
CHAPTER XII

MULTILINEAR ALGEBRA

1. Tensor and Symmetric Algebra

Let k be a commutative ring. By a k-algebra, we mean a ring homomorphism φ : k → A such that each
element of Imφ commutes with each element of A. (If A is a ring, we define its center to be the subring
Z(A) = {a ∈ A | ax = xa, for all x ∈ A}. So this can also be abbreviated Imφ ⊆ Z(A).))

Such a k-algebra may be viewed as a k-module by defining ax = φ(a)x for a ∈ k and x ∈ A. If φ : k → A
and ψ : k → B are k-algebras, a ring homomorphism f : A → B is called a k-algebra morphism if it is
also a k-module homomorphism. We shall often speak loosely of a “k-algebra A” without mentioning the
homomorphism φ explicitly. We may consider the forgetful functor which attaches to a k-algebra A the
underlying k-module A. But to simplify the notation, we shall write A both for the ring and the associated
k-module, with the context making clear which is intended. We want to construct a left adjoint to this
functor. That will amount to the following: given a k-module M , we want to construct a k-algebra T (M)
which contains M and such that every k-module homomorphism M → A where A is a k-algebra may be
extended uniquely to a k-algebra morphism T (M)→ A. In categorical terms, we will have an isomorphism
of functors

Homk−Alg(T (M), A) ∼= Homk(M,A).

To construct T (M), we form the so called tensor algebra. Recall that since k is commutative, if M and N
are k-modules, M ⊗N also has a natural k-module structure. (All tensor products will be over k so we shall
omit the subscript in ⊗k.) The associative law for tensor products tells us that

(M ⊗N)⊗ P ∼= M ⊗ (N ⊗ P )

so that we may omit parentheses. With these facts in mind, define

T 0(M) = k

and for n > 0,

Tn(M) =

n times︷ ︸︸ ︷
M ⊗M ⊗ · · · ⊗M .

Finally let
T (M) =

⊕
n≥0

Tn(M).

We may make T (M) into a ring as follows. Define a binary operation

T p(M)× T q(M)→ T p+q(M)

by sending
(u1 ⊗ · · · ⊗ up, v1 ⊗ . . . vq) 7→ u1 ⊗ · · · ⊗ up ⊗ v1 · · · ⊗ vq.
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116 XII. MULTILINEAR ALGEBRA

(Note that for this to make sense and define a map T p(M) × T q(M) → T p+q(M) it is necessary to check
that the right hand side is k-multilinear in each ui and each vj .) For p or q = 0, this rule has to be suitably
interpreted with the empty tensor product of elements of M interpreted as the identity 1 ∈ k. It is not
hard to check that this operation yields an associative ring structure for T (M). T (M) may be made into a
k-algebra by defining φ : k → T (M) by

φ(x) = x ∈ k = T 0(M).

In addition, we may view M as imbedded in T (M) as the k-submodule T 1(M) = M . Note that any
element of T (M) may be written as a k-linear combination of elements of the form x1 ⊗ · · · ⊗ xn with
x1, x2, . . . , xn ∈ M . Such an element is clearly the product in T (M) of the elements x1, . . . , xn, so T (M) is
generated as a ring by the elements of k = T 0(M) and by M = T 1(M). In such a case we shall say that it
is generated as a k-algebra by the specified elements.

Let ψ : k → A be any k-algebra. If f : M → A is a k-module homomorphism and F : T (M) → A is an
algebra homomorphism extending f , then since M generates T (M) as a k-algebra, it follows that

F (x1 ⊗ · · · ⊗ xn) = f(x1) . . . f(xn) ∈ A.

Since F is by definition a k-module homomorphism, it follows that this formula completely determines F
so it is unique if it exists. On the other hand, it is easy to check that the right hand side is multilinear in
x1, . . . , xn so that there is a k-module homomorphism satisfying that formula. Referrring to the definition
of the product in T (M), it is easy to check that it is a k-algebra homomorphism extending f .

Proposition. If M is free over k with basis {x1, x2, . . . , xr}, then Tn(M) is free with basis consisting of
all elements of the form

xi1 ⊗ xi2 ⊗ · · · ⊗ xin
where 1 ≤ i1, i2, . . . , in ≤ r.

Proof.

We prove more generally the following.

Lemma. If k is a commutative ring and M is free with basis {x1, . . . , xs} and N is free with basis
{y1, . . . , yt}, then M ⊗N is free with basis {xi ⊗ yj | 1 ≤ i ≤ s, 1 ≤ j ≤ t}.

