
CHAPTER X

INFINITE EXTENSIONS

1. The Algebraic Closure

Recall that a field K is algebraically closed if every non-constant polynomial over K splits into linear
factors. We have referred earlier to the fact that for any field F there is an algebraic extension of F which
is algebraically closed. We now propose to show that such an extension exists and moreover it is unique up
to an isomorphism fixing F .

Theorem. Let F be a field. There is an algebraic extension Ω of F which is algebraically closed.

Proof. At first glance this theorem looks like a good candidate for Zorn’s Lemma. That is, we could
order algebraic extensions of F by inclusion, show that the set of all such is inductively ordered, and pick
a maximal element—which by rights should be algebraically closed. Unfortunately, the ‘set of all algebraic
extensions of F ’is one of those very large sets which leads us directly to one or the other self referential
paradoxes like Russell’s Paradox. One can get around this difficulty by only looking at fields which are
subsets of an appropriate ‘ordinary set’which is large enough for the proof to work. (See Commutative
Algebra, vol. I by Zariski and Samuel for such a proof.) Instead, we shall use a proof originally due to Artin
which we take from Lang’ s Algebra.

Let S be a set in one-to-one correspondence with the set of all non-constant polynomials in F [X ]. Taking
S as a set of indeterminates, form the ring A = F [S]. If f ∈ F [X ] is not constant, we denote by Xf the
indeterminate corresponding to f . For such an f , we can form f(Xf ) the polynomial in Xf obtained by
replacing the indeterminate X in f = f(X) by Xf . Let a be the ideal in A generated by all f(Xf ) as f
ranges over all non-constant polynomials in F [X ].

Lemma. A 6= a.

Proof of lemma. Suppose A = a. Then 1 can be written

1 =
n∑
i=1

gi(S)fi(Xi)

where we have abbreviated the indeterminate associated to fi by Xi. The polynomials gi(S) can in fact
involve only finitely many indeterminates, and we suppose those not already accounted for by X1, X2, . . . , Xn

are renamed Xn+1, . . . , Xm. This yields an equation in F [X1, . . . , Xm]

1 =
n∑
i=1

gi(X1, . . . , Xm)fi(Xi)

Put Xn+1 = · · · = Xm = 0 in this relation, so we obtain a similar relation in F [X1, . . . , Xn]. Let E be a
splitting field for f1(X)f2(X) . . . fn(X) over F . Choose roots yi for fi(X) in K. If we put Xi = yi in K, we
obtain from the above equation, the equation

1 = 0

which is nonsense. �
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To continue with the proof of the theorem, choose a maximal proper ideal m containing a. (We proved
earlier using Zorn’s Lemma that such an ideal exists.) Let M = A/m, and imbed F in M by associating with
a ∈ F the image of the constant polynomial a in A = F [S]. By construction, any nonconstant polynomial
f(X) ∈ F [X ] has a root in M . For, f(Xf ) ≡ 0 mod m (since f(Xf ) ∈ a ⊆ m.) Hence, in A/m, we have
f(Xf + m) = 0, i.e. the coset of Xf is the desired root.

Let M1 = M , and iterate the above process to form an extension M2 ⊇M1 such that every nonconstant
polynomial in M1[X ] has a root in M2. Continue in this way and form a tower of fields

M1 ⊆M2 ⊆ · · · ⊆Mk ⊆ . . .

such that every nonconstant polynomial in Mk[X ] has a root in Mk+1. Let M be the union of this tower of
fields. It is clear how to make M into a field, and it has the property that every non-constant polynomial
in M [X ] (which must have coefficients in some Mk) has a root in M . From this it follows easily that M
is algebraically closed. To complete the proof of the theorem let Ω be the subfield of M consisting of all
elements which are algebraic over F . Ω is algebraically closed, since any nonconstant polynomial splits in
some (finite) extension contained in M and since that extension is algebraic over Ω, it is also algebraic over
F so it is already contained in Ω. �

Theorem. Let Ω ⊇ F and Ω′ ⊇ F be algebraically closed algebraic extensions of F . There is an isomor-
phism σ : Ω→ Ω′ which fixes F .

