
CHAPTER XVI

NONCOMMUTATIVE RINGS

1. Semisimplicity

Let A be a (not necessarily commutative) ring. As usual, “module” will mean “left A-module”, but of
course there is a parallel theory for right modules. A module M over A is said to be semi-simple if it can
be decomposed as a direct sum of simple A-modules.

Examples.
If A is a field (or more generally a division ring), simple A-modules are one-dimensional vector spaces,

and there is only one such up to isomorphism. Since every vector space is a direct sum of one-dimensional
subspaces, every module is semi-simple.

For A = Z, a module is simple if and only if it is cyclic of prime order. Hence, most Z-modules are not
semi-simple.

We shall see other more typical examples below.

Clearly, any direct sum of semi-simple modules is semi-simple.

Proposition. Let A be a ring and let M be an A-module. The following are equivalent.
(i) M is semi-simple.
(ii) M is a sum (not necessarily direct) of a family of simple submodules.
(iii) Every A-module epimorphism M → L splits.
(iv) Every submodule N of M is a direct summand of M .

Proof. (ii) ⇒ (i). Suppose M =
∑
i∈IMi. Consider subsets J ⊆ I such that

∑
j∈JMj is a direct sum,

i.e.,
Mi ∩

∑
j∈J
j 6=i

Mj = {0} for each i ∈ J.

If we order these sets by inclusion, it is not hard to see that they form an inductively ordered set. (Prove
it!) Hence, by Zorn’s Lemma, there is a maximal such subset J . If J = I we are done, so assume J & I. Let
M ′ =

∑
j∈JMj . Consider Mi for i ∈ I − J . Mi ∩M ′ is a submodule of Mi so by simplicity,

Mi ∩M ′ =


{0}

or
Mi

If Mi ∩M ′ = {0}, it is easy to see that
∑
j∈J +Mi is a direct sum which contradicts the maximality of J .

Hence, Mi ∩M ′ = Mi which implies Mi ⊆M ′. It follows that M =
∑
i∈I ⊆M ′ so the two are equal. Since

M ′ is a direct sum of simple modules we are done.
(i) ⇒ (iv). Assume M =

∑
i∈IMi is a direct sum with each Mi simple. Let N be a submodule of M .

Using Zorn’s Lemma again, choose J ⊆ I maximal such that M ′ = N +
∑
j∈JMj is a direct sum. Argue as

above. For each i ∈ I, Mi ∩M ′ = {0} implies that M ′ +Mi = N +
∑
j∈JM +Mi is direct, so we conclude

instead that Mi ⊆M ′. Hence, M = M ′.
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146 XVI. NONCOMMUTATIVE RINGS

(iv) ⇔ (iii). Consider the short exact sequence

0→ N
g→M

f→ L→ 0

where either N = Ker f if f is assumed given or L = Coker g if g is assumed given. Since the sequence splits
at one end if and only if it splits at the other, the equivalence is established.

(iii) & (iv) ⇒ (ii). If M = {0}, then M is an empty sum of simple submodules. Suppose that M 6= {0}.
First, we note that any submodule M ′ of M or quotient module M ′′ of M also satisfies (iii) and (iv). For
example, if f : M → M ′′ is an epimorphism and g : M ′′ → L is an epimorphism from that quotient, then
by (iii) the epimorphism gf : M → L splits, so there is a homomorphism h : L→ M such that hgf = IdL.
It follows that hg : L → M ′′ splits f . The argument for submodules is similar. Next we show that (iii)
& (iv) together imply that M (also any submodule of M) has at least one simple submodule. To see this
choose x 6= 0 ∈ M and let g : A → M be defined by g(a) = ax. Then Ker g is a left ideal of A so it
is contained in a maximal left ideal L. A/Ker g ∼= Ax which is a submodule of M . Hence, by (iii) the
epimorphism A/Ker g → A/L splits, so Ax ∼= A/Ker g contains a direct summand isomorphic to the simple
module A/L. Consider finally the submodule N of M which is the sum (not generally direct) of all the
simple submodules of M . (In general, this submodule is called the socle of M .) By (iv), M = N ⊕M ′
where M ′ is a complementary submodule. If M ′ 6= {0}, then it contains a simple submodule P which is not
contained in N . Since by definition N contains all simple submodules of M , we conclude M = N .

Corollary. If M is a semi-simple A-module, then every submodule and every quotient module of M is
semi-simple.

Proof. As we remarked in the above proof, properties (iii) and (iv) are inherited by sumodules and
quotient modules.