Proof of the Lemma. This follows from the fact that M is the direct sum of submodules kxi, N is
the direct sum of submodules kyj , tensor products commute with direct sums, and after identification as a
k-submodule of M ⊗N , kxi ⊗ kyj = k(xi ⊗ yj).

Remark. The argument works just as well if M is free with an infinite basis X . In that case the basis of
Tn(M) consists of elements of the form x1⊗ · · ·⊗xn where x1, . . . , xn ∈ X . A similar remark applies to the
Lemma.

Suppose now that M is the free k-module on a set X . As above, we shall suppose X = {X1, . . . , Xr} is
finite, but the arguments work just as well if it is infinite. The above proposition shows that the elements of
T (M) are uniquely expressible as linear combinations over k of non-commuting monomials

Xi1Xi2 . . . Xin

where 1 ≤ i1, i2, . . . , in ≤ r. Multiplication of such monomials is just done by juxtaposition. Thus in this case
we may identify T (M) with the analogue of a polynomial ring for non-commuting indeterminates. Any set
theoretic map of X into a (possibly non-commutative) k-algebra A may be uniquely extended to a k-algebra
homomorphism of T (M) into A.

We may reconstruct the usual polynomial ring from the above construction (M free on X) by “forcing”
the indeterminates to commute. More generally, suppose M is any k-module, and consider the ideal I in
T (M) generated by all elements of the form

[x, y] = xy − yx = x⊗ y − y ⊗ x
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where x, y ∈M . It is not hard to see that I consists of all linear combinations over k of elements of the form
a[x, y]b where a, b ∈ T (M). Since T (M) is the direct sum of its homogeneous components T n(M), it follows
that I is generated by elements of the form a[x, y]b where a ∈ T p(M), x, y ∈ M , and b ∈ T q(M) for some p
and q. Such elements are in I ∩ T p+q+2(M). It follows that I ∩ T 0(M) = I ∩ T 1(M) = {0}, and

I =
⊕
n≥2

In where In = I ∩ Tn(M).

Define the symmetric algebra on M to be the k-algebra

S(M) = T (M)/I =
⊕
n≥0

Sn where Sn = Tn(M)/In.

By the above remarks, S0(M) = k, S1(M) = M , and S(M) is generated by k and M . Also, in Sn(M) for
n ≥ 2, we have

x1x2 . . . xp−1xyyp+2 . . . yn = x1x2 . . . xp−1yxyp+2 . . . yn

for x1, x2, . . . , xp−1, x, y, yp+2, . . . , yn ∈ M . (The difference of the corresponding elements in T n(M) is in
In.) In other words, one can interchange adjacent terms in a monomial product. It follows that one can
interchange any two terms in a monomial and indeed the product in S(M) is commutative.

Proposition. Let k be a commutative ring and assume that M is a free k-module with basis X. Then
the monomials in X of degree n form a basis for Sn(M). Hence, S(M) ∼= k[X ].

Proof.

We leave this as an exercise for the student who has the time and inclination. One way to proceed is to
state carefully the appropriate universal mapping property for S(M), and then to use that property and the
corresponding property for k[X ] to define ring homomorphisms between the two rings which can be shown
(again by the proper universal mapping properties) to be inverse to one another.

Note that by the argument given above, In is in fact spanned by all

x1 ⊗ · · · ⊗ x⊗ · · · ⊗ y ⊗ . . . xn − x1 ⊗ · · · ⊗ y ⊗ · · · ⊗ x⊗ . . . xn

where x1, . . . , x, . . . , y . . . , xn ∈M .

Exercises.

1. Let k be a commutative ring, and let A be any k-algebra. Let A × A → A be the binary operation
yielding multiplication, and suppose as usual that it is denoted (x, y) 7→ xy. Show that this mapping is
bilinear and hence yields a k-module homomorphism A ⊗ A → A. Conversely, suppose you are given a
k-module homomorphism A ⊗ A → A. Show that it may be used to define a binary operation on A which
satisfies each distributive law. Exhibit a commutative diagram which will have to apply in order that the
associative law applies. Similarly, construct a commutative diagram which will have to apply for their to
be a multiplicative identity. (Hint. Recall that if A is a k-algebra, there is given implicitly at least a ring
homomorphism k → A with image in the center of A.)

2. Let k be a commutative ring and let M be a free k-module of rank > 1. Show that the center of the
tensor algebra Z(T (M)) = k.

3. (Optional). Let M be free on {X1, X2, . . . , Xn}. Show that S(M) ∼= k[X1, X2, . . . , Xn].
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2. Exterior Algebra

Let Mn =

n times︷ ︸︸ ︷
M × · · · ×M . The component Tn(M) of the tensor algebra has the property that any mul-

tilinear map f : Mn → N into a k-module N defines a unique k-module homomorphism F : T n(M) → N ,
i.e., there is an isomorphism of functors

Homk(Tn(M), N) ∼= Mult(Mn, N).

