
CHAPTER XI

CATEGORIES

1. Category theory

We have used the terms “category” and “functor” and talked about universal mapping properties. We
are now ready to discuss the general abstract theory behind these concepts.

A category C consists of the following:
(a) a class obj(C) called the objects of C;
(b) for each ordered pair (a, b) with a and b in obj(C), a set homC(a, b) called the morphisms from a to b;
(c) for each ordered triple (a, b, c) from obj(C), a binary operation

homC(a, b)× homC(b, c)→ homC(a, c)

called composition and denoted (f, g)→ gf .
If f ∈ homC(a, b), then a is called the domain of f and b is called the codomain of f , and we write

f : a→ b to summarize these facts.
In addition, we require the following rules to hold:
(i) The sets homC(a, b) and homC(a′, b′) are disjoint unless (a, b) = (a′, b′).
(ii) For f ∈ homC(a, b), g ∈ homC(b, c), h ∈ homC(c, d) we have

h(gf) = (hg)f.

(iii) For each a in obj(C) there is an element ida ∈ homC(a, a) such that fida = f for each f with
codomain a and idag = g for each g with domain a.

We have seen many examples of categories: the category of sets and mappings of sets, the category of
groups and group homomorphisms, the category of rings and ring homomorphisms, the category of left
(or right) modules over a given ring A and module homomorphisms, etc. The general concept of category
generalizes all of these examples, but it is in fact much more powerful, as we shall see below.

The class obj(C) is useful for discussing the category, but the union of the sets homC(a, b) —the collection
of all morphisms in the category—is really the basic structure under consideration. We could have defined
a category as a class of elements called morphisms with a partially defined law of composition which is
associative where defined and for which certain special kinds of left and right identities exist. obj(C) could
then be chosen to be the class of these identities.

Note that we have used the terms “class” and “set” in the above discussion. The reason for this is that
classical set theory is not quite adequate to do general category theory since one wants to consider things
like the category of “all” groups, and such things are not acceptable sets in the classical theory. In classical
set theory, it is easy to produce paradoxes by considering “large sets”, so the designers of that theory put in
various restrictions to avoid those paradoxes. This was done in a way which which was a bit too restrictive
for category theory. We shall leave such questions to category theorists and not generally concern ourselves
with such issues in this course. Note, however, once two objects a and b are fixed, homC(a, b) is supposed
to be a set in the classical sense.

In each of the above examples of categories, the objects were themselves sets and the morphisms were
maps between these sets. Although this is often the case, it need not be true in every case. We give two
examples.
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1. Let C be a monoid. Let obj(C) consist of a single object, say the identity 1 of C. Then every domain
and codomain is this one object and composition must always be defined. Let homC(1, 1) = C and let
composition in the category C be the given binary operation in the monoid C. Since there is only one
object, only one identity is needed and clearly id1 = 1. In this example, the object does not have an internal
structure as a set with the morphisms being set maps.

2. Let Ω be a partially ordered set with an order relation a ≤ b. We make Ω into a category by letting Ω
the set of objects and by letting homΩ(a, b) consist of a single element (say the pair (a, b) to be definite) if
a ≤ b and letting it be empty otherwise. If hom(a, b) and hom(b, c) are nonempty, that means that a ≤ b
and b ≤ c whence a ≤ c by transitivity. If f is the unique element of hom(a, b) and g is the unique element
of hom(b, c), we define gf to be the unique element of hom(a, c). It is easy to see that this operation is
associative. The unique element of hom(a, a) (which is nonempty since a ≤ a) is ida.

Thus it would seem that the proofs in general category theory cannot rely on any interpretation of objects
in a cateogory as sets and morphisms in the category as ordinary mappings between sets. In fact, there are
representation theorems in category theory which say that subject to suitable hypotheses, we may reinterpret
a category as a subcategory of the category of sets and act as though the objects had elements. Be this as
it may, it is really counter to the philosophy of category theory to work with elements.

