
CHAPTER XIII

MORE RING THEORY

1. Chain Conditions

We now begin a more systematic treatment of ring theory. There is a substantial difference between the
directions which the theory takes in the commuative and non-commutative case. In this course, we shall
concentrate mainly on the non-commutative case, but we shall also develop some of the important basic
ideas of commutative algebra. We start now with the topic of chain conditions which has relevance both for
commutative and non-commutative algebra.

Proposition. Let S be a partially ordered set. The following two assertions are equivalent.
(i) Every nondecreasing sequence

x1 ≤ x2 ≤ · · · ≤ xi ≤ . . .

eventually stabilizes, i.e., there is an n such that xm = xn for m ≥ n.
(ii) Every non-empty subset of S has a maximal element.

Proof.

Assume (i). Let T be any non-empty subset of S. Choose x1 ∈ T . If x1 is maximal, we are done.
Otherwise, choose x2 ∈ T with x1 < x2. If x2 is maximal, we are done. Keep going in this way. We can
construct a strictly increasing sequence of elements of T—which contradicts (i)—unless we eventually come
upon a maximal element.

Conversely, suppose (ii) is true. The set of elements in a non-decreasing sequence must have a maximal
element and it is clear that the sequence must stabilize with that element.

A partially ordered set with these properties is said to satisfy the ascending chain condition. A partially
ordered set which satisfies the corresponding conditions for the reversed order —i.e., every nonincreasing
chain stabilizes and every non-empty set has a minimal element—is said to satisfy the descending chain
condition.

Let A be a ring and let M be a left A-module. In what follows, we shall generally omit the modifier ‘left’,
but the student should keep in mind that we are developing a theory for left modules. Of course, there is
also a parallel theory for right modules. For commutative rings we need not distinguish the two theories.

We say that M is noetherian if its family of submodules, ordered by inclusion, satisfies the ascending
chain condition. We say the module M is artinian if the set of submodules satisfies the descending chain
condition.

Examples.
1. Any finite abelian group viewed as a Z-module is both noetherian and artinian.
2. Z as a Z-module satisfies the ascending chain condition but does not satisfy the descedning chain

condition. For example, the set of all nontrivial subgroups of Z does not have a minimal element.
3. Let p be a prime and let Tp be the subgroup of Q/Z of all elements with order a power of p, (i.e., its

p-torsion subgroup.) Tp satisfies the descending chain condition on subgroups but not the ascending chain
condition. On the other hand Q/Z itself satisfies neither the ascending nor descending chain conditions.
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Proposition. Let A be a ring, M a left A-module, and N a submodule of M . Then M is noetherian
(artinian) if and only if both N and M/N are noetherian (artinian.)

Proof.

Every chain of submodules of N is also a chain of submodules of M so if M is noetherian, N is also
noetherian. Similarly, every submodule of M/N is of the form L/N where L is a submodule of M with
L ⊇ N . Hence, every chain of submodules of M/N yields a chain of submodules of M which must stop if
M is noetherian.

Conversely, suppose M/N and N are noetherian. Let

M1 ⊆M2 ⊆ · · · ⊆Mi ⊆ . . .
be a chain of submodules of M . The chains

N ∩M1 ⊆ N ∩M2 ⊆ · · · ⊆ N ∩Mi ⊆ . . .
and

(M1 +N)/N ⊆ (M2 +N)/N ⊆ · · · ⊆ (Mi +N)/N ⊆ . . .
must stabilize by hypothesis. The result now follows from the following lemma.

Lemma. Suppose M ′ ⊆M ′′, N ∩M ′ = N ∩M ′′, and (M ′ +N)/N = (M ′′ +N)/N . Then M ′ = M ′′.

Proof of the Lemma.

Consider the diagram
0 −−−−→ N ∩M ′ −−−−→ M ′ −−−−→ (M ′ +N)/N −−−−→ 0y y y
0 −−−−→ N ∩M ′′ −−−−→ M ′′ −−−−→ (M ′′ +N)/N −−−−→ 0.

The rows are exact by the second isomorphism theorem for modules. The homomorphisms on the ends are
equalities by hypothesis so by the 5-lemma, the homomorphism (which is the inclusion) is an isomorphism
so it is equality.

The proof for artinian modules is similar.

Corollary. Any finite sum of noetherian (artinian) modules is noetherian (artinian.)