We say that the ring A is semi-simple if it is semi-simple as a left module over itself, that is

A ∼= ⊕i∈ILi
where each Li is a simple submodule of A, i.e., a minimal left ideal of A. As before, we should distinguish
between “left semi-simple” and “right semi-simple”, but we shall see below that the two notions are the
same. Note that if A is semi-simple, then every (left) A-module is semi-simple since it is a quotient of a free
module, and a free module is semi-simple because it is a direct sum of copies of A. Hence, any short exact
sequence of A-modules

0→M ′ →M →M ′′ → 0

splits. It follows that every A-module is a direct summand of a free A-module. In general, modules with
this property are called projective. Hence, every module over a semi-simple ring is projective.

Projective modules share a mapping property previously stated for free modules.

Proposition. . Let A be a ring and let P be a left A-module. The following are equivalent.
(i) P is a direct summand of a free module.
(ii) If f : M → M ′′ is an epimorphism, and g′′ : P → M ′′ is any module homomorphism, then there

exists a module homomorphism g : P →M such that
P

g ↙ ↓ g′′

M �

f
M ′′

commutes.
(iii) Every epimorphism M → P splits.

Proof. (ii) ⇒ (iii) is clear by taking g = Id : P → P .
(iii) ⇒ (i) since P is certainly a quotient of a free module.
(i) ⇒ (ii) is left as an exercise for the student.

A module Q is called injective if it satisfies the dual of the condition stated in (ii). It is not very hard to
see that that condition is equivalent to the assertion that every monomorphism Q→M splits. (There is no
simple analogue of (i). However, it is true that every module is isomorphic to a submodule of an injective
module.)
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Corollary. A ring A is semi-simple if and only if every A-module is projective.

Proof. We already noted that if A is semi-simple, then every module is projective. Conversely, suppose
every module is projective. In particular if A→M is any epimorphism, it splits by (iii) above. Hence A is
semisimple by (iii) of the Proposition characterizing semi-simple modules.

Proposition. A ring A is semi-simple if and only if every A-module is injective.

Proof. Exercise. Use the fact that “everything splits.”

Exercises.
1. Prove (i) ⇒ (ii) in the proposition showing that the three possible definitions of projective module are
equivalent.
2. Let A be a ring and let Q be an A-module. Prove that (i) and (ii) below are equivalent. (In either case,
we say Q is injective.

(i) If f : M ′ →M is a monomorphism, and g′ : M ′ → Q is any module homomorphism, then there exists
a module homomorphism g : M → Q such that gf = g′.

(ii) Every monomorphism f : Q→M splits, i.e., ∃h : M → Q such that hf = IdQ.
Hint: To prove that (ii) ⇒ (i), let N = (Q⊕M)/{(g(x),−f(x)) |x ∈ M ′} and construct a commutative

diagram
Q

F−−−−→ N

g

x xH
M ′ −−−−→

f
M

and show that the F you define is a monomorphism. (N is called a pushout.)
3. Show that a ring A is semi-simple if and only if every A-module is injective.

2. Some important semi-simple rings

We shall shortly prove one of Wedderburn’s fundamental theorems: a semi-simple ring is isomorphic to
a direct product of rings each of which is a matrix ring Mn(D) over a division ring D. This is a surprising
result because it shows us that a relatively abstract definition leads to a reasonably concrete kind of object.
Before proving this theorem of Wedderburn, we show how one may construct semi-simple rings.

Matrix rings. Let D be a division ring. If you go back and examine the basic theorems of linear algebra
over fields, you will discover that those theorems did not for the most part depend on the commutativity of
the field. For example, every D-module M has a basis, and the number of elements in a basis is independent
of the basis. Hence, we can define dimDM as that number. However, if D is not commutative, we must
distinguish between left and right modules. Moreover, it is possible for the division ring D to act on M on
both the left and the right so that the two actions are consistent but with the dimension of the left module
different from the dimension of the right module. (In fact, P. M. Cohn has found an example of division
rings D ⊆ D′ with the left dimension of D′ over D equal to 2 and the right dimension infinite.)

Suppose M is a finite dimensional left D-module, and {x1, . . . , xn} is a basis. For each f ∈ HomD(M,M)
we have

f(xi) =
n∑
j=1

aijxj , i = 1, . . . , n.

