =


 14

1
−25


 .

2.2.

Ax =



−15
−10

4
−10


 , Ay =




−2
−2
14

−20,


 Ax + Ay = A(x + y) =



−17
−12

18
−30


 .

2.3. A + 3B,C + 2D,DC are not defined.

A + C =
[

0 0 0
0 0 0

]
, AB =

[−9 8
−8 4

]
,

BA =


 1 −5 7

1 −1 3
−3 −1 −5


 , CD =

[−4 −3 13
−2 −6 10

]
.

2.4. We have for the first components of these two products

a11 + a122 = 3
a112 + a12 = 6

This is a system of 2 equations in 2 unknowns, and you can solve it by the usual
methods of high school algebra to obtain a11 = 3, a12 = 0. A similar argument
applied to the second components yields a2,1 = 7/3, a22 = −2/3. Hence,

A =
[

3 0
7/3 −2/3

]
.
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2.5. For example


 a11 a12 a13

a21 a22 a23

a31 a32 a33





 1

0
0


 =


 a11 + 0 + 0

a21 + 0 + 0
a31 + 0 + 0


 =


 a11

a21

a31


 .

2.6.
(a) [

2 −3
−4 2

]
x =

[
2
3

]
.

(b) [
2 −3

−4 + 2

]
x =

[
4
1

]
.

(c) 
 1 1 0

0 1 1
2 3 −1


x =


 1

1
0


 .

2.7. (a) |u| =
√

10, |v| =
√

2, |w| =
√

8. (b) Each is perpendicular to the other two.
Just take the dot products. (c) Multiply each vector by the reciprocal of its length:

1√
10

u,
1√
2
v,

1√
8
w.

2.8. (b) Let u be the n × 1 column vector all of whose entries are 1, and let v the
the corresponding 1× n row vector. The conditions are Au = cu and vA = cv for
the same c.

2.9. We need to determine the relative number of individuals in each age group after
10 years has elapsed. Notice however that the individuals in any given age group
become (less those who die) the individuals in the next age group and that new
individuals appear in the 0 . . . 9 age group.

A =




0 .01 .04 .03 .01 .001 0 0 0 0
.99 0 0 0 0 0 0 0 0 0
0 .99 0 0 0 0 0 0 0 0
0 0 .99 0 0 0 0 0 0 0
0 0 0 .99 0 0 0 0 0 0
0 0 0 0 .98 0 0 0 0 0
0 0 0 0 0 .97 0 0 0 0
0 0 0 0 0 0 .96 0 0 0
0 0 0 0 0 0 0 .90 0 0
0 0 0 0 0 0 0 0 .70 0




Note that this model is not meant to be realistic.

3.1. (a) Every power of I is just I. (b) J2 = I, the 2× 2 identity matrix.
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3.2. There are lots of answers. Here is one[
1 1
1 1

] [
1 −1
−1 1

]
=

[
0 0
0 0

]

3.3. By the distributive law,

A(ax + by) = A(ax) + A(by).

However, one of the rules says we may move scalars around at will in a matrix
product, so the above becomes

a(Ax) + b(Ay).

3.4. This is an exercise in the proper use of subscripts. The i, r entry of (AB)C = DC
is

p∑
k=1

dikckr =
p∑

k=1

n∑
j=1

aijbjkckr.

Similarly, the i, r entry of A(BC) = AE is

n∑
j=1

aijejr =
n∑

j=1

p∑
k=1

aijbjkckr.

These are the same since the double sums amount to the same thing.

4.1. (a) x1 = −3/2, x2 = 1/2, x3 = 3/2.
(b) No solutions.
(c) x1 = −27, x2 = 9, x3 = 27, x4 = 27. In vector form,

x =



−27
9
27
27


 .

4.2.

X =
[

2 −1
−3 2

]
.

4.3. (a) Row reduction yields
[

1 2 | 1 0
0 0 | 1 −1

]
.

Since the last row consists of zeroes to the left of the separator and does not consist
of zeroes to the right, the system is inconsistent and does not have a solution.

(b) The solution is

X =


 3/2 0

1/2 1
−1/2 0


 .
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4.4. The effect is to add a times the first column to the second column. The general
rule is that if you multiply a matrix on the right by the matrix with an a in the
i, j-position (i 6= j) and ones on the diagonal, the effect is to add a times the ith
column to the jth column.