Let C be a category. A morphism f in C is called an isomorphism if it is invertible, i.e., if there is a g in
C with dom(g) = cod(f) = b, cod(g) = dom(f) = a and gf = ida, fg = idb. A morphism f in C is called a
monomorphism (or injection) if

fg1 = fg2 ⇒ g1 = g2

whenever dom(f) = cod(g1) = cod(g2) and dom(g1) = dom(g2). f is called an epimorphism (or surjection)
if

g1f = g2f ⇒ g1 = g2

whenever cod(f) = dom(g1) = dom(g2) and cod(g1) = cod(g2).
It is easy to see that in any category C every isomorphism is a bijection (.e., both a monomorphism

and epimorphism). In the category of sets and many other categories, every bijection is an isomorphism.
However, that is not true in every category. For example, let C be the category with one object the closed
interval [0, 1] and with the morphisms being continuous bijections (in the set theoretic sense) f : [0, 1]→ [0, 1]
which are differentiable on the open interval (0, 1). Every morphism f in C is both a monomorphism and an
epimorphism in the categorical sense—see below—but there are certainly such maps without differentialbe
inverses, and those would not be isomorphisms.

If C is a category, the dual category C0 is the category with the same objects and morphisms as C, but
for each morphism f , the domain of f in C0 is defined to be the codomain of f in C, the codomain of f in
C0 is defined to be the domain of f in C, and the composition gf in C0 is defined to be the result of the
composition fg in C. In general, for any diagram in the category C, there is a corresponding diagram in the
category C0 obtained by reversing all the arrows. Clearly, (C0)0 = C.

Let C and D be categories. A covariant functor F : C → D is a function which associates to each object
a in obj(C) an object F (a) in obj(D) and to each morphism f : a→ b in C a morphism F (f) : F (a)→ F (b)
such that

(i) F (gf) = F (g)F (f) whenever the composition gf is defined and,
(ii) F (ida) = idF (a) for each object a in obj(C).

Recalling that the definition of category can be recast without the objects, one is better off thinking of a
functor of being a function which preserves the law of composition when defined and also preserves identities.
A contravariant functor F : C → D is defined to be a covariant functor F : C0 → D. (We use the same
notation!) Then F (gf) = F (f)F (g) whenever gf is defined in C.

A simple but useful functor is the forgetful functor which, for each category whose objects are sets and
morphisms are maps between sets, associates with an object a in the cateogry its underlying set |a| and with
a morphism f the underlying set map |f | : |a| → |b|.

Proposition. In the category of sets, a morphism f is mono in the categorical sense if and only if it is
one-to-one, and it is epi in the categorical sense if and only if it is onto. For the category of groups, the
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category of abelian groups, and the category of left (right) A-modules over a fixed ring A, a morphism f is
mono (epi) if and only if |f | is mono (epi).

Proof.

The first part is not too hard. If f is one-to-one then

fg1 = fg2 ⇒ g1 = g2

since
f(g1(x)) = f(g2(x))⇒ g1(x) = g2(x)

for every x ∈ dom(g1) = dom(g2). Conversely, let f be a monomorphism and suppose f(x) = f(y). Let {·}
be any set with a single element and define g1(·) = x and g2(·) = y. Since fg1 = fg2, we may conclude that
g1 = g2, i.e., x = y. Similar arguments work for epimorphisms.

Consider the categories referred to in the statement of the Proposition. If |f | is a mono (epi) in the
category of sets, it follows easily that f is a mono (epi) in the desired category by functorality and the fact
that |g1| = |g2| ⇒ g1 = g2 for those categories.

Conversely, we need to show for these categories that the forgetful functor preserves monos (epis). That is
fairly easy for the category of abelian groups or modules over a ring, but the category of (possibly nonabelian)
groups presents some problems.