(Note that we use aij instead of aji in the sum.) Thus, we may associate with f the n × n matrix A with
entries in D. Some simple calculation shows that f 7→ A preserves sums but that it reverses products —
where the product of matrices is calculated in the usual way except that you have to be careful about the
order. Hence, we get an anti-isomorphism of rings

HomD(M,M)→Mn(D).
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One way to deal with the problem of anti-isomorphisms is to introduce the concept of the opposite ring.
If R is any ring, Rop is the ring with the same additive group structure but with the product reversed (so R
and Rop are anti-isomorphic.) With this notation we may say

HomD(M,M) ∼= Mn(D)op ∼= Mn(Dop).

(How is the second isomorphism defined?)
If M were a right D-module instead, then we would write

f(xi) =
n∑
j=1

xjaji, i = 1, . . . , n.

In this case the correspondence between endomrophisms and matrices would be an isomorphism of rings

HomD(M,M) ∼= Mn(D).

It is easy to see that the ring Mn(D) is semi-simple if D is a division ring. Just let Lj be the set of n× n
matrices which are zero everywhere except possibly in the jth column. If you multiply such a matrix on the
left by any n×n matrix, you again get such a matrix, so Lj is a left ideal in Mn(D). If the matrix A 6= 0 ∈ Lj ,
then by multiplying A on the left by suitable matrices you can obtain the matrices Eij , i = 1, 2, . . . , n. Hence,
any single nonzero element of Lj generates it as a module over Mn(D) from which it follows easily that Lj
is a simple left submodule of Mn(D). Since Mn(D) = ⊕jLj, it follows that Mn(D) is semi-simple. If we had
used rows instead of columns, we could have showed that Mn(D) is a direct sum of simple right submodules.
Hence, Mn(D) is semi-simple by both the right hand and left hand theories. It is not hard to see that Mn(D)
is both noetherian and artinian. For, it is a (left or right) free module over D of rank n2, and, by finite
dimensionality, there are no infinite chains of D-submodules. We shall see later that any semi-simple ring
(with identity) is both artinian and noetherian in any case.

Recall that we proved earlier in an exercise that the ring Mn(k) is simple if k is a field. Essentially the
same proof works for matrix rings over division rings. Hence, Mn(D) (or equivalently HomD(M,M) is both
simple and semi-simple. As we shall see below, this is no accident, and of course the choice of language
suggests the relation: semi-simple rings are direct products of simple rings.

Group rings. Let k be a field, and let G be a group, and denote by kG the group ring of G as defined in
the exercises.

Theorem (Maschke). Let k be a field, G a finite group and suppose the characteristic of k does not divide
|G|. Then kG is semi-simple.

Proof. Let f : M →M ′′ be an epimorphism of kG-modules. If we view f just as an epimorphism of k-
modules, then its splits because every field is semi-simple. Choose h : M ′′ →M a k-module homomorphism
such that fh = IdM′′ . Define j : M ′′ →M by

j(m′′) =
1
|G|

∑
x∈G

x−1h(xm′′).

Then, j is a kG-module homomorphism. For, if y ∈ G, then

j(ym′′) =
1
|G|

∑
x∈G

x−1h(xym′′)

=
1
|G|y

∑
x∈G

y−1x−1h(xym′′)

= y
1
|G|

∑
z∈G

z−1h(zm′′) = yj(m′′).



2. SOME IMPORTANT SEMI-SIMPLE RINGS 149

Since, j is certainly a k-module homomorphism, it follows that it is a kG-module homomorphsim. Also,
fj = IdM”. For,

f(j(m′′)) =
1
|G|

∑
x∈G

x−1f(h(xm′′))

=
1
|G|

∑
g∈G

x−1xm′′

=
1
|G| |G|m

′′ = m′′.

It follows that every epimorphism splits.

Proposition. Let A be a semi-simple ring.
(i) A is a direct sum of finitely many simple submodules.
(ii) A is artinian and noetherian.

Proof. (ii) follows from (i) since any simple A-module is certainly artinian (noetherian), and any finite
direct sum of artinian (noetherian) modules is artinian (noetherian).

To prove (i) suppose that
A = ⊕i∈ILi

where each Li is a minimal left ideal (i.e. simple submodule.) Then

1 =
∑
i∈I

ei

where ei ∈ Li, and only finitely many ei 6= 0. Let

J = {j ∈ I | ej 6= 0}.

It follows that each a ∈ A may be written
a =

∑
i∈J

aei

and since aei ∈ Li, it follows that A = ⊕i∈JLi.
The following theorem tells us that we can always get a semi-simple ring by factoring out the radical of

an artinian ring.