Proof.

Use induction on the number of factors.

A ring is said to be noetherian or artinian if it is such viewed as a module over itself. In the non-
commutative case, we must distinguish between left -noetherian and right -noetherian and similarly for ”ar-
tinian”.

Corollary. If A is noetherian (artinian) then every finitely generated A-module is noetherian (artinian.)

Proof.

Any finitely generated module is an epimorphic image of a finite direct sum of copies of A.

Proposition. Let A be a ring and M a module over A. M is noetherian if and only if every submodule
of M is finitely generated. In particular, M is itself finitely generated.

Proof.

Suppose M is noetherian, and let N be a submodule of M . The family of finitely generated submodules
of N has a maximal element N ′. We claim N ′ = N . Otherwise, we could choose y ∈ N , y 6∈ N ′, and it is
clear that N ′ + ky is a finitely generated submodule of N strictly containing N ′.

Suppose conversely that every submodule of M is finitely generated. The union of any ascending chain

N1 ⊆ N2 ⊆ · · · ⊆ Nk ⊆ . . .
of submodules of M is clearly a submodule N so it is finitely generated. However, each generator of N must
be contained in some submodule Ni in the chain, so N must also be included in Nj where j the largest index
needed for any of the finite set of generators. It follows that N = Nj , and the chain must stabilize.
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Proposition. If A is a principal ideal domain, then it satisfies the ascending chain condtion, i.e., every
PID is noetherian.

Proof.

Every submodule of A (ideal) is generated by a single element so it is finitely generated. Hence A is
noetherian.

It follows from the proposition that if k is a field , then k[X ] is noetherian since it is a Euclidean domain
and hence a PID. However, k[X ] is not artinian since the chain of submodules (ideals)

(X) ⊇ (X2) ⊇ (X3) ⊇ . . .

clearly does not stablize.

Proposition. Let k be a commutative, noetherian (artinian) ring. If A is a k-algebra which is finitely
generated as a k-module, then A is both left and right noetherian (artinian).

Proof.

We consider the noetherian case; the artinian case is similar.
Any left (right) ideal of A is easily also seen to be a k-submodule. Since k is noetherian, and A is finitely

generated as a k-module, it follows from the above propositions that A is noetherian as a k-module. However,
if the chain condition holds for k-submodules, it also holds for left or right ideals.

Proposition. If A is a noetherian (artinian) ring, then every epimorphic image of A is noetherian
(artinian.)

Proof.

If A′′ is an epimorphic image of A, then the pull back to A of a chain of ideals in A′′ is a chain of ideals
in A. Also, the images in A′′ of the ideals in A are the original ideals in A′′. Since the chain in A must
stabilize, the image chain in A′′ must stablize.

Theorem (Hilbert Basis Theorem). If A is a commutative noetherian ring and X is an indetermi-
nate, then A[X ] is noetherian.

Proof.

Let I be an ideal in A[X ]. Let I denote the set of elements in A which are leading coefficients for
polynomials f(X) = aXn + bXn−1 + · · · ∈ I. It is not hard to see that I is an ideal in A. Since A is
noetherian, I is finitely generated, say by a1, . . . , ak. Let fi(X) be a polynomial in I with leading coefficient
ai for i = 1, . . . , k. Let ri = deg fi(X), and let r be the largest of the ri. Let I ′ be the ideal generated by
f1(X), . . . , fk(X). If

f(X) = aXn + bXn−1 + · · · ∈ I
then a =

∑
i uiai for appropriate ui ∈ A. We claim that

f(X) = f ′(X) + g(X) where deg g(X) < r and f ′(X) ∈ I ′.

For, if deg f(X) < r, we can take f(X) = g(X). Otherwise, take

h(X) = f(X)−
∑
i

Xn−riuifi(X).

The coefficient of Xn in h(X) is a−
∑
i uiai = 0 so its degree is less than n, and clearly f(X)− h(X) ∈ I ′.

Arguing by induction gives us the desired decomposition.
Let M be the A-submodule of A[X ] consisting of all polynomials of degree < r. The above decomposition

shows that I ⊆ I ′ +M . If follows that as an A-module, I/I ′ is isomorphic to a submodule of

(I ′ +M)/I ′ ∼= M/M ∩ I ′.