Let f : G′ → G be a group homomorphism which is a monomorphism in the category of groups. It is easy
to see that |f | must be one-to-one. For, define g1, g2 : Ker f → G′ by g1(x) = x and g2(x) = 1 for x ∈ Ker f .
fg1 = fg2 so g1 = g2 whence Ker f = {1} and f is a monomorphism in the usual sense, i.e. it is one-to-one.

Suppose f : G′ → G is an epimorphism in the category of groups. To show |f | is onto as a set map is
quite a bit harder than you might think. Let K = Im f and assume K 6= G. Clearly, it suffices to find two
homomorphisms g, g′ from G into a third group which differ outside K but agree on K. (Their compositions
with f would have to be the same.) We do this as follows. Define g : G → S(G) to be the representation
of G as permutations of itself by left multiplication, i.e., g(x)(y) = xy. If x ∈ K, then g(x) clearly carries
each right coset Kt into itself. Suppose first that we can choose t not in K such that t2 6= 1. Define
τ : G→ G by τ(x) = x if x is not in K ∪Kt and τ(x) = xt, τ(xt) = x for x ∈ K. Define g′ : G→ S(G) by
g′(x) = τ ◦ g(x) ◦ τ . (Note τ−1 = τ .) Then it is easy to see that g′ is a homomorphism and that g and g′

agree on K. However, g(t)(t) = t2 and g′(t) = τ(g(t)(τ(t)) = τ(g(t)(1)) = τ(t) = 1. Suppose instead every
element of G outside of K is of order 2. Then it is not hard to see that K is normal in G. In that case,
let g : G → G/K be the canonical projection and g′ : G → G/K be the trivial homomorphism. These also
agree on K and differ outside it.

Note that in the cateogry of rings, it is not true that every epimorphism in the categorical sense in onto
as a set map. For example, let i : Z → Q be the natural inclusion of the ring of integers in the rational
number field. Suppose g1i = g2i for two ring homomorphisms g1, g2 : Q → A where A is a third ring. Let
x = q/p ∈ Q. Using px = q, we get g1(p)g1(x) = g1(q) and similary g2(p)g2(x) = g2(q). Since the two
g’s agree on Z, it follows that g1(p)g1(x) = g1(p)g2(x). Since g1(Q) ∼= Q is a field, it follows that g1(p) is
invertible in A, so g1(x) = g2(x). It follows that i : Z→ Q is an epimorphism in the categorical sense. Note
also that i is clearly also a monomorphism in the category of rings, so it is a bijection which certainly is not
an isomorphism in the category of rings.

If C is a category, a subcategory C′ consists of a subclass obj(C′) of obj(C) and for each pair of objects
a, b in obj(C′) a subset homC′(a, b) of homC(a, b) such that ida ∈ homC′(a, a) for each a in obj(C′) and also
if f : a→ b, g : b→ c are morphisms in C′, then gf (in homC(a, c)) is in homC′(a, c). If C′ is a subcategory
of C, we may define the inclusion functor of C′ in C in the obvious manner. A subcategory C′ of C is said
to be full if homC′(a, b) = homC(a, b) for each pair of objects a, b in C′.

Let C and D be categories. The collection of all functors F : C → D can be made into the class of objects
of a category which we shall denote HOM(C,D). The objects of this category are the functors as mentioned
above. A morphism φ : F → G where F and G are functors from C to D is defined to be a collection

{φa | a in obj(C)}
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where φa : F (a) → G(a) is a morphism in D and for each morphism f : a → b in C, the diagram below
commutes

F (a)
φa−−−−→ G(a)

F (f)

y yF (g)

F (b) −−−−→
φb

G(b)

Such a collection of morphisms in D is also called a natural transformation from the functor F to the functor
G. If φ = {φa} is as morphism from F to G and σ = {σa} is a morphism from G to H, then we define
σφ = {σaφa}. It is easy to check that this is in fact a morphism from F to H (i.e., the appropriate diagram
commutes.) With this definition, HOM(C,D) becomes a category. (What is idF for F : C → D a functor?)