Theorem. Let A be a ring. Then A is semi-simple if and only if it is artinian and rad(A) = {0}.
Proof. Suppose A is semi-simple. We saw above that it is artinian, and it is a direct sum ⊕i∈JLj of

finitely many minimal ideals Lj . It is easy to see that for each j ∈ J , Mj =
∑
i6=j Li is a maximal left ideal

of A and
⋂
jMj = {0}. It follows that the intersection of all maximal left ideals is trivial so rad(A) = {0}.

Conversely, suppose A is artinian, and rad(A) = {0}. Consider left ideals L of A such that A = S ⊕ L
where S is a semi-simple left submodule of A. For example, take L = A,S = {0}. Since A is artinian, there
is a minimal such L. We shall show that if L 6= {0}, then it can be further decomposed L = M ⊕ L′ where
M is a minimal left ideal and L′ is a left ideal. Since A = S ⊕M ⊕ L′ and S ⊕M is semisimple, since L′ is
strictly contained in L, this leads to a contradiction.

Suppose L 6= {0} and let M be any minimal left ideal (simple left submodule) contained in L. (Invoke the
minimum principle.) M2 is a left submodule of M so M2 = {0} or M . In the former case, M is a nilpotent
left ideal so it is contained in rad(A) = {0}, i.e. M = {0}. It follows that M2 = M . Choose x ∈ M such
that Mx 6= {0}. Again, Mx is a submodule of M so by simplicity Mx = M . Hence, there is an e ∈M such
that ex = x. It follows that e2x = ex or (e2 − e)x = 0. However,

M1 = {z ∈M | zx = 0}
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is an ideal contained in M , and M1 6= M (since Mx 6= {0}) so M1 = {0}. Since e2 − e ∈M1, it follows that

e2 = e.

e ∈M is called an idempotent .
We have 1 = e + (1 − e). Hence, each element a ∈ L may be written a = ae + a(1 − e). Thus,

L ⊆ Le+L(1− e). On the other hand, Le is contained in M and e = e2 ∈ Le is notrivial so Le = M . Also,
L(1− e) ⊆ L+ Le ⊆ L (since e ∈ L). It follows that

L = M + L′ where L′ = L(1− e).

Finally, the sum is direct since if ae = b(1− e), then

ae = ae2 = b(1− e)e = b(e− e2) = 0.

Exercises.
1. Let H be the algebra of quaternions defined as follows. H = R×V where V ∼= R3 is the real vector
space of ordinary vectors in 3-space. Then H ∼= R4 as a real vector space. Introduce the following product
in H.

(a, u)(b, v) = (ab− u · v, av + bu+ u× v).

(a) Verify the associative law in H. You may use whatever identities for the vector product u× v you can
find in elementary text books on vector algebra.

Assume that H becomes an algebra over R with the above product and its underlying vector space
structure. Note that R is imbedded in H as the set of elements of the form (a, 0).

(b) For α = (a, u) define α = (a,−u). Show that αβ = β α.
(c) For α = (a, u) define ‖α‖ =

√
a2 + |u|2 where |v| is the ordinary Euclidean length of the vector v.

Show that ‖αβ‖ = ‖α‖ ‖β‖. Hint: Show that αα = (‖α‖2, 0).
(d) Conclude that every nonzero element of H is invertible.

2. Show that the association f 7→ (aij) defined in the text reverses products. What would go wrong if
we tried to define the matrix of f in the usual manner by f(xi) =

∑
j ajixj? Check that if M is a right

D-module, then using the latter formula instead preserves products.
3. Let k be a field and let A = kn be the direct product of n copies of k viewed as a ring with component
operations. (That is the product in the category of rings.) Show that every ideal of A is obtained by taking
the set of all elements whose coordinates at a specified set of indices is 0. Show that the Jacobson radical of
A is trivial.
4. Let k be a field and let A be the subring of Mn(k) consisting of all matrices with zeroes below the main
diagonal.

(a) Show that A is both noetherian and artinian.
(b) Show that the Jacobson radical of A is the ideal N of all matrices which are zero on the main diagonal

and also below the main diagonal. Hint: Show that A/N is isomorphic to the direct product kn.

3. Wedderburn’s First and Second Theorems

Theorem (Wedderburn). A semi-simple ring A is a direct product of simple artinian rings.