Since A is noetherian, and since M is finitely generated over A, it follows that (I ′ + M)/I ′ is noetherian
over A. Hence I/I ′ is even a finitely generated A-module, and clearly any set of A-module generators is also
a set of A[X ]-module generators. Since I ′ and I/I ′ are finitely generated A[X ]-modules, so is I.
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Corollary. Let A be a commutative noetherian ring. Any finitely generated A-algebra A[x1, x2, . . . , xn]
is noetherian.

Proof.

Such a ring is an epimorphic image of a polynomial ring over A in n indeterminates, and such a ring is
noetherian by induction.

Exercises.

1. Verify the assertions in the text about Q/A as a Z-module: (a) Q/Z satisfies neither chain condition
(b) Tp, its p-torsion subgroup, satisfies the descending chain condition but not the ascending chain condition.

2. Let A be a commutative ring and let I be an ideal in A[X ]. Let I be the set of leading coefficients of
polynomials in I. Show as stated in the text that I is an ideal in A.

3. Let A be a ring and let M be a noetherian left A-module. Suppose f ∈ HomA(M,M) is an epimorphism.
(a) Let Kn = Ker fn for n = 1, 2, . . . . Show that there is an n > 0 such that Kn = Kn+1.
(b) Show that Ker(f) = {0} so that f is an isomorphism. (Hint: Since f is an epimorphism, so is fn;

write x ∈ Ker f as x = fn(y).)
(c) Is the corresponding result true if we assume f is a monomorphism?
(d) Show that if A is left noetherian, then every left invertible element is also right invertible and vice

versa. (Hint: Take M = A so that HomA(A,A) ∼= A.)

2. The radical of a ring

Let A be a ring. A nontrivial left A-module M is called simple if it has no submodules other than {0}
and M . There is of course a corresponding notion for right modules. As before, in what follows ‘module’
will generally mean ‘left module’, but the corresponding theory for right modules follows in parallel. One
way to study a ring is to try to discover all its simple modules.

Associated with any A-module M is a representation φ : A → HomZ(M,M) where φ(a)(x) = ax. If
the module is simple, we call the representation irreducible. The kernel of this representation is called the
annihilator of M :

AnnA(M) = {a ∈ A | ax = 0 for all x ∈M}.

By the first isomorphism theorem, Imφ ∼= A/AnnA(M) so we may be able to find out something about the
ring A by studying this quotient which is isomorphic to a subring of an endomorphism ring of some abelian
group. If AnnA(M) = {0} then φ imbeds A monomorphically in Hom(M,M), and we call the module or
the representation faithful .

Note that AnnA(M) is a (2-sided) ideal of A, and moreover if I is any (2-sided) ideal contained in
AnnA(M), then M may be viewed as an A/I-module by setting (a + I)x = ax. Also, if N is a submodule
of M , then clearly AnnA(N) ⊇ AnnA(M). Finally, if N1 and N2 are submodules of M , then

AnnA(N1 +N2) = AnnA(N1) ∩AnnA(N2).

You should prove the above assertions.
Define

rad(A) =
⋂

M a simple
left A-module

AnnA(M).

rad(A) is called the Jacobson radical of A. (There is another related radical called the nil radical which
we shall discuss later.) It is certainly an ideal of A, and it has the property that every simple A-module is
also an A/ rad(A)-module. Conversely, it is easy to see that any simple A/ rad(A)-module becomes a simple
A-module through the quotient epimorphism A→ A/ rad(A). Hence, the classes of simple (left) A-modules
and simple (left) A/ rad(A)-modules are the same. Thus, it is easy to see that the following is true.
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Proposition. Let A be a ring. Then rad(A/ rad(A)) = {0}.
At this point you might worry about the Jacobson radical for the theory of right modules. Fortunately,

we shall see later that the left and right handed theories produce the same Jacobson radical.

Theorem. Let A be a ring. Then

rad(A) =
⋂

La maximal proper
left ideal in A

L.

Proof. Let L be a maximal proper left ideal of A. Then M = A/L is a simple A-module since any
submodule would correspond to an intermediate left ideal between L and A. Hence, rad(A)(A/L) = {0},
i.e. rad(A) = rad(A)A ⊆ L so that so rad(A) ⊆

⋂
L L.