Example 1: Let C be the category of left A-modules for a fixed ring A, and let D = C. Let F (M) =
HomA(A,M) where the latter is viewed as a left A-module as in our earlier discussion of modules. If
f : M → M ′ is a module homomorphism, let F (f) = HomA(A, f) as defined earlier. We know by our
discussion of modules that F is a functor. Let I denote the identity functor which attaches to each object
or morphism itself. For each module M define φM : HomA(A,M)→M by φM (α) = α(1). It is not hard to
see that if f : M → M ′ is a module homomorphism, then I(f)φM = fφM = φM′ HomA(A, f). (Check this
for yourself.) Hence, φ = {φM} is a morphism (natural transformation) from F to I. Moreover, if you go
back to our earlier discussion of modules, you will see how to define a morphism σ : I → F which inverts φ
so that φ (also σ ) is an isomorphism in the category of functors from C to C. Often, we say more loosely
that HomA(A,M) is naturally isomorphic to M . (See the Exercises for a detailed set of steps taking you
through this argument.)

So far we have discussed functors of one variable. We may extend to functors of many variables as you
would expect from your knowledge of ordinary functions in set theory. If C′ and C′′ are categories, we define
the product category C′ × C′′ as follows. The objects of the product will consist of all ordered pairs (a′, a′′)
where a′ is an object in C′ and a′′ is an object in C′′. A morphism in the product will similarly consist of a
pair (f ′, f ′′) where f ′ is a morphism in C′ and f ′′ is amorphism in C′′. dom(f ′, f ′′) = (dom(f ′), dom(f ′′))
and similarly for the codomain. Composition is defined by (g′, g′′)(f ′, f ′′) = (g′f ′, g′′f ′′). It is easy to
check that this yields a category. If C′, C′′ and D are categories, a functor of two variables is a functor
F : C′ × C′′ → D. As with ordinary functional notation, we write F (a′, a′′) and F (f ′, f ′′) for the results of
applying the functor to objects and morphisms.

We may account for various combinations of covariance and contravariance for functors of several variables
by taking products of categories with other categories or their duals.

Example: If Ab denotes the category of abelian groups, then Hom(−,−) is a functor from Ab×Ab to
Ab which is contravariant in the first variable and covariant in the second variable; more precisely it is a
functor Ab0 ×Ab→ Ab. If AMod denotes the category of left A-modules and ModA the category of right
A-modules, then −⊗A − is a functor from ModA × AMod to Ab which is covariant in both variables. If A
is commutative, this functor may be redefined to take its values in AMod = ModA again.

It would be worth your while at this time to go through these notes from the beginning and try to find
as many categories, functors, and natural transformations of functors as you can.

Note that we could consider the structure whose objects are “all” categories and whose morphisms are
functors between such categories. Functors F : C → D and G : D → E may be composed according to the
rules (GF )(a) = G(F (a)) and (GF )(f) = G(F (f)), and the result is a functor from C to E. We have already
mentioned the identity functor for a category. Hence, we could define the category of all categories . At the
very least, this is a useful way to motivate some of the things we might do with categories. Unfortunately,
the classical paradoxes of set theory are bound to interfere with such a concept.

One feature of category theory is that it gives us a good way to discuss most “universal mapping”
properties. Let F : U → C be a functor. Suppose we are given an object p in C together with morphisms
πu : p→ F (u) in C, one for each object u in U , and suppose the following rules hold:

(i) For each morhism α : u→ u′ in U , we have f(α)πu = πu′ .
(ii) Suppose we are given another s in C together with morphisms σu : s → F (u) such that for each

morphism α : u → u′ in U , F (α)πu = πu′ . Then there is a unique morphism τ : s → p such that for each
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object u in U , πuτ = σu.
In this case, we say that p together with the collection {πu |u in obj(U)} constitutes a left or inverse or
projective limit of the functor F . An inverse limit of F is unique up to isomorphism. In particular, if p
and s together with the appropriate morphims each constitute a left limit, the there are unique morpisms
τ : u→ u′ and τ ′ : u′ → u making the appropriate triangles commute. It follows that ττ ′ and τ ′τ also make
the appropriate triangles commutes. Since the identities of u and u′ also do so, it follows that ττ ′ = idu and
τ ′τ = idu′ , so τ and τ ′ are isomorphisms in C. We shall often write

p = lim
←
F

but of course this notation suppresses the morphisms πu : p→ F (u).
The above definition takes no stand on whether or not such a limit actually exists. That will depend both

on the functor and the category D.
Example 1: Let the category U consist of a set with homU(u, u′) empty whenever u 6= u′, and let each

homU (u, u) consist only of the identity element. A functor F : U → C just consists of a collection of objects
F (u) in C indexed by the set U . In this case, an inverse limit of the functor is also called a product of the
objects in the collection. Compare this with the previous treatment of the concept of product in the various
explicit categories we have considered earlier in this course. We see that the uniqueness of the product in a
category is a special case of the uniqueness of the inverse limit.

Example 2: Let U be a category with two objects u and u′ and two morphisms α, β : u→ u′ (other than
the two identities.) In this case a functor F : U → C is given in essence by specifying two objects a and b
in C and two morphisms f, g : a → b. (Take a = F (u), b = F (v), f = F (α), and g = F (β). We could have
a = b.) To specify an inverse limit of this functor, we must give an object k in C and a single morphism
i :→ a such that fi = gi. Moreover, i must be universal in the sense that given any other i′ : k′ → a such that
fi′ = gi′, there is a unique t : k′ → k such that it = i′. We do not need to worry about the morphism from
k (or k′) to b = F (v) because these are determined by composition. In this case, the inverse limit is called
the kernel of the pair f, g : a→ b. In particular, if C is the category of groups, we may take f : G→ G′ to
be and homomorphism and g : G→ G′ to be the trvial homomorphism (g(x) = 1 for all x ∈ G). Then it is
not hard to see that the kernel is the usual kernel of the homomorphism with i : Ker f → G the inclusion
monomorphism.

Proposition. . Given f, g : a→ b in a category C, a kernel

i : k → a

is a monomorphism.

Proof.

Suppose h′, h′′ : c → k are morphisms in C such that ih′ = ih′′. Then fih′ = gih′′ so there is a unique
morphism j : c→ k such that ij = ih′ = ih′′ and by uniqueness j = h′ = h′′.

Example 3: Let U be the underlying category of a partially ordered set. This is the case in which
classically the notion of inverse limit originally arose. Although one could do this for any partially ordered
set whatsoever, it works best if the set has the property that any two elements in the set have an upper
bound.

By considering functors F : U → C0 into the dual category of C, we get the dual notion of right , direct ,
or inductive limit in C. The student is advised to carefully write out all the definitions above by reversing
all the arrows. if as in Example 1 the category is in essence just a set, the direct limit is called the direct
sum or just the sum the category C. For U the 2 object category of Example 2 the direct limit is called the
cokernel of the pair of morphisms f, g : a→ b.

There are two other categorical concepts related to the notion of limit and definition by universal mapping
properties. We shall introduce these concepts here and illustrate them by important constructions—some
familiar to you and some new. Let F : C → Sets be a functor to the category of sets. We say that an
object a in C represents F if there is an isomorphism of functors φ : F ∼= homC(a,−). In that case, we
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also say that the functor F is representable. For example, let X be a set and let MX : Groups → Sets
be defined as follows: for a group G, let MX(G) = Map(X, |G|) and for f : G → G′ a homomorphism, let
MX(f) : Map(X, |G|)→Map(X, |G′|) be defined by composition. Then the free group F (X) on the set X
represents MX . Indeed, as we showed earlier in this course, each map X → G may be extended uniquely
to a group homomorphism F (X) → G. That provides a map MX(G) → Hom(F (X), G) for each group G.
It is easy to check that this collection of maps is a morphism of functors and in fact is an isomorphism of
functors. (What is its inverse?)