4.5.

 11 13 15
−2 −1 0
7 8 9




5.1.

(a)


 0 1 −1/2

1 −3 5/2
−1 2 −3/2


 , (b)


−5 −1 7

1 0 −1
2 1 −3




(c) not invertible, (d)



−4 −2 −3 5

2 1 1 −2
6 2 4 −7

−1 0 0 1




5.2.

5.3. (AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I.

5.4. The basic argument does work except that you should start with the second col-
umn instead. If that consists of zeroes, go on to the third column, etc. The matrix
obtained at the end of the Gauss-Jordan reduction will have as many columns at
the beginning which consist only of zeroes as did the original matrix. For example,[

0 1 3 0
0 1 3 4

]
→ · · · →

[
0 1 3 0
0 0 0 1

]

5.5. (b) The coefficient matrix is almost singular. Replacing 1.0001 by 1.0000 would
make it singular.

5.6. The answer in part (a) is way off but the answer in part (b) is pretty good. This
exercise shows you some of the numerical problems which can arise if the entries
in the coefficient matrix differ greatly is size. One way to avoid such problems is
always to use the largest pivot available in a given column. This is called partial
pivoting.

5.7. The LU decomposition is
 1 2 1

1 4 1
2 3 1


 =


 1 0 0

1 1 0
2 −1/2 1





 1 2 1

0 2 0
0 0 −1


 .

The solution to the system is

x =


 1/2
−1/2

3/2


 .
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6.1.

(a) x =


−3/5

2/5
0


 + x3


 1
−1/2

1


 , (b) x =

[
3/5
1/5

]
,

(c) x =




2
0
2
0


 + x2




2
1
0
0


 + x4



−3
0
1
1


 .

6.2. Only the Gaussian part of the reduction was done. The Jordan part of the
reduction was not done. In particular, there is a pivot in the 2, 2 position with a
non-zero entry above it. As a result, the separation into bound and free variables
is faulty.

The correct solution to this problem is x1 = 1, x2 = −x3 with x3 free.

6.3.

(a) x = x4




2
0
−4
1


 , (b) x = x3




−10
2
1
0
0


 + x4




3
−1
0
1
0


 .

6.4. We have u · v = −1, |u| =
√

2, and |v| =
√

3. Hence, cos θ =
−1√

6
. Hence,

θ = cos−1 −1√
6
≈ 1.99 radians or about 114 degrees.

6.5. (a) has rank 3 and (b) has rank 3.

6.6. The ranks are 2, 1, and 1.

6.7. (a) is always true because the rank can’t be larger than the number of rows.
Similarly, (b) and (d) are never true. (c) and (e) are each sometimes true. (f) is
true just for the zero matrix.

6.8. In case (a), after reduction, there won’t be a row of zeroes to the left of the ‘bar’
in the augmented matrix. Hence, it won’t matter what is to the right of the ‘bar’.
In case (b), there will be at least one row of zeroes to the left of the ‘bar’, so we can
always arrange for a contradictory system by making sure that there is something
non-zero in such a row to the right of the ‘bar’.

6.9. The rank of AB is always less than or equal to the rank of A.

6.10. A right pseudo-inverse is 
−1 1

2 −1
0 0


 .

There are no left pseudo-inverses for A. For if B were a left pseudo-inverse of A,
A would be a right pseudo-inverse of B, and B has more 3 rows and 2 columns.
According to the the text, a matrix with more rows than columns never has a right
pseudo-inverse.
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6.11. Suppose m < n and A has a left pseudo-inverse A′ such that A′A = I. It would
follow that A′ is an n × m matrix with n > m (more rows that columns) and A′

has a right pseudo-inverse, namely A. But we already know that is impossible.

7.1. The augmented matrix has one row [ 1 −2 1 | 4 ]. It is already in Gauss–
Jordan reduced form with the first entry being the single pivot. The general solution
is x1 = 4 + 2x2 − x3 with x2, x3 free. The general solution vector is

x =


 4

0
0


 + x2


 2

1
0


 + x3


−1

0
1


 .

The second two terms form a general solution of the homogeneous equation.

