
CHAPTER XVII

SIMPLE RINGS

1. Tensor Products of Algebras

Let k be a commutative ring and let A and B be k-algebras. Then we may form the k-module A ⊗k B,
and we may define a binary operation on it by

(a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2, a1, a2 ∈ A, b1, b2 ∈ B.

(Of course, you should check that this definition makes sense on the tensor product in the usual way by
defining appropriate bilinear maps.) It is not hard to check that this operation endows A⊗kB with a product
which makes it a ring. A ⊗k B is already a k-module, and it is easy to see that it becomes a k-algebra.
Also, the maps A → A ⊗k B defined by a 7→ a ⊗ 1 and B → A ⊗k B defined by b → 1 ⊗ b are k-algebra
homomorphisms.

In what follows, we shall often omit the subscript k is ‘⊗k’ since all tensor products in this section will
be over k.

Proposition. Suppose A is a k-algebra, and M is a free k-module with basis {xi | i ∈ I}. Then A ⊗M
is a free A-module with basis {1⊗ xi | i ∈ I}. If k is a field, then the ring homomorphisms A→ A⊗B and
B → A⊗B are monomorphisms.

Proof. The first statement is a consequence of the fact that tensor products commute with direct sums.
The second statement follows from the first statement and the fact that B (or A) has a basis starting with
x1 = 1. Alternately, we may argue as follows. Let i : k → B be the ring hmomorphism giving B its k-algebra
structure. (It is a monomorphism since k is a field.) Since everything splits over a fields, there is a k-linear
map j : B → k such that ji = Idk. By functorality, (A⊗ j)(A⊗ i) = A⊗ Idk = IdA⊗B. Hence, A⊗ i (which
is in fact the map A→ A⊗B defined above) is a monomorphism. Reversing the roles of A and B gives the
result for B.

Let k be a field and let A be a k-algebra. Then we may view k as imbedded in the center of A in a natural
way (as the image of the map defining the algebra or also as the set of all c1, c ∈ k.) We say that A is a
central k-algebra if the center of A is k. We say that A is central simple over k if it is central and simple.

Proposition. Let k be a field.
(i) If A and B are central k-algebras, then A⊗B is a central k-algebra.
(ii) If A is central simple over k and B is a k-algebra which is simple, then A⊗B is simple.
(iii) If A and B are both central simple, then so is A⊗B.

Proof. (i) Suppose that z =
∑
ai ⊗ bi ∈ A⊗B is in the center of A⊗B, and suppose the bi are chosen

as part of a k-basis for B. Then by the above proposition, the ai ∈ A are unique. Since z ∈ Z(A ⊗ B), we
have ∑

aai ⊗ bi = (a⊗ 1)(
∑

ai ⊗ bi) = (
∑

ai ⊗ bi)(a⊗ 1) =
∑

aia⊗ bi

so aai = aia for each i and each a ∈ A. It follows that each ai ∈ Z(A) = k. Hence, z =
∑

1 ⊗ aibi =
1 ⊗

∑
aibi = 1 ⊗ b. Since 1 ⊗ b commutes with every 1 ⊗ b′, and since B → 1 ⊗ B is an isomorphism, it

follows that b ∈ Z(B) = k. Hence, z ∈ k ⊗ k = k.
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(ii) Let I be a nontrivial 2-sided ideal in A⊗ B. Let u = a1 ⊗ b1 + · · ·+ an ⊗ bn be a nontrivial element
of I where as above the bi are linearly independent over k. Suppose moreover, that n is minimal for any
nontrivial element of I. Clearly, a1 6= 0 so Aa1A is a nontrivial ideal in A so by simplicity Aa1A = A. It
follows that if we multiply u on the left and on the right by suitable elements of A ⊗ 1 and add, we may
obtain an element of I of the form

1⊗ b1 + · · ·+ an ⊗ bn
which we again call u. Consider the element

(a⊗ 1)u− u(a⊗ 1) = (aa2 − a2a)⊗ b2 + · · ·+ (aan − ana)⊗ bn.

Since this is also an element of I, the minimality of n tells us it is zero so aai = aia for each i. Hence each
ai ∈ Z(A) = k and as above u = 1⊗ b for an appropriate b 6= 0 ∈ B. On the other hand, we have

I ⊇ (1⊗B)(1⊗ b)(1⊗ B) = 1⊗BbB = 1⊗B

since B is simple, so I ⊇ (A⊗ 1)(1⊗B) = A⊗B. Hence, I = A⊗B.
(iii) follows from (i) and (ii).