Note that if F is a representable functor, then the representing object is unique up to isomorphism. For
suppose

hom(a,−) ∼= F ∼= hom(b,−).

Then, for each object x in C, we have an isomorphism

φx : hom(a, x) ∼= hom(b, x).

If we put x = a, this gives us α = φa(ida) ∈ hom(b, a) and β ∈ hom(a, b) such that φb(β) = idb. The
commativity of the square

hom(a, a) −−−−→ hom(b, a)

hom(a,β)

y yhom(b,β)

hom(a, b) −−−−→ hom(b, b)

shows that φb(hom(a, β)(ida) = hom(b, β)(φa(ida) so that

idb = φb(β) = hom(b, β)(α) = βα.

Similarly, αβ = ida.
A related concept is that of adjoint functors. Let C and D be categories and suppose F : C → D and

G : D → C are functors. We say that G is a left adjoint of F and F is a right adjoint of G if there is an
isomorphism of bifunctors

φ : homC(G(−),−) ∼= homD(−, F (−)).

According to the above definition, this means that for each object d in D, G(d) represents the composite
functor homD(d, F (−)). Thus, at least the objects G(d) are uniquely determined up to isomorphism. It is
not hard to check that any two left adjoints of a functor F are unique up to isomorphism of functors.

We now give some examples of adjoint functors.
As above, we have for each set X ,

Hom(F (X), G) ∼= Map(X, |G|)

and it is easy to see that this provides an isomorphism of bifunctors. On the left we are using hom in the
category of groups and on the right we are using hom in the category of sets. Hence, the free group functor
is adjoint to the forgetful functor G 7→ |G|.

Let k be a commutative ring and let X be a set. The polynomial ring k[X ] in the category of commutative
rings is analagous to the free group F (X) in the cateogry of groups. However, we must also have some way
tor take account of the coefficient ring. To this end, recall that we called a ring homomorphism φ : k → A
into a commutative ring A a commutative k-algebra. We may form a category with these k-algebras: let a
morphism f from φ : k → A to ψ : k → B be a ring homomorphism f : A→ B such that

k
φ↙ ↘ ψ
A −→

f
B

commutes. Compose such morphisms in the obvious way. It is easy to check that these definitions satisfy the
requirements of a category which we call the category of commutative k-algebras. Often we shall simplify
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the terminology by just calling A a k-algebra without mentioning the homomorphism k → A. Then our
previous discussion of polynomials showed us that any set map of X into a commutative k-algebra A may
be extended uniquely to a homomorphism

k[X ]→ A.

Some tedious checking shows that this provides an isomorphism of functors

homk−algebras(k[X ],−) ∼= Map(X, | − |)

so that the polynomial ring functor k[X ] is the left adjoint of the forgetful functor from k-algebras to sets.
(Note that the forgetful functor strictly speaking attaches to a k-algebra k → A, the set |A|.)

You should state the corresponding fact about the functor which attaches to a set X the free A-module
with that set as basis where A is a ring.

Suppose again that A is a (not necessarily commutative) ring. The tensor product over A of modules
may also be considered an adjoint functor except that the situation is a bit more complicated because it is
a functor of two variables. Denote by Bil(L,M ;N) the set of bilinear maps f : L×M → N where L is a
right A-module, M is a left A-module and N is an abelian group; then it is clear how to make this a functor
of the last argument N . (Define Bil(L,M ; g) for a homomorphism g of abelian groups.) Then, it is easy to
check that our basic identification

Hom(L⊗AM,N) ∼= Bil(L,M ;N)

provides an isomorphism of functors. (It is even an isomorphism of trifunctors!) Thus, L⊗AM represents
the functor of N on the right.