Conversely, let M be any A-module. It is not hard to see that

AnnA(M) =
⋂
x∈M

AnnA(x)

where AnnA(x) = {a ∈ A | ax = 0}. (See the Exercises.) However, it is easy to check that each L = AnnA(x)
is a left ideal; indeed it is the kernel of the A-module homomorphism A → M defined by a 7→ ax. Also, if
M is simple, and x 6= 0, L is a maximal proper left ideal. For, Ax is a non-zero left A-submodule of M so
by simplicity, Ax = M . Hence, A/L ∼= M . L 6= A since M 6= {0}, and it is maximal, as above, because
M is simple. It now follows that AnnA(M) ⊇

⋂
L maximal L since it equals the intersection of some of them.

Hence, rad(A) =
⋂
M simple AnnA(M) ⊇

⋂
L L. Putting this together with the previous inclusion gives the

theorem.

Note that the above proof shows that every simple left A-module is isomorphic to one of the form A/L
where L is a maximal left ideal (of the form Ann(x) for some x 6= 0 ∈M). Note also that in the commutative
case the argument is a bit simpler since L ⊆ AnnA(A/L), i.e. LA = AL ⊆ L. However, in the general case
this argument fails becasue L is only a left ideal.

Theorem. Let A be a ring. Then the Jacobson radical of A is given by

rad(A) = {x ∈ A | 1− axb ∈ U(A) for all a, b ∈ A}
= {x ∈ A | 1− ax is left invertible for all a ∈ A}
= {x ∈ A | 1− xb is right invertible for all b ∈ A}.

Corollary. The left Jacobson radical of a ring A is the same as the right Jacobson radical of A (the
intersection of the annihilators of all simple right A-modules). In particular, rad(A) is the intersection of
all maximal right ideals of A.

Proof of the Theorem.

Let J denote the first set on the right in the statement of the theorem, and let Jl denote the second set,
Jr the third set. Since every invertible element is left invertible, taking b = 1 shows that J ⊆ Jl. We shall
show below that Jl ⊆ rad(A) ⊆ J from which it follows that all three are equal. By the same argument in
the right handed theory, we can show similarly that Jr = radright(A) = J so it will follow that J = Jl = Jr
and that both radicals are equal to J and hence the same.

To show that rad(A) ⊆ J , it suffices to show that every element of 1 + rad(A) is invertible. For x ∈
rad(A) ⇒ −axb ∈ rad(A), so in that case, any 1− axb ∈ U(A) and x ∈ J . Suppose then that y ∈ rad(A),
and consider the left ideal A(1 + y). If A(1 + y) = A, then u(1 + y) = 1 has a solution u so 1 + y has a left
inverse. Otherwise, A(1 +y) is a proper left ideal of A. We shall show that this is false. To this end consider
the family of all proper left ideals L of A such that L ⊇ A(1 + y). By Zorn’s Lemma, there is a maximal,
proper left ideal L0 containing A(1 + y). However, rad(A) is contained in every maximal, proper left ideal
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of A, so y ∈ L0. Since 1 + y ∈ L0, it follows that 1 ∈ L0 which contradicts the fact that L0 is proper. Hence,
we conclude that 1 + y has a left inverse u. On the other hand, the equation

u(1 + y) = u+ uy = 1

implies that u = 1 + (−uy) so u is left invertible by the same argument since −uy ∈ rad(A). Call that left
inverse t. Since tu = 1 and u(1 + y) = 1, it follows as usual by associativity that t = 1 + y so u is also a
right inverse for 1 + y. Hence, 1 + y ∈ U(A) as claimed.

Next we show that Jl ⊆ rad(A). Suppose x ∈ Jl. Let M be any simple left A-module. Let m 6= 0 ∈ M .
Then Axm is a submodule of M , and since M is simple, either Axm = {0}, whence xm = 0, or Axm = M .
In the latter case, there is an a ∈ A such that axm = m, i.e., (1 − ax)m = 0. However, by the definition of
Jl, 1 − ax is left invertible so m = 0. It follows that xm = 0 for all m ∈ M so x ∈ AnnA(M). Since this
holds true for every simple M , it follows that x ∈ rad(A).