If D is a division ring and an algebra over k, we call it a division algebra over k. Note that any division
ring is an algebra over its center which is necessarily a field.

Proposition. Let k be an algebraically closed field. There are no finite dimensional division algebras
over k other than k itself.

Proof. Let D be a finite dimensional division algebra over k, and let x ∈ D. Since k is in the center
of D, k[x] is a commutative subring of D, and it is finite dimensional over k. It follows exactly as in the
discussion of algebraic field extensions that k[x] is a field extension of k. Since k is algebraically closed,
k[x] = k and x ∈ k. Hence, D = k.

Theorem. Let D be a division ring which is finite dimensional over its center k. Then [D : k] = dimkD
is a square.

Proof. Let k be the algebraic closure of k, and let D = k⊗D. By the propositions above, D is a simple
algebra over k, and in addition

[D : k] = [D : k].

It is not hard to see that it is central over k. (Let z =
∑
xi ⊗ yi where xi ∈ k, and reason as above.) D is

a matrix algebra over a division algebra D′ which is finite dimensional over k, and by the above proposition
D′ = k since k is algebraically closed. Hence, D = Mn(k) so [D : k] = n2.

Corollary. Let A be a central simple algebra over k which is finite dimensional over k. Then [A : k] is
a square.

Proof. A = Mn(D) where D is a division algebra over k. By the theorem, [D : k] = m2 for some m. It
follows that [A : k] = (mn)2.

Theorem. Let A be a central simple algebra over k and suppose [A : k] = n < ∞. Then A ⊗k Aop ∼=
Mn(k).

Proof. Define A⊗ Aop → Homk(A,A) by a⊗ b 7→ λaρb where λa(x) = ax and ρb(x) = xb. (Of course,
you must check that this yields a well defined map on the tensor product.) This is an algebra homomorphism
since (a⊗ b)(a′ ⊗ b′) = aa′⊗ 7→ λaa′ρb′b and

λaa′(ρb′b(x)) = aa′xb′b = λaρbλa′ρb′(x).

Since A and Aop are central simple, A ⊗ Aop is simple. Hence, the above homomorphism is necessarily a
monomorphism. On the other hand both domain and codomain have dimension n2 over k, so the homomor-
phism is an isomorphism.

Exercises.
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2. Central simple algebras

Let A be a simple artinian ring, i.e., a matrix ring over a division ring D. A is clearly an algebra over the
center k of D, and it is not hard to see that the field k is the center of A.

Theorem. Let A be a simple artinian ring with center k, and let B be a k-subalgebra of A which is simple
and which is finite dimensional over k. Any k-algebra monomorphism f : B → A may be extended to an
inner automorphism of A, i.e., ∃x ∈ U(A) such that f(b) = xbx−1 for all b ∈ B.

Proof. A ⊗k Bop is simple because A is central simple over k and B is simple. It is also left artinian.
For, since Bop is a finite dimensional vector space over k, A ⊗ Bop is a free A-module of finite rank, and
since A is left artinian, so is A ⊗ Bop. (Note in passing that since A⊗ Bop is simple and left artinian, it is
left semi-simple, hence by what we showed previously, it is also right semi-simple and hence right artinian.)

Let U be the A⊗ Bop-module which as a k-module is just A, and where

(a⊗ b)x = axb a ∈ A, b ∈ B, x ∈ U = A.

Similarly, let V be the A⊗Bop-module which as a k-module is A, and where

(a⊗ b)y = ayf(b) a ∈ A, b ∈ B, y ∈ V = A.

Of course, there is lots to be checked. Note that having the elements of B act on the right necessitates using
Bop instead of B. Since A⊗Bop is semi-simple, U and V are certainly semi-simple modules so ,

U =
∑

Ui and V =
∑

Vj

where each Ui and Vj is a simple A⊗Bop-module. Since a simple artinian ring has up to isomorphism only
one simple module, all the Ui and Vj are isomorphic. Hence, depending on whether the cardinality of the
set of Ui is greater or less than the cardinality of the set of Vj , we can define either an A⊗Bop epimorphism
or an A⊗Bop monomorphism g : U → V . Explicitly,

g((a⊗ b)x) = (a⊗ b)g(x)

or g(axb) = ag(x)f(b) for a ∈ A, b ∈ B, x ∈ A.