Proof. Since A is semi-simple, we have
A =

∑
i

Li

where each Li is a minimal left ideal, and, as we noted above, the sum is finite. For each pair Li and Lj ,
LiLj is also a left ideal and it is contained in Lj . Hence LiLj = {0} or Lj. Suppose LiLj = Lj. Then
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there is an x ∈ Lj such that Lix 6= {0} so Lix = Lj. (In this case, note for future reference that a 7→ ax
is an A-isomorphism between Li and Lj .) It is not hard to check that the relation LiLj 6= {0} defines an
equivalence relation on the set of ideals Li. For, L2

i 6= {0} since rad(A) = {0} as discussed earlier; hence,
L2
i = Li. Also, if LiLj 6= {0}, then LjLiLj = LjLj 6= {0}, so LjLi 6= {0}. Finally, if LiLj 6= {0} and

LjLk 6= {0}, then LiLk = LiLjLk = LjLk 6= {0}.
Partition the set of minimal left ideals Li into equivalence classes and for each class form the sum A′ of

the Li in that class. Then A′ is a 2-sided ideal in A. For, A′ is a left ideal since it is a sum of left ideals. On
the other hand, if Li is any of the minimal left ideals in the decomposition of A, then A′Li = {0} if Li is
not in the equivalence class defining A′, and A′Li = Li ⊆ A′ if Li is in that equivalence class. Hence, since
A =

∑
i Li, A

′A ⊆ A′, and A′ is also a right ideal.
Suppose then that we number these ideals A1, A2, . . . , Ar so that we have a direct sum decomposition (as

left A-modules)
A = A1 ⊕A2 ⊕ · · · ⊕Ar.

Note that since LiLj = {0} for Li and Lj in different classes, it follows that AiAj = {0} for i 6= j, i.e.,
multiplication as well as addition in A is done componentwise. It follows that in the category of rings

A ∼= A1 ×A2 × · · · ×Ar
except for one small sticking point: we don’t know that the ideals Ai are rings until we show they have
multiplicative identitites. To deal with this point, write

1 = e1 + e2 + · · ·+ er

where ei ∈ Ai. From 12 = 1 and eiej = 0, it follows that each ei is idempotent, i.e., e2
i = ei. If a ∈ Ai, then

a = a1 = ae1 + ae2 + · · ·+ aei + · · ·+ aer = aei

so that ei is a right identity on Ai. An analagous argument shows that it is a left identity.
Each Ai is an epimorphic image of A in the category of rings so it follows that it is artinian. Hence, to

complete the proof we need only show that each Ai is simple. Write A′ = Ai to simplify the notation. Then
as above

A′ = ⊕jLj
where the Lj are minimal left ideals and LjLk = Lk for each j, k. Let I be a 2-sided ideal of A′. Then ILj is
a left ideal contained in Lj so it is {0} or Lj. If it vanishes for one Lj, it vanishes for all since ILk = ILjLk.
In that case I = IA′ =

∑
ILj = {0}. Otherwise, ILj = Lj for each j. However, since I is a two sided ideal

ILj ⊆ I so every Lj ⊆ I. Hence, A′ =
∑
Lj ⊆ I so I = A′.

We shall show shortly that any simple artinian ring is a matrix ring over a division ring, hence it is
semi-simple. It follows that any direct product of simple artinian rings is semi-simple.

Proposition (Schur’s Lemma). Let A be a ring and let M and N be simple A-modules.
(i) Any module homomorphism f : M → N is either 0 or an isomorphism.
(ii) HomA(M,M) is a division ring.

Proof. (i) is clear since Im f is a submodule of N so Im f = {0} or N . In the first case Ker f = N , and
in the second case Kerf 6= N so Ker f = {0}. Hence, in the second case f is an isomorphism.

(ii) follows from (i) by taking M = N .

Let M be a left A-module, and let D = HomA(M,M). For α ∈ D, write αx = α(x) for x ∈ M . In this
way, we may treat M as a left D-module. For a ∈ A, define λa : M →M by λa(x) = ax. λa ∈ HomD(M,M).
For,

λa(αx) = a(αx) = aα(x) = α(ax)

since α ∈ HomA(M,M))

= α(λa(x)) = αλa(x).

Define φ : A→ HomD(M,M) by φ(a) = λa. φ is easily seen to be a ring homomorphism.
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Theorem (Rieffel). Suppose A is a simple ring, M 6= {0} is a left ideal in A, and D = HomA(M,M).
Then φ : A→ HomD(M,M) as defined above is an isomorphism.

Proof. Since A is simple, Kerφ = {0}; hence we need only show that φ is an epimorphism.
First note that φ(M) is a left ideal in HomD(M,M). For, if u ∈M and g ∈ HomD(M,M), then

(gφ(u))(x) = g(φ(u)(x)) = g(ux).

However, the mapping u 7→ ux is an A-module endomorphism of M since

au 7→ (au)x = a(ux).