To exhibit the tensor product as an adjoint functor requires a bit more work, and we shall do it in the
most generally useful form. Suppose that L is a right A-module and M is a left A-module. Suppose in
addition that a second ring B acts on M on the right in such a way that

(ax)b = a(xb) for a ∈ A, x ∈M, b ∈ B.

In that case we call M a bimodule. Then it is not hard to check that the definition

(x⊗ y)b = x⊗ (yb) x ∈ L, y ∈M, b ∈ B

makes sense and turns L⊗AM into a right B-module. Suppose finally that N is a right B-module. Then
it is not hard to check that

(fa)(x) = f(ax) a ∈ A, f ∈ HomB(M,N), x ∈M

takes B-homomorphisms into B-homomorphisms and makes HomB(M,N) into a right A-module. We shall
define an isomorphism of abelian groups

HomB(L⊗AM,N) ∼= HomA(L,HomB(M,N))

by
f 7→ f# where f#(l)(m) = f(l ⊗m).

There is a lot to check here. Namely, you have to show first that f#(l) is a B-homomorphism, then you have
to show that f# is an A-homomorphism of L → HomB(M,N), and finally you have to show that f → f#

is a homomorphism of abelian groups. That this is an isomorphism follows by defining its inverse

g 7→ g$ where g$(l ⊗m) = g(l)(m).

Again, all the appropriate things have to be proved, but at least it is fairly clear that this homomorphism is
inverse to the one given above.

Finally, you should show that these maps define morphisms of functors (in fact of functors of all three
variables.)
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Exercises.
1. Let C be a category and let f : a → b be an isomorphism. Show that f is both a monomorphism and
an epimorphism is C.
2. Show for the category of sets and the category of abelian groups that a morphism is an epimorphism in
the category if and only if its underlying set theoretic map is onto.
3. An object a in a category C is called initial if for each object c in C there is a unique morphism fc : a→ c
in C. Show that if a is an initial object, then the collection of morphisms fc : a→ c present a as a projective
limit of the identity functor. Conversely, show that any projective limit of the identity functor is an initial
object. Find the initial objects in the categories of groups and rings if any. Define the concept final object.
4. Let A be a ring. View A as a left module over itself, and for each left A-module M , make the abelian
group HomA(A,M) into a left A-module by defining

(af)(b) = f(ba) where a, b ∈ A, f ∈ HomA(A,M).

You may assume this all works out properly. Moreover, for g : M → N φ = {φM} an A-module homomor-
phism, define HomA(A, g) : HomA(A,M)→ HomA(A,N) by

HomA(A, g)(f) = g ◦ f for f ∈ HomA(A,M).

You may assume the result is an element of HomA(A,N). Moreover, you may assume that HomA(A,−) so
defined is a covariant functor from the category of left A-modules to itself. Define φM : HomA(A,M)→M
by

HomA(A, g)(f) = g ◦ f for f ∈ HomA(A,M).

You may assume the result is an element of HomA(A,N). Moreover, you may assume that HomA(A,−) so
defined is a covariant functor from the category of left A-modules to itself. Define φM : HomA(A,M)→M
by

φM (f) = f(1) for f ∈ HomA(A,M).

(a) Show that the collection {φA} is a natural transformation of functors

φ : HomA(A,−)→ Id

where Id denotes the identity functor.
(b) Define an inverse morphism ψ : Id → HomA(A,−) by giving a collection of module homomorphisms

ψM : M → HomA(A,M) with the right properties.
5. Study the discussion in the text in more detail and show that the isomorphisms

HomB(L⊗AM,N) ∼= HomA(L,HomB(M,N))

provide an isomorphism of functors between the appropriate categories. You may skip the details such as
showing that the operations defined make L⊗AM into a right B-module, HomB(M,N) into left A-module,
etc.