If L and M are additive subgroups of the ring A, then we define LM as usual to be the subgroup generated
by all products xy with x ∈ L, y ∈M . Hence Lk is the subgroup generated by all products x1x2 . . . xk with
xi ∈ L, i = 1, . . . , k. If L is a left ideal (right ideal, 2-sided ideal), then the same is true of Lk. We call an
ideal (left, right, or both) nilpotent if Lk = {0} for some k > 0. That is the same as saying x1x2 . . . xk = 0
whenever x1, x2, . . . , xk ∈ L. In particular, if Lk = {0}, it follows that xk = 0 for all x ∈ L. If xk = 0 for
some k > 0 (which could depend on x) then x is said to be nilpotent. If L satisfies the somewhat weaker
condition that every element is nilpotent, we say that L is nil . As we just noted, every nilpotent ideal is
certainly nil, but not necessarily vice versa.

Theorem. Let A be a ring. Then rad(A) contains every nil right ideal and every nil left ideal. Moreover,
if A is left (right) artinian, then rad(A) is nilpotent—so it is the maximal nilpotent left or right ideal.

Proof.

Suppose that L is any nil left ideal, x ∈ L, and a ∈ A. Then y = ax ∈ L since L is a left ideal and y is
also nilpotent, say yk = 0. Then

1 = 1− yk = (1 + y + y2 + · · ·+ yk−1)(1− y)

so 1− y = 1− ax is left invertible. It follows from the theorem above that x ∈ rad(A); hence L ⊆ rad(A).
A similar argument shows that any nil right ideal is contained in rad(A).

Suppose next that A is left artinian, and let J = rad(A). Consider the descending chain of ideals

J ⊇ J2 ⊇ · · · ⊇ Jn ⊇ . . .

These are all left ideals since J is a left ideal, so by the descending chain condition, it stabilizes, say for
n ≥ k. If Jk = {0}, then J is nilpotent, so suppose J ′ = Jk 6= {0}. Consider all left ideals L such that
L ⊆ J ′ and J ′L 6= 0. Since J ′J = Jk+1 = Jk 6= 0, it follows that L = J is such an ideal; hence this set of
left ideals is nonempty. By the minimum condition on left ideals, it follows that there is a minimal L′ in
this family of left ideals. Since J ′L′ 6= 0, we may choose x ∈ L′ such that J ′x 6= 0. (In particular x 6= 0.)
However, J ′x is a left ideal (since J ′ is a 2-sided ideal). Also, J ′x ⊆ J ′ and J ′(J ′x) = J2kx = Jkx = J ′x 6= 0.
Because L′ is minimal, and x ∈ L′, it follows that L′ = J ′x. Thus, we can find u ∈ J ′ ⊆ J such that x = ux,
i.e., (1 − u)x = 0. However, since u ∈ J = rad(A), it follows from the theorem proved above that 1 − u is
invertible; hence x = 0. That contradicts the above assumptions so we must have J ′ = Jk = {0}.

Corollary. If A is an artinian ring, then every nil ideal is nilpotent.

Exercises.
1. Prove the unproved assertions in the text about the annihilator of a module. In particular prove that

AnnA(M) =
⋂
x∈M

AnnA(x)
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2. Show that the Jacobson radical of Z is trivial.
3. If the Jacobson radical of a ring in trivial, then the only nil ideal is the trivial ideal. Show that a
commutative ring with trivial Jacobson radical does not have any nilpotent elements other than 0.
4. Let k be a field.

(a) Show that the ring Mn(k) of n× n matrices with entries in k has no nontrivial 2-sided ideals. Hint:
Any element in Mn(k) can be written

∑
i,j aijEij where Eij is the matrix which is 1 in the i, j-position and

zero elsewhere. Think about the products EijErs.
(b) Show that the Jacobson Radical of Mn(k) is trivial. Does Mn(k) have nilpotent elements other than

0?

3. Nakayama’s Lemma

Theorem. Let A be a ring, J is a right ideal contained in rad(A), and M a finitely generated left A-
module. If JM = M , then M = {0}.

Proof. Suppose M 6= {0}, and choose a minimal generating set {x1, . . . , xk} for M . Then since M =
JM , any element y ∈M may be expressed as a sum of elements of the form ax with a ∈ J, x ∈M . Each x
may be expressed as a linear combination of {x1, . . . , xk} with coefficients in A. Since J is a right ideal, we
can combine terms to express y as a sum of elements of the form aixi with ai ∈ J . In particular, we have

x1 = a1x1 + a2x2 + · · ·+ akxk

with a1, . . . , ak ∈ J . Hence,
(1− a1)x1 = a2x2 + · · ·+ akxk.