Since Sn(M) = Tn/I ∩ Tn and since I ∩ Tn is spanned (over k) by all

x1 ⊗ · · · ⊗ x⊗ · · · ⊗ y ⊗ . . . xn − x1 ⊗ · · · ⊗ y ⊗ · · · ⊗ x⊗ . . . xn,

it follows that a multilinear map f : Mn → N defines a unique k-module homomorphism F : Sn(M) → N
if and only if f is symmetric, that is

f(x1, . . . , x, . . . , y, . . . xn) = f(x1, . . . , y, . . . , x, . . . xn)

whenever two arguments are interchanged. Since the symmetric group is generated by transpositions, a
multilinear map f is symmetric if and only if it does not change whenever any permutation is perfomed on
its arguments. In fact, as mentioned previously, it suffices to consider only adjacent transpositions. In any
event, there is an isomorphism of functors

Homk(Sn(M), N) ∼= SymMult(Mn, N).

Having considered multilinear symmetric maps, it is natural to also consider multilinear, antisymmetric
maps, i.e., maps for which the sign changes when two arguments are interchanged. Unfortunately, if 1 = −1
in k (as would be the case for F2) antisymmetric maps are also symmetric. On the other hand, if f is
antisymmetric, then

f(x1, . . . , x, . . . , x, . . . xn) = −f(x1, . . . , x, . . . , x, . . . xn)

so that
2f(x1, . . . , x, . . . , x, . . . xn) = 0.

Hence, if 2 is a unit, it follows that f(x1, . . . , x, . . . , x, . . . xn) = 0. Conversely, if f satisfies the condition
f(x1, . . . , x, . . . , x, . . . xn) = 0 for all x ∈M , then it is not hard to see that f must be antisymmetric whether
2 is a unit or not. (Just replace x by x+y and expand by multilinearity.). With this as motivation, we make
the following definition. A multilinear map f : Mn → N is said to be alternating if it vanishes whenever
two arguments are equal. It is not hard to see that it suffices to consider the case in which two adjacent
arguments are equal.

As above, we would like to exhibit an isomorphism of functors

Homk(∧n(M), N) ∼= AltMult(Mn, N)

where ∧n(M) is a suitably defined object. To do this, let Jn be the k-submodule of Tn(M) spanned by all
x1 ⊗ · · · ⊗ x⊗ · · · ⊗ x⊗ · · · ⊗ xn. (As above, it will suffice to take all x1 ⊗ · · · ⊗ x⊗ x⊗ · · · ⊗ xn.) For n = 0
or 1, let Jn = {0}. Define ∧n(M) = Tn(M)/Jn. Clearly, any alternating multilinear form carries Jn to 0 so
it defines a unique k-module homomorphism F : ∧n(M)→ N as required. ∧n(M) is called the nth exterior
power of M .

As in the case of the symmetric algebra, we may also approach the problem from a ring theoretic point
of view. Let

J =
⊕
n≥0

Jn.

It is easy to see that J is an ideal in T (M) and in fact it is the ideal generated by all x2 = x⊗ x for x ∈M .
It follows that ∧(M) = T (M)/J =

⊕
∧n(M) is a k-algebra with k = ∧0(M) and M = ∧1(M). Clearly,
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∧(M) is generated as a k-algebra by the k-submodule M , and x2 = 0 for all x ∈M . Moreover, if f : M → A
is a k-module homomorphism into a k-algebra A with the property that f(x)2 = 0 in A for x ∈ M , then
f may be extended uniquely to a k-algebra homomorphism F : ∧(M) → A. ∧(M) is called the exterior
algebra of M . The image of the element x1 ⊗ · · · ⊗ xn ∈ Tn(M) in ∧n(M) is denoted x1 ∧ · · · ∧ xn. If
f : M → N is a k-module homomorphism, then the universal mapping property described above defines a
k-algebra homomorphism ∧(f) : ∧(M)→ ∧(N), and it is easy to check that

∧(f)(x1 ∧ · · · ∧ xn) = f(x1) ∧ · · · ∧ f(xn).

Proposition. Let M be a free k-module with basis X = {x1, . . . xr}. Then ∧n(M) is free with basis

{xi1 ∧ xi2 ∧ · · · ∧ xin | 1 ≤ i1 < i2 < · · · < in ≤ r}.

In particular,

rank(∧n(M)) =
(
r

n

)
.