7.2. (a) is a subspace, since it is a plane in R3 through the origin.
(b) is not a subspace since it is a plane in R3 not through the origin. One can

also see that it it doesn’t satisfy the defining condition that it be closed under
forming linear combinations. Suppose for example that u and v are vectors whose
components satisfy this equation, and s and t are scalars. Then

u1 − u2 + 4u3 = 3
v1 − v2 + 4v3 = 3

Multiply the first equation by s and the second by t and add. You get

(su1 + tv1)− (su2 + tv2) + 4(su3 + tv3) = 3(s + t).

This is the equation satisfied by the components of su + tv. Only in the special
circumstances that s+ t = 1 will this again satisfy the same condition. Hence, most
linear combinations will not end up in the same subset. A much shorter but less
instructive argument is to notice that the components of the zero vector 0 don’t
satisfy the condition.

(c) is not a subspace because it is a curved surface in R3. Also, with some effort,
you can see that it is not closed under forming linear combinations. Probably, the
easiest thing to notice is that the components of the zero vector don’t satisfy the
condition.

(d) is not a subspace because the components give a parametric representation
for a line in R3 which doesn’t pass through the origin. If it did, from the first
component you could conclude that t = −1/2, but this would give non-zero values
for the second and third components. Here is a longer argument which shows that
if you add two such vectors, you get a vector not of the same form.


 1 + 2t1

−3t1
2t1


 +


 1 + 2t2

−3t2
2t2


 =


 2 + 2(t1 + t2)

−3(t1 + t2)
2(t1 + t2)




The second and third components have the right form with t = t1 + t2, but the first
component does not have the right form because of the ‘2’.
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(e) is a subspace. In fact it is the plane spanned by

v1 =


 1

2
1


 v3 =


 2
−3

2


 .

This is a special case of a subspace spanned by a finite set of vectors. Here is a
detailed proof showing that the set satisfies the required condition.


 s1 + 2t1

2s1 − 3t1
s1 + 2t1


 +


 s2 + 2t2

2s2 − 3t2
s2 + 2t2


 =


 s1 + s2 + 2(t1 + t2)

2(s1 + s2)− 3(t1 + t2)
s1 + s2 + 2(t1 + t2)


 .

c


 s + 2t

2s− 3t
s + 2t


 =


 cs + 2(ct)

2(cs)− 3(ct)
cs + 2(ct)


 .

What this shows is that any sum is of the same form and also any scalar multiple is
of the same form. However, an arbitrary linear combination can always be obtained
by combining the process of addition and scalar multiplication in some order.

Note that in cases (b), (c), (d), the simplest way to see that the set is not a
subspace is to notice that the zero vector is not in the set.

7.3. No. Pick v1 a vector in L1 and v2 a vector in L2. If s and t are scalars, the only
possible way in which sv1 + tv2 can point along one or the other of the lines is if
s or t is zero. Hence, it is not true that every linear combination of vectors in the
set S is again in the set S.

7.4. It is a plane through the origin. Hence it has an equation of the form a1x1 +
a2x2 + a3x3 = 0. The given data show that

a1 + a2 = 0
a2 + 3a3 = 0

We can treat these as homogeneous equations in the unknowns a1, a2, a3. The
general solution is

a1 = 3a3

a2 = −3a3

with a3 free. Taking a3 = 1 yields the specific solution a1 = 3, a2 = −3, a3 = 1 or
the equation 3x1 − 3x2 + x3 = 0 for the desired plane. Any other non-zero choice
of a3 will yield an equation with coefficients proportion to these, hence it will have
the same locus.

Another way to find the equation is to use the fact that u1×u2 is perpendicular
to the desired plane. This cross product ends up being the vector with components
〈3,−3, 1〉.
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7.5. (a) The third vector is the sum of the other two. The subspace is the plane
through the origin spanned by the first two vectors. In fact, it is the plane through
the origin spanned by any two of the three vectors. A normal vector to this plane
may be obtained by forming the vector product of any two of the three vectors.

(b) This is actually the same plane as in part (a).

7.6. (a) A spanning set is given by


v1 =


 2

1
0


 , v2 =


−5

0
1





 .

Take dot products to check perpendicularity.
(b) A spanning set is given by

{[−1
1

]}
.

8.1. (a) No. v1 = v2 + v3. See also Section 9 which provides a more systematic way
to answer such questions. (b) Yes. Look at the pattern of ones and zeroes. It is
clear that none of these vectors can be expressed as a linear combination of the
others.

8.2.






−1/3
2/3
1
0


 ,




1/3
−2/3

0
1







8.3. (a) One. (b) Two.