Hence, ∃α ∈ D = HomA(M,M) such that α(u) = xu for u ∈M . Thus

(gφ(u))(x) = g(ux) = g(αu) = αg(u) = g(u)x = λg(u)(x) = φ(g(u))(x),

so that gφ(u) = φ(g(u)).
Consider MA. Since M is a left ideal and A is a 2-sided ideal, MA is a 2-sided ideal of A. It is not trivial

so by simplicity, MA = A. Hence, φ(A) = φ(MA) = φ(M)φ(A). Since φ(M) is a left ideal in HomD(M,M),
it follows that φ(A) is a left ideal in that ring. Since 1 ∈ φ(A), φ(A) = HomD(M,M).

Corollary. Let A be a simple artinian ring, M a minimal left ideal of A, and D = HomA(M,M).
Then

A ∼= HomD(M,M) ∼= Mn(Dop)

where n = dimDM . Hence, A is a simple artinian ring if and only if it is isomorphic to a matrix ring over
a division ring.

Proof. Use the following lemma.

Lemma. Let D be a division ring and let M be a D-module. Then HomD(M,M) is artinian if and only
if dimDM <∞.

Proof of Lemma. If dimDM = n < ∞, then as we saw earlier, HomD(M,M) ∼= Mn(Dop) and we
know the latter ring is artinian. On the other hand, if M is infinite dimensional over D, then we may form
an ascending chain of subspaces

M1 &M2 & · · · &Mk & . . .

Let Lk = {f ∈ HomD(M,M) | f(Mk) = 0}, It is easy to see that Lk is a left ideal and Lk+1 ' Lk since
we can always find a D-linear function which vanishes on a basis for Mk, but does not vanish on Mk+1. So
HomD(M,M) is not artinian.

Since Mn(D) —with D a division ring—is semi-simple either as a left or a right module, it follows that
any direct product of matrix rings (i.e. simple artinian rings) is semi-simple. Hence, we can say

Theorem. Let A be a ring. A is left semi-simple if and only if it is right semi-simple if and only if it is
isomorphic to a finite direct product of matrix rings Mn(D) over division rings D.

Note that this result assures us that a semi-simple ring is both left and right artinian and also left and
right noetherian. In general, however, a ring could be left artinian (noetherian) without being right artinian
(noetherian). [For example, let D be a division ring and M a D-bimodule which has finite dimension as a left
D-module and infinite dimension as a right D-module. (As mentioned earlier, P. M. Cohn has constructed
such an example.) Let A = D ⊕M , and make A into a ring by using the product

(a,m)(a′,m′) = (aa′, am′ +ma′).

Then any left D-subspace of M is a left A-submodule and similarly for right subspaces and right A-
submodules. It follows that A is left artinian and noetherian but it is not right artinian or right noetherian.]
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Theorem. Let A be a ring. If A is left (right) artinian, then it is left (right) noetherian.

Proof. We do the left handed case. The right handed case is similar.
Let J = rad(A). Then since J is nilpotent, we have a tower

A ⊇ J ⊇ J2 ⊇ · · · ⊇ Jk ⊇ Jk+1 = {0}

of ideals. Since A is artinian, so is A/J , and since rad(A/J) = {0}, it follows that A/J is semisimple.
Consider the left A-modules J i/J i+1. In fact, J i/J i+1 is an A/J-module and the action of A factors through
the action of A/J . Since A is left artinian as an A-module, so is J i/J i+1. Since it is an A/J −module, it
breaks up as a direct sum of simple submodules. If that sum were not finite, then it is easy to see that J i/J i+1

could not be artinian. Hence, J i/J i+1 is a direct sum of finitely many simple A/J (or A) submodules, so it
is noetherian. Thus all the quotients in the above tower are noetherian, so A is also noetherian as a module
over itself.

Question: Each J i/J i+1 is also a right A/J-module. Why can’t we also conclude it is right noetherian?

Exercises.

1. Let A be a commutative artinian ring. Suppose

1 = e1 + · · ·+ er

is a decomposition of 1 into primitive orthogonal idempotents. Show that any idempotent of A is of the form

e = ei1 + · · ·+ eik

for some subset {i1, . . . , ik} ⊆ {1, . . . , r}.

4. Uniqueness questions for semisimple rings

Theorem. Let A be a simple artinian ring. All simple left A-modules M are isomorphic. In particular,
if Mn(D) ∼= Mn′(D′) where D and D′ are division rings then n = n′ and D ∼= D′.