Proof.

It is not hard to see that Jn is spanned by all

y1 ⊗ · · · ⊗ yi ⊗ · · · ⊗ yj ⊗ · · · ⊗ yn + y1 ⊗ · · · ⊗ yj ⊗ · · · ⊗ yi ⊗ · · · ⊗ yn

and all
y1 ⊗ · · · ⊗ yi ⊗ · · · ⊗ yi ⊗ · · · ⊗ yn

where y1, . . . , yi, . . . , yj, . . . , yn are distinct elements of the basis X . It is not hard to check that these elements
are linearly independent, so they form a basis for Jn. The elements described in the proposition clearly span
∧n(M). If there were a dependence relation among those elements, then some linear combination of their
preimages in Tn(M) would be in Jn so that linear combination would be uniquely expressible as a linear
combination of the elements listed above. It is easy to see that no such relation can hold in T n(M). (Details
are left to the student.)

Note that if M is free of rank r, then ∧n(M) = {0} if n > r. Can you prove the same thing if M is
generated over k by r elements?

Exercises.

1. Show that a multilinear map f : Mn →M is alternating if and only if it vanishes whenever two adjacent
arguments are equal.

2. Let k be a commutative ring and let M be a k-module. Show that if M is generated as a module by a
set with r or fewer elements then ∧k(M) = 0 for k > r.

3. Determinants

Let k be a commutative ring and let M be a free k-module of rank r. Then ∧r(M) is free of rank 1. In
fact, if {x1, . . . , xr} is a basis for M over k, then x1 ∧ · · · ∧ xr consitutes a basis for ∧r(M). Let f : M →M
be a module homomorphism. By functorality, it induces a module homomorphism ∧r(f) : ∧r(M)→ ∧r(M)
and if u is any generator of ∧r(M), we have ∧r(f)(u) = au for some a ∈ k. It is not hard to see that since
∧r(f) is a module homomorphism, a depends only on f and not on the generator u. (In fact, any k-module
homomorphism of a free module of rank 1 into itself is of the form λa where λa(x) = ax.) We call a the
determinant of the homomorphism f and we denote it det(f).
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Proposition. Let M be free of rank r over the commutative ring k. (a) det(IdM ) = 1. (b) If f, g ∈
Homk(M,M), then det(gf) = det(g) det(f). (c) If f ∈ Homk(M,M) is invertible, then det(f) is a unit in
k.

Proof.

(a) and (b) follow easily from the functorality of ∧r. (c) follows from (a) and (b).

As above, suppose {x1, . . . , xr} is a basis for the free k-module M . If f ∈ Homk(M,M), then we have

f(xi) =
r∑
j=1

ajixj , i = 1, 2, . . . , r

and the matrix A = (aji) completely determines f since it is uniquely characterized by its values on a basis.
A is called the matrix of the homomorphism f . On the other hand, given an r × r matrix A with entries
in k, we may define a k-module homomorphism f : M → M by the above formula. Hence, there is a one
to one correspondence between the endomorphism ring Homk(M,M) and the set Mr(k) of r × r matrices
with entries in k. As in the linear algebra of vector spaces over fields, it is not hard to check that under this
correspondence, if f corresponds to A and g corresponds to B then f + g corresponds to the matrix sum
A+B and gf corresponds to the matrix product BA. Hence the correspondence provides and isomorphism
of rings Homk(M,M) ∼= Mr(k).

Note that we can apply the above theory to the module M = kr of r-tuples with entries in k. That
module has the usual standard basis {e1, . . . , er} where ei has all entries 0 except the ith entry which is 1.
If we identify an r-tuple as a column vector as is usual in linear algebra, then every k-endomorphism f of
M is given by f(x) = Ax where the product on the right is the matrix product of an r × r matrix with a
column vector. Here A is the matrix corresponding to f with respect to the standard basis. In effect we
can identify f with its matrix A in this case. Whenever we write det(A) for A an r × r matrix, it may be
assumed that this is the context if no other module M and basis are specified.

Let M be free of rank r and let f : M →M be a k-module homomorphism. For each i with 0 ≤ i ≤ r, we
have the induced homomorphism ∧i(f). Consider in particular f# = ∧r−1(f). By the above proposition,
∧r−1(M) has rank r. In fact, the elements

yi = x1 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xr, i = 1, . . . , r,

form a basis for ∧r−1(M). Also, xiyi = (−1)i−1u where u = x1 ∧ · · · ∧ xr, and yixj = 0 for i 6= j. (Why?)
By definition,

det(f)u = f(x1) . . . f(xi−1)f(xi)f(xi+1) . . . f(xr)

= (−1)i−1f(xi) ∧r−1 (f)(yi) = (−1)i−1f(xi)f#(yi).