Proof. We use Zorn’s Lemma. (Note that set theoretic difficulties do not arise because we need only
consider functions between subsets of previously given sets.) Consider monomorphisms τ : E → Ω′ where
E ⊇ F and τ fixes F . Order such monomorphisms by the relation τ < τ ′ if τ ′ extends τ . It is easy to check
that these monomorphisms form an inductively ordered set. Hence, there is a maximal element σ : L→ Ω′.
We must have L = Ω. For, otherwise, we can form a finite extension L[x] ⊆ Ω. If g(X) ∈ L[X ] is the minimal
polynomial of x over L, then σ(g(X)) must have a root x′ in Ω′ since the latter is algebraically closed. Thus
by our basic extension theorem, we may extend σ to σ′ : L[x] → σ(L)[x′] ⊆ Ω′ thus contradicting the
maximality of σ. Finally, σ is onto Ω′. For, σ(Ω) is certainly an algebraically closed extension of F and since
Ω′ ⊇ σ(Ω) is algebraic, it follows that Ω′ = σ(Ω). �

Note. The above theorem may be extended as follows: Any isomorphism τ : F ∼= F ′ may be extended
to an isomorphism σ : Ω ∼= Ω′ of any algebraic closures of those fields. The proof is basically the same. In
particular, any isomorphism of subfields of an algebraically closed field may be extended to an automorphism
of the enclosing field. (We have only proved this in the case that the large field is an algebraic extension of
the smaller fields, but it is in fact true in general.)

Exercises.
1. (a) Suppose that every polynomial of odd degree in F has a root in F . Let K ⊇ F be a finite normal
separable extension. Show that G(K/F ) is a 2-group. (Hint: Use Sylow’s theorem to find an intermediate
field such that [L : F ] is odd.)

(b) Let K be a finite normal extension of R which also contains C. How do you know there is such an
extension and why does (a) apply to this extension? Show that there is an intermediate subfield L such that
[L : C] = 2 and conclude L = C[α] where α2 ∈ C. (Why can you conclude that?) Show that L = C.

(c) Why can you now conclude that C is algebraically closed? Hint: You may establish (a) for R using
elementary analysis. (There exist purely algebraic proofs of this fact, but they are more involved. See Lang
for his discussion of totally real fields, for example.)

2. Transcendental extensions

Let k be a field and suppose Ω is a field containing k. Let S be a subset of Ω and let S̃ be a set of
indeterminates in one to one correspondence with S. We say that S is algebraically independent over k if the
mapping X̃ → x (where X̃ is the indeterminate corresponding to x ∈ S) induces an isomorphism k[S]→ k[S].
In other words, if x1, . . . , xn ∈ S then f(x1, . . . , xn) = 0 in Ω if and only if the polynomial f(X1, . . . , Xn) is
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trivial. In that case, we may extend the above isomorphism to an isomorphism of fields k(S̃) ∼= k(S). (The
right hand side the the field of rational functions in the—possibly infinite—set of indeterminates S̃.)

If S is an algebraically independent over k ⊆ Ω and Ω = k(S), then we say that Ω is a purely transcendental
extension. More generally, if Ω is algebraic over k(S), where S is algebraically independent over k, we call S a
transcendence basis for Ω over k. This concept is similar to the definition of a (linear) basis for a vector space
over a field except that we require the set to be algebraically independent rather than linearly independent.
The theorems about transcendence bases parallel those about (linear) bases.

Theorem. Let k be a field and let Ω ⊇ k be an extension. There exists a transcendence basis S for Ω
over k.

Proof. Let T be any subset of Ω such that Ω = k(T ). Consider the collection of all algebraically
independents subsets U of T , and order it by inclusion. This collection is nonempty because the null set is
trivially algebraically independent. Moreover, the collection is inductively ordered. (Prove it!) Hence, by
Zorn’s Lemma, there is a maximal algebraically independent subset S of T . We claim that Ω is algebraic over
k(S). To see this, it suffices to show that every y ∈ T is algebraic over k(S). However, by maximality we know
that S ∪ {t} is not algebraically independent. Hence, we can find a non-trivial polynomial f(X1, . . . , Xn, Y )
in appropriate indeterminates such that

f(x1, . . . , xn, y) = 0

for some x1, . . . , xn ∈ S. Collect terms involving the same power of Y to rewrite this

f0(x1, . . . , xn)yk + f1(x1, . . . , xn)yk−1 + · · ·+ fk(x1, . . . , xn) = 0

where we may assume that f0(X1, . . . , Xn) is nontrivial. By algebraic independence, it follows that

f0(x1, . . . , xn) 6= 0,

so we may divide to get

yk + (f1(x1, . . . , xn)/f0(x1, . . . , xn))yk−1 + · · ·+ fk(x1, . . . , xn)/f0(x1, . . . , xn) = 0

which shows that y is algebraic over k(S). �

Note that in the above proof, it we can find a finite set T such that Ω = k(T ), then the maximal
algebraically independent set S is also finite.

Example. The above theorem tells us that C is an algebraic extension of a purely transcendental exten-
sion Q(S) of Q. In this case S must be uncountable. For, it is easy to see that if S were countable, Q(S)
would also be countable. Since it is also true that any algebraic extension of a field K must have the same
cardinality as K (why?), if S were countable so also would C be countable.

The cardinality of a transcendence basis for Ω over k is called the transcendence degree of Ω over k. It is
an analogue of the concept of the dimension of a vector space over a field. As in the vector space case, we
must show that this concept is well defined, which is a consequence of the following result.