However, since a1 ∈ J ⊆ rad(A), it follows that 1 − a1 is invertible, so x1 can be expressed as a linear
combination of x2, . . . , xk. This contradicts the minimality of the generating set.

Corollary. Let A be a ring, J is a right ideal contained in rad(A), M a finitely generated A-module,
and N a submodule. If M = N + JM , then N = M .

Proof. Apply Nakayama’s Lemma to M/N which is also finitely generated. The hypothesis M =
N + JM implies that J(M/N) = {0} so M/N = {0} and M = N .

Corollary. Let A be a ring. Every maximal proper 2-sided ideal I of A contains rad(A).

Proof. Suppose I is a maximal 2-sided ideal. Take J = rad(A),M = A, and N = I. Then I+JA = I+J
is a 2-sided ideal and it contains I. By maximality, I + J = A or I+ J = I. In the former case, the previous
corollary tells us that A = I; hence (since I is proper) the latter case holds and J ⊆ I.

Nakayama’s Lemma is one of those results in mathematics which is basically trivial but which has many
profound consequences. For this reason, it is named after Nakayama although it is hardly the most important
or most difficult theorem proved by that distinguished mathematician.

The commutative case.
If A is a commutative ring, the theory simplifies. In that case

rad(A) = {x ∈ A | 1− ax ∈ U(A) for all a ∈ A}.

Also, if A is commutative, the set N of all nilpotent elements of A is an ideal. For, if xi = 0 and yj = 0,
then by the binomial theorem

(x+ y)i+j =
i+j∑
r=0

(
i+ j

r

)
xryi+j−r .

In each term, either r ≥ i or i+ j − r = (i− r) + j ≥ j, so the sum is 0. Hence, N is closed under addition.
It is also closed under multiplication by elements of A since in the commutative case (ax)i = aixi. Hence,
it is an ideal. N is called the nil radical of A. We shall denote it N(A).
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Since rad(A) contains every nil ideal, we see that if A is commutative, then the Jacobson radical always
contains the nil radical . However, in general the two need not be equal. In fact, if A is commutative, we
need not distinguish left from right ideals so the Jacobson radical is the intersection of all maximal ideals
of A. But, we shall show later in this course that the nil radical is the intersection of all prime ideals of A.
Hence, the existence of nonmaximal prime ideals raises the possibility that rad(A) ' N(A). Of course, if A
is an artinian commutative ring, then the Jacobson radical equals the nil radical since the former is nilpotent.

Exercises.

1. Let A be the subring of Q consisting of all fractions a/b with a, b ∈ Z, gcd(a, b) = 1 and such that 2 does
not divide b. Show that A has a unique maximal ideal, namely the principal ideal (2). Hence, this must be
the Jacobson radical. On the other hand, since A is a domain, it has no nonzero nilpotent elements, and its
nil radical is (0). (Note that (0) is also a prime ideal.)

General ring theoretic exercises.

2. Let k be a commutative ring and let G be a group. Let k[G] be the free k-module with basis the
underlying set of G. Thus any element of k[G] can be written

∑
g∈G agg where ag ∈ k and almost all ag = 0.

Define
(
∑
g

agg)(
∑
h

bh) =
∑
k

(
∑
gh=k

agbh)k.

(a) Show that this operation makes k[G] into an associative ring. (Try to organize your proof so that the
argument is convincing but leave out as much detail as is consistent with that goal.)

(b) Imbed k in k[G] by φ : k → k[G] where φ(a) = a1 (i.e., ag = 0 for g 6= 1.)
Show that k[G] becomes a k-algebra.
k[G] is called the group algebra of G over k. The elements of the basis of k[G] form a group under

multiplication in k[G] which we may readily identify again with G. Note that G is thereby contained in the
group of units U(k[G]).

(c) Suppose that A is any k-algebra and f : G→ U(A) is a homomorphism of G into the group of units
of A. Show that f may be extended uniquely to a k-algebra homomorphism F : k[G]→ A.

(d) If f : G → G′ is a homomorphism of groups, how should you define a k-algebra homomorphism
k[f ] : k[G]→ k[G′] so that k[−] becomes a functor from the category of groups to the category of k-algebras?

If G is a group and V is a vector space over a field k, then a homomorphism f : G → Gl(V ) is called a
representation of G over k.

(e) Show that the representations of G over k are in one-to-one correspondence with the k[G]-modules V .