Let f#(yi) =
∑
i bkiyk and as above f(xi) =

∑
j ajixj . Then it follows that

f(xi)f#(yi) =
∑
j,k

ajibkixjyk =
∑
j

ajibjixjyj

= (
∑
j

ajibji(−1)j−1)u.

Hence, det(f) =
∑
j cijaji where cij = (−1)i+jbji. (The two −1 ’s add up to something even.) This is the

so called Laplace expansion of det(f). The quantity bji can be shown to be the determinant of the matrix
obtained from A by deleting the jth row and the ith column (or vice-versa?) It is called the j, i-minor of
the matrix A.

Let A+ be the matrix with entries cij . Then the above formula calculates the diagonal entries of the
product A+A. The off diagonal entries are easily seen to be zero by repeating the above calculations for
f(xi)f#(yj) with i 6= j and recalling that xiyj = 0 in that case.
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Proposition. Let A be an r × r matrix with entries in the commutative ring k. Then

A+A = AA+ = det(A)I.

In particular, A is invertible in Mr(k) if and only if det(A) is a unit in k.

Proof. The above argument verifies the equation for A+A. The argument in the other order is quite
similar. We already know that if A is invertible, then det(A) is a unit. Conversely, if det(A) is a unit, the
above equations show that (det(A))−1A+ is an inverse for A.

Let A be an r × r matrix over a commutative ring k. If we define f : kr → kr by f(x) = Ax, then it is
clear by expanding out

f(e1) ∧ · · · ∧ f(er)

in terms of the matrix entries aij , that det(A) = det(f) is a polynomial of degree r in those entries aij . In
fact, as is the case in linear algebra over a field, det(A) is the sum of the r! terms obtained by forming all
products gotten by taking one term from each row and from each column—with ±1 in front depending on
the sign of the permutation which gives the row index as a function of the column index for that product.
It is often useful to know that equations of the form det(A) = 0 result in polynomial equations.

Suppose now that M is a module over k generated by elements y1, . . . , ym. Suppose f is a k-module
homomophism and

f(yi) =
∑
j

ajiyj for i = 1, 2, . . . ,m.

Let L = k[f ] be the (commutative) subring of Homk(M,M) generated by k and f . It consists of all
polynomials of the form

a0 Id +a1f + · · ·+ atf
t with aj ∈ k.

Let B be the m×m matrix in L = k[f ] with entries

bii = f − aii Id,
bij = −aij Id i 6= j.

If we view M as an L-module in the obvious way, we have∑
j

bijyj = 0 for i = 1, 2, . . . ,m.

Multiply this system of equations by the entries of C = B+ in the suitable order and add to get∑
i,j

clibijyj = 0, l = 1, 2, . . . ,m.

Using B+B = det(B)I yields
det(f)yl = 0, l = 1, 2, . . . ,m,

and since y1, . . . , ym generate M , it follows that det(B) = 0 as an element of Homk(M,M). Recalling what
B is, we have

det(fI −A) = 0

where the matrix in parentheses must be viewed as a matrix with entries in the ring k[f ]. This result is
sometimes called the Hamilton-Cayley Theorem.
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Exercises.
1. Let k be a commutative ring, and let M be a k-module. Define Φ :

∧i(M)→ Homk(
∧j(M),

∧i+j(M))
by

Φ(u1 ∧ · · · ∧ ui)(v1 ∧ · · · ∧ vj) = u1 ∧ · · · ∧ ui ∧ v1 ∧ · · · ∧ vj
for u1, . . . , ui, v1, . . . , vj ∈M .

(a) Show that this condition does define an element of Homk(
∧j(M),

∧i+j(M)). Hint: Use the appropriate
universal mapping property.

(b) Assume M is k-free of rank r. Show that for i+ j = r the map Φ is an isomorphism.
Note that

∧r(M) ∼= k (but the isomorphism depends on a choice of basis) so (b) tells us that∧
r−j(M) ∼= Homk(

∧
j(M), k) the dual of

∧
j(M).

(c) Why isn’t this a natural transformation of functors? Does it have any reasonable naturality properties?
2. Let k be a commutative ring and let M be a free k-module with basis {x1, x2, . . . , xr}. Define zi =
(−1)i−1yi = (−1)i−1x1 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xr. Then {z1, . . . zr} is a basis for

∧r−1(M). Express the
matrix entries for

∧r−1(f) with respect to this basis in terms of the matrix entries aij for f with respect to
the basis for M .