Proof. Let M be a simple A-module, and let L be any minimal left ideal of A. Consider LM ⊆ M .
LM is an A-submodule of M so LM = {0} or LM = M . If LM = {0}, then L ⊆ AnnA(M) = {0} since A
is simple. Hence, LM = M . Choose x ∈M such that Lx 6= {0}. Then Lx = M . Also, the mapping a 7→ ax
provides an A-homomorphism L→ M , and by the above remarks, that homomorphism is an isomorphism.
Hence, any simple A-module M is isomorphic to L.

To prove the second statement, let A = Mn(D)
φ∼= A′ = Mn′(D′), let L be the minimal left ideal of A

consisting of matrices which vanish except in the first column, and let L′ be the corresponding minimal left
ideal of A′. Using the isomorphism φ, we may view L′ also as an A-module. Thus there is an isomorphism f :
L→ L′ of simple modules. It is not hard to see that D = HomA(L,L), and similarly D′ = HomA′(L′, L′) =
HomA(L′, L′). Consider the map Hom(L,L)→ Hom(L′, L′) defined by α 7→ fαf−1. It is not hard to check
that this map carries A-endomorphisms of L into A-endomorphisms (i.e., A′-endomorphisms) of L′. Also, it
is one-to-one and onto so it yields an isomorphism HomA(L,L) ∼= HomA′(L′, L′). On the other hand, it is
not hard to see by matrix manipulation that every element of HomA(L,L) is of the form ρα for α ∈ D where
ρα(x) = xα. Also, it is not hard to see that ρ : D→ HomA(L,L) is a one-to-one map which preserves sums
but reverses products so it yields an isomorphism Dop ∼= HomA(L,L). Similarly, D′op ∼= HomA(L′, L′), so
it follows that D ∼= D′. Finally, it is not hard to see that f : L → L′ carries the structure of L as a right
vector space over D into L′ viewed as as a right vector space over D′, and n = dimD L = dimD′ L

′ = n′.
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Theorem. Let A = A1 ⊕A2 ⊕ · · · ⊕Ar where each Ai is a minimal 2-sided ideal. Any two such decom-
positions are the same except for the order of the summands.

Proof. Let B be any 2-sided ideal of A. For each i, we have BAi ⊆ Ai. By minimality, BAi = {0} or
Ai. Thus, B = BA =

∑r
i=1BAi =

∑′
Ai where the last sum is taken over the subset of those i for which

BAi = Ai. It follows that every 2-sided ideal of A is obtained by summing some subset of the set of the
ideals A1, . . . , Ar. Thus, we know all possible minimal 2-sided ideals of A.

Note that the minimal 2-sided ideals Ai are actually simple rings and

A ∼= A1 × · · · ×Ar

in the category of rings. As in previous arguments, AiAj = {0} if i 6= j and if 1 = e1 + · · ·+ er with ei ∈ Ai,
then ei is the identity of Ai. However, Ai is not generally a subring of A since its identity ei 6= 1 ∈ A.

Corollary. The decomposition of a semi-simple ring as a direct product of simple rings is unique up to
isomorphism.

Proof. If A = A1 × A2 × · · · × Ar, then A′i = {0} × {0} × . . . Ai × {0} is a minimal 2-sided ideal of A
and A = A′1 ⊕ · · · ⊕A′r.

Corollary. Let A be a left artinian ring. Up to isomorphism, there are only finitely many simple
A-modules.

Proof. We mentioned in the discussion of the radical that the simple A-modules are the same as the
simple A/ rad(A)-modules. Hence, we may suppose rad(A) = {0} and A is semi-simple. Let

A = A1 ⊕ · · · ⊕Ar

where each Ai is a minimal 2-sided ideal (i.e., simple ring). Let M be any simple A-module. AiM = {0}
or M by the usual argument. M = AM =

∑
AiM so AiM = M for at least one i, but for j 6= i, we have

AjM = AjAiM = {0} (since AjAi = {0}). Moreover, the identity ei of Ai (where 1 = e1 + · · · + er) acts
as the identity on M since ejM = {0} for j 6= i. It follows that M is an Ai-module for exactly one of the
simple factors Ai of A. Since a simple ring has only one simple module up to isomorphism, we are done.

Note that as rings Ai ∼= A/(⊕j 6=iAj), and, by the above discussion, the action of Ai on M is the same if
we view it either as an ideal of A or as a factor ring of A.

Exercises.
1. Verify two of the unproved statements in the proof of the first theorem in the section.