Theorem. Let Ω ⊇ k be a field extension and suppose S and S′ are transcendence bases for Ω over k.
Then S and S′ have the same cardinality.

Proof. We do the proof in case one of the sets—say S—is finite. The case in which both sets are infinite
requires familiarity with transfinite methods.

Let S = {x1, . . . , xn}, and let {y1, . . . , ym} be any other algebraically independent set. We shall show
that m ≤ n. Clearly that suffices to prove the theorem since we may reverse the roles of the two sets if Ω is
algebraic over k(y1, . . . , ym).

By assumption, Ω is algebraic over k(x1, . . . , xn) so y1 is algebraic over it. Hence, there is a relation

yr1 + c1y
r−1
1 + · · ·+ cr = 0
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where c1, . . . , cr ∈ k(x1, . . . , xn). Since the ci are rational functions in the x’s, we may multiply through by
a common denominator to obtain a polynomial relation

f(y1, x1, . . . , xn) = 0.

Consider subsets of {x1, . . . , xn} which appear in such relations, and choose one as small as possible. Renum-
ber the elements if necessary and suppose {x1, . . . , xk} is such a subset. Then k > 0 or else y1 would be
algebraic over k, and every xi actually appears in the relation. Rewrite it

f0(y1, x2, . . . , xk)xr1 + f1(y1, x2, . . . , xk)xr−1
1 + · · ·+ fr(y1, x2, . . . , xk) = 0.

f0(y1, x2, . . . , xk) 6= 0 since the set of x’s appearing in the original relation was minimal. Hence we can
divide by it and thereby show that x1 is algebraic over k(y1, x2, . . . , xn). Since x2, . . . , xn are also certainly
algebraic over k(y1, x2, . . . , xn), it follows that k(x1, x2, . . . , xn) is algebraic over k(y1, x2, . . . , xn), and hence
so is Ω. {y1, x2, . . . , xk} is also algebraically independent. Otherwise, there would be a polynomial relation

g(y1, x2, . . . , xn) = 0.

y1 would have to occur in this relation since otherwise {x2, . . . , xn} would be algebraically dependent.
However, in that case y1 would be algebraic over k(x2, . . . , xn) and hence so would x1— which is nonsense.

Suppose in general we have shown that {y1, . . . , yi, xi+1, . . . , xn} is an algebraically independent set, after
suitable renumbering, such that Ω is algebraic over the field it generates. Then yi+1 is algebraic over this
field, and as above, we choose a relation

f(y1, . . . , yi, yi+1, xi+1, . . . , xn) = 0.

Choose such a relation involving as small a subset of {xi+1, . . . , xn} as possible. The above argument may
be repeated to conclude that {y1, . . . , yi+1, xi+2, . . . , xn} is algebraically independent and Ω is algebraic over
the field it generates. If m > n then eventually we would run out of x’s, and we could conclude that yn+1 is
algebraic over k(y1, . . . , yn) which is nonsense. �

The basic theory of transcendental extensions parallels in part the theory of algebraic extensions but with
some differences. For example, transcendence degrees add when we further extend rather than multiply. We
won’t pursue the subject further at this time. However, the student should be aware than transcendence
degree plays an extremely important role in commutative algebra and algebraic geometry.

Exercises.
1. (a) Let L ⊇ F be subfields of the field Ω. Suppose S is an algebraically independent over F subset of
Ω. Show that if L is algebraic over F then L(S) is algebraic over F (S).

(b) Assume Ω ⊇ F and let S and T be subsets of Ω. Show that if S is algebraically independent over F
and T is algebraically independent over F (S) then S ∪ T is algebraically independent over F .

(c) Suppose Ω ⊇ L ⊇ F and that the transcendence degree n of L over F and the transcendence degree
m of Ω over L are finite. Show that the transcendence degree of Ω over F is n+m.
2. (a) Show that the only automorphism of R is the identity. Hint: First show that any continuous
automorphism is the identity by using the fact that Q is dense in R. Why must it be the identity on Q?
Then show that every automorphism of R must preserve order and hence must be continuous. (Why is an
order preserving bijection of R continuous? Is any order preserving transformation continuous?)

(b) Show that the only automorphisms of C which fix R are complex conjugation and the identity.
(c) Show that there are infinitely many automorphisms of C which do not fix R. Hint: Write C as

an algebraic extension of a purely transcendental extension Q(S) where S is an algebraically independent
set. (This will use the general case of the appropriate theorem although we only proved the theorem in the
finitely generated case.) Using cardinality considerations, show S must be infinite (even nondenumerable.)
Construct infinitely many automorphisms of Q(S) and extend these to C quoting the appropriate theorem
discussed in the text. (Again, the actual case you will use was mentioned but proved only in case of extensions
of finite degree.)