8.4. No. 0 can always be expressed a linear combination of other vectors simply by
taking the coefficients to be zero. One has to quibble about the set which has only
one element, namely 0. Then there aren’t any other vectors for it to be a linear
combination of. However, in this case, we have avoided the issue by defining the
set to be linearly dependent. (Alternately, one could ask if the zero vector is a
linear combination of the other vectors in the set, i.e., the empty set. However, by
convention, any empty sum is defined to be zero, so the criterion also works in this
case.)

8.5. Suppose first that the set is linearly independent. If there were such a relation
without all the coefficients c1, c2, c3 zero, then one of the coefficients, say it was c2

would not be zero. Then we could divide by that coefficient and solve for v2 to get

v1 = −c1

c2
v1 − c3

c2
v3,

i.e., v2 would be a linear combination of v1 and v3. A similar argument would apply
if c1 or c3 were non-zero. That contradicts the assumption of linear independence.
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Suppose conversely that there is no such relation. Suppose we could express v1

in terms of the other vectors

v1 = c2v2 + c3v3.

This could be rewritten
−v1 + c2v2 + c3v3 = 0.

which would be a relation of the form

c1v1 + c2v2 + c3v3 = 0

with c1 = −1 6= 0. By assumption there are no such relations. A similar argument
shows that neither of the other vectors could be expressed as a linear combination
of the others.

A similar argument works for any number of vectors v1,v2, . . . ,vn.

8.6. (a) v1 × v2 · v3 =


 1
−1
1


 ·


 1

0
1


 = 2 6= 0, so v3 is not perpendicular to v1 × v2.

Similarly, calculate v1 × v3 · v2 and v2 × v3 · v1.
(b) The subspace spanned by these vectors has dimension 3. Hence, it must be

all of R3.
(c) Solve the system

v1s1 + v2s2 + v3s3 =


 1 0 1

1 1 0
0 1 1





 s1

s2

s3


 =


 1

1
2




for s1, s2, s3. The solution is s1 = 0, s2 = 1, s3 = 1.

8.7. It is clear that the vectors form a linearly independent pair since neither is a
multiple of the other. To find the coordinates of e1 with respect to this new basis,
solve [

1 1
−1 1

] [
x1

x2

]
=

[
1
0

]
.

The solution is x1 = x2 = 1/2. Hence, the coordinates are given by[
1/2
1/2

]
.

Similarly, solving [
1 1
−1 1

] [
x1

x2

]
=

[
0
1

]

yields the following coordinates for e2.[−1/2
1/2

]
.

One could have found both sets of coordinates simultaneously by solving[
1 1
−1 1

]
X =

[
1 0
0 1

]

which amounts to finding the inverse of the matrix [u1 u2 ].
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8.8. (a) The set is linearly independent since neither vector is a multiple of the other.
Hence, it is a basis for W .

(b) We can answer both questions by trying to solve

v1c1 + v2c2 =


 1 0

1 1
0 1




[
c1

c2

]
=


 1
−1
−2




for c1, c2. If there is no solution, the vector is not in subspace spanned by {v1,v2}.
If there is a solution, it provides the coordinates. In this case, there is the unique
solution c1 = 1, c2 = −2.

8.9. (a) You can see you can’t have a non-trivial linear relation among these vectors
because of the pattern of zeroes and ones. Each has a one where the others are
zero.

(b) This set of vectors does not span R∞. For example, the ‘vector’

(1, 1, 1, . . . , 1, . . . )

with all entries 1 cannot be written a linear combination of finitely many of the ei.
Generally, the only vectors you can get as such finite linear combinations are the
ones which have all components zero past a certain point.

9.1. Gauss–Jordan reduction of the matrix with these columns yields


1 0 3/2 −1/2
0 1 1/2 1/2
0 0 0 0
0 0 0 0




so the first two vectors in the set form a basis for the subspace spanned by the set.

9.2. (a) Gauss-Jordan reduction yields
 1 0 2 1 1

0 1 5 1 2
0 0 0 0 0




so 



 1
−1
1


 ,


 0

1
1







is a basis.
(b) A basis for the row space is

{[ 1 0 2 1 1 ] , [ 0 1 5 1 2 ]}.
Note that neither of these has any obvious connection to the solution space which

has basis 





2
5
1
0
0


 ,




1
1
0
1
0


 ,




1
2
0
0
1







.
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9.3. Reduce 
 1 1 1 0 0
−2 2 0 1 0
−1 1 0 0 1




to get 
 1 0 1/2 0 −1/2

0 1 1/2 0 1/2
0 0 0 1 −2


 .