5. Commutative artinian rings

Suppose A is semi-simple and commutative. Then it is isomorphic to a direct product of matrix rings over
division rings. The only such commutative rings are matrix rings of degree 1 over fields. Hence, a commutative
semi-simple artinian ring is isomorphic to a direct product of fields . Moreover, for any commutative artinian
ring A, we shall see that the direct product decomposition of A/ rad(A) may be “lifted” to A.

Let A be a semi-simple commutative ring, and let

A = A1 ⊕ · · · ⊕Ar

where each Ai is an ideal which is a field. Then, as above,

1 = e1 + · · ·+ er

the idempotent ei ∈ Ai is the multiplicative identity of Ai. In addition, eiej = 0 for i 6= j. In any ring,
in such circumstances we say that 1 is decomposed into orthogonal idempotents. Since in the present case
Aei = Ai is a field, it is not hard to see that ei cannot be further decomposed ei = e′i + e′′i where e′ie

′′
i = 0.

Thus we call the ei indecomposable or primitive idempotents.
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Proposition. Let A be a commutative artinian ring and suppose

1 = e1 + · · ·+ ei + · · ·+ er

is a decomposition into indecomposable orthogonal idempotents in A/ rad(A). Then there exist elements
e1, . . . , er ∈ A such that ei mod rad(A) = ei and

1 = e1 + · · ·+ ei + · · ·+ er,

is a decomposition into indecomposable orthogonal idempotents in A.

Proof. Since A is artinian, J = rad(A) is nilpotent. Let n be the smallest positive integer such that
Jn = 0. n is called the exponent of J . We proceed by induction on n. For n = 1, the result is true because
A = A/ rad(A) is semi-simple. Suppose the Proposition is true for 1, 2, . . . , n − 1. Let I = Jn−1 and note
that I2 = 0. Then rad(A/I) = J/I has exponent n− 1 so the result is true for A/I. Choose f1, . . . , fr ∈ A
such that f1 mod I, f2 mod I, . . . , fr mod I provide a decomposition of 1 into orthogonal idempotents in
A/I. Consider elements of the form fi + xi with xi ∈ I. We have

(fi + xi)2 = fi
2 + 2fixi + xi

2 = f2
i + 2fixi,

so fi + xi is idempotent if and only if

fi
2 + 2fix = fi + xi

or (1− 2fi)xi = fi
2 − fi.

However, 1− 2fi is invertible. For,

(1− 2fi)2 = 1− 4fi + 4fi2 = 1− 4(fi − fi2) = 1 + z

where z = −4(fi − fi2 ∈ 1 + I. However, (1 + z)(1− z) = 1− z2 = 1 since z2 = 0 so 1 + z and hence any
factor of it is invertible. Thus, we can choose xi = (1−2fi)−1(fi2−fi) ∈ I so that ei = fi+xi is idempotent
and lifts the idempotent fi mod I in A/I. We have eiej = 0 for i 6= j since

eiej ≡ 0 mod I ⇒ eiej ∈ I ⇒ eiej = ei
2ej

2 = (eiej)2 ∈ I2 = {0}.
Similarly, we have

1 = e1 + e2 + · · ·+ er + y

where y ∈ I. Multiplying by ei shows that eiy = 0 for each i, and squaring then shows that

1 = e1 + e2 + · · ·+ er.

Finally, it is not hard to show that ei is indecomposable since ei mod I is indecomposable.
We leave it to the student to show that the decomposition is unique. (Hint: Show that any idempotent e

is a sum of some subset of the idempotents e1, . . . , er.)

Theorem. Let A be a commutative artinian ring. Then A may be written

A ∼= A1 ×A2 × · · · ×Ar
where each Ai is a commutative artinian local ring. Also, this decomposition is unique up to order and
isomorphism.

Proof. Let 1 = e1 + · · ·+ er be a decomposition of 1 into indecomposable orthogonal idempotents, and
let Ai = Aei. It is easy to check that AiAj = 0, ei acts as the identity on Ai, and

A = A1 ⊕ · · · ⊕Ar.
Each Ai is a local ring. For, consider Ai/ rad(Ai). It is semi-simple and hence isomorphic to a direct product
of fields. If the sum involved more than one constituent, the we could lift a decomposition of ei mod rad(Ai)
to A and decompose the identity ei of Ai which we know is indecomposable. It follows that Ai/ rad(Ai) is
a field so rad(Ai) is a maximal ideal and Ai is a local ring.

Exercises.
1. Show that in a commutative artinian ring, the decomposition of 1 as a sum of orthogonal primitive
idempotents is unique except for the order of the factors.
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