Taking b = x = 1 yields
g(a) = ag(1)f(1) = ag(1) for a ∈ A.

Taking a = x = 1 yields
g(b) = g(1)f(b) for b ∈ B.

Hence, for b ∈ B, we have bg(1) = g(1)f(b). Thus if g(1) is invertible,

f(b) = g(1)−1bg(1).

To see that g(1) is invertible in A, use the fact that a 7→ g(a) = ag(1) is either a monomorphim or an
epimorphism. Since A ∼= Mn(D) for some division ring D, if g(1) were not invertible, we could find s, t ∈ A
such that sg(1) = g(1)t = 0. It would then follow that a 7→ ag(1) is neither a monomorphism nor an
epimorphism.

Corollary (Skolem-Noether). Let A be a central simple finite dimensional algebra over a field k. Every
automorphism of A which fixes k is inner.

Proof. Take A = B.
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Proposition. Let D be a central division algebra which is finite dimensional over its center k. If L is a
maximal subfield of D, then [D : k] = [L : k]2.

Proof. Let A = D⊗kL. A is simple since D is central simple and L is simple. Make D into an A-module
by

(x⊗ u)y = ayu for x ∈ D,u ∈ L, y ∈ D.

It is certainly a simple A-module because any left submodule would be a D = D ⊗ 1-subspace. It follows
that D is isomorphic to a minimal left ideal of A, and A ∼= HomD′(D,D) where D′ = HomA(D,D) is
the commuting algebra. (Use Rieffel’s Theorem.) However, h ∈ HomA(D,D) if and only if h((x ⊗ u)y) =
(x ⊗ u)h(y) or h(xyu) = xh(y)u for x, y ∈ D,u ∈ L. Taking y = u = 1 yields h(x) = xh(1) for x ∈ D.
Taking x = y = 1 yields h(u) = h(1)u for u ∈ L. Hence, uh(1) = h(1)u for u ∈ L, so h(1) centralizes L. It
follows that L[h(1)] is a field containing L and by maximality it equals L; hence h(1) ∈ L. Thus, h is just
multiplication by h(1) ∈ L. Conversely, it is easy to see that multiplication on the right by an element of L
commutes with the action of A. Thus, D′ = L acting on the right of A. Hence, if we view D as a vector
space over L, we have

A ∼= HomL(D,D)

and [A : L] = [D : L]2. On the other hand, since A = D ⊗k L, we have [A : L] = [D : k], so [D : L]2 = [D :
k] = [D : L][L : k]. Hence, [D : L] = [L : k] and [D : k] = [L : k]2.

Theorem (Frobenius). The only finite dimensional division algebras over R are R,C, and the algebra
of quaternions H.

Proof. Let D be a finite demnsional R-algebra. Its center is a finite extension of R, hence is R or C. In
the second case, since C is algebraically closed, we know that D = C. Suppose the center is R and D 6= R.
Let L be a maximal subalgebra of D. Then L is an algebraic extension of R so L = C = R + Ri where
i2 = −1. Since [C : R] = 2, it follows from the previous result that [D : R] = 4. Complex conjugation
followed by inclusion provides a monomorphism from C into D, so ∃x ∈ D such that xix−1 = −i. Hence
x2ix−2 = −(−i) = i, so x2 centralizes the maximal subfield L = C, so x2 ∈ C. On the other hand, x is not
in C since x does not centralize C. Hence R[x] ∩C = R and since x2 is in both R[x] and C, it follows that
x2 ∈ R. If a = x2 > 0 then x is one of the two real square roots of a; hence a < 0. Suppose a = x2 = −b2
where b ∈ R. Define j = xb−1 so that j2 = −1, and j 6∈ C. Inner autormorphism by j has the same effect as
inner automorphism by x since b ∈ R = Z(D). Hence, jij−1 = −i. Let k = ij. Then some simple algebra
shows that k2 = −1, ki = −ik = j. Similarly, ij = −ji = k and jk = −jk = i. Finally, {1, i, j, k} is a
linearly independent set over R. For suppose

a+ bi+ cj + dk = 0

i.e., a+ bi+ (c+ di)j = 0.

If c+ di 6= 0, then
j = −(c+ di)−1(a+ bi) ∈ C

which we know to be false. Hence, c+di = 0, and consequently a+ bi = 0. It follows that a = b = c = d = 0.
Thus,

D = R + Ri+ Rj + Rk

where i, j, and k satisfy the above relations. Thus D ∼= H.