Picking out the first, second, and fourth columns shows that {v1,v2, e2} is a basis
for R3 containing v1 and v2.

9.5. (a) Gaussian reduction shows that A has rank 2 with pivots in the first and third
columns. Hence, 



 1

1
3


 ,


 2

3
7







is a basis for its column space.
(b) Solve the system 

 1 2 2 3
1 2 3 4
3 6 7 10


x =


 0

1
1




It does have solutions, so the vector on the right is in the column space.

9.6. (a) Every such system is solvable. For, the column space of A must be all of R7

since it is a subspace of R7 and has dimension 7.
(b) There are definitely such systems which don’t have solutions. For, the di-

mension of the column space is the rank of A, which is at most 7 in any case. Hence,
the column space of A must be a proper subspace of R12.

10.2. (a) The rank of A turns out to be 2, so the dimension of its nullspace is 4−2 = 3.
(b) The dimension of the column space is the rank, which is 2. (c) These add up
to the number of columns of A which is 5.

10.3. The formula is correct if the order of the terms on the right is reversed. Since
matrix multiplication is not generally commutative, we can’t generally conclude
that A−1B−1 = B−1A−1.

10.4. (a) will be true if the rank of A is 15. Otherwise, there will be vectors b in R15

for which there is no solution.
(b) is always true since there are more unknowns that equations. In more detail,

the rank is at most 15, and the number of free variables is 23 less the rank, so there
are at least 23− 15 = 8 free variables which may assume any possible values.
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10.5. (a) The Gauss–Jordan reduction is


 1 0 10 −3 0

0 1 −2 1 0
0 0 0 0 1


. The rank is 3, and

the free variables are x3 and x4. A basis for the nullspace is





−10
2
1
0
0


 ,




3
−1

0
1
0







.

Whenever you do a problem of this kind, make sure you go all the way to Jordan
reduced form! Also, make sure the number of free variables is the total number of
unknowns less the rank.

(b) The dimension of the null space is the number of free variables which is 2.
The dimension of the column space of A is the rank of A, which in this case is 3.

(c) In this case, the column space is a subspace of R3 with dimension 3, so it is
all of R3. Hence, the system Ax = b has a solution for any possible b. If the rank
of A had been smaller than the number of rows of A (usually called m), you would
have had to try to solve Ax = b for the given b to answer the question.

10.6. A−1 =


 4 −3/2 0

1 −1/2 2
−1 1/2 0


. You should be able to check your answer yourself.

Just multiply it by A and see if you get I.

10.7. (a) Reduction yields the matrix


 1 2 0 1

0 0 1 1
0 0 0 0


. x2 and x4 are the free variables.

A basis for the solution space is




−2

1
0
0


 ,



−1

0
−1

1





 .

(b) Pick out the columns of the original matrix for which we have pivots in the
reduced matrix. A basis is 



 1

1
3


 ,


 2

3
7





 .

Of course, any other linearly independent pair of columns would also work.
(c) The columns do not form a linearly independent set since the matrix does

not have rank 4.
(d) Solve the system 

 1 2 2 3
1 2 3 4
3 6 7 10


x =


 2

3
4


 .

You should discover that it doesn’t have a solution. The last row of the reduced
augmented matrix is [ 0 0 0 0 | −2 ]. Hence, the vector is not in the column
space.
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10.8. (a) is a vector subspace because it is a plane through the origin. (b) is not
because it is a curved surface. Also, any vector subspace contains the element 0,
but this does not lie on the sphere.

10.9. (a) The rank is 2.
(b) The dimension of the solution space is the number of variables less the rank,

which in this case is 5− 2 = 3.

10.10. (a) Yes, the set is linearly independent. The easiest way to see this is as follows.
Form the 4× 4 matrix with these vectors as columns, but in the opposite order to
that in which they are given. That matrix is upper triangular with non-zero entries
on the diagonal, so its rank is 4.

(b) Yes, it is a basis for R4. The subspace spanned by this set has a basis with
4 elements, so its dimension is 4. The only 4 dimensional subspace of R4 is the
whole space itself.
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