CHAPTER 1V

RING THEORY

1. Ring Theory

A ring is a set A with two binary operations satisfying the rules given below. Usually one binary operation
is denoted ‘+’ and called “addition,” and the other is denoted by juxtaposition and is called “multiplication.”
The rules required of these operations are:

1) A is an abelian group under the operation + (identity denoted 0 and inverse of = denoted —z);
2) A is a monoid under the operation of multiplication (i.e., multiplication is associative and there is a
two-sided identity usually denoted 1);
3) the distributive laws
(x+y)z=oy+2xz
x(y+2)=xy+xz
hold for all z, y, and z € A.

Sometimes one does not require that a ring have a multiplicative identity. The word ring may also be
used for a system satisfying just conditions (1) and (3) (i.e., where the associative law for multiplication
may fail and for which there is no multiplicative identity.) Lie rings are examples of non-associative rings
without identities. Almost all interesting associative rings do have identities.

If 1 = 0, then the ring consists of one element 0; otherwise 1 # 0. In many theorems, it is necessary to
specify that rings under consideration are not trivial, i.e. that 1 # 0, but often that hypothesis will not be
stated explicitly.

If the multiplicative operation is commutative, we call the ring commutative. Commutative Algebra is
the study of commutative rings and related structures. It is closely related to algebraic number theory and
algebraic geometry.

If A is a ring, an element x € A is called a unit if it has a two-sided inverse y, i.e. zy = yxr = 1. Clearly
the inverse of a unit is also a unit, and it is not hard to see that the product of two units is a unit. Thus, the
set U(A) of all units in A is a group under multiplication. (U(A) is also commonly denoted A*.) If every
nonzero element of A is a unit, then A is called a division ring (also a skew field.) A commutative division
ring is called a field.

Examples:

1) Z is a commutative ring. U(Z) = {1, —1}.

2) The group Z/nZ becomes a commutative ring where multiplication is multiplication mod n. U(Z/nZ)
consists of all cosets ¢ + nZ where i is relatively prime to n.

3) Let F be a field, e.g., F = R or C. Let M,,(F) denote the set of n by n matrices with entries in
F. Add matrices by adding corresponding entries. Multiply matrices by the usual rule for matrix
multiplication. The result is a non-commutative ring. U(M,,(F)) = Gl(n, F') = the group of invertible
n by n matrices.

4) Let M be any abelian group, and let End(M) denote the set of endomorphisms of M into itself.
For f,g € End(M), define addition by (f + g)(m) = f(m) + g(m), and define multiplication as
composition of functions. (Note: If M were not abelian we could still define composition because the
composition of two endomorphisms is an endomorphism. However, it would not necessarily be true
that the sum of two endomorphisms would be an endomorphism. Check this for yourself.)
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32 IV. RING THEORY

If A is a ring, a subset B of A is called a subring if it is a subgroup under addition, closed under
multiplication, and contains the identity. (If A or B does not have an identity, the third requirement would
be dropped.)

Examples:

1) Z does not have any proper subrings.

2) The set of all diagonal matrices is a subring of M, (F).

3) The set of all n by n matrices which are zero in the last row and the last column is closed under
addition and multiplication, and in fact it is a ring in its own right (isomorphic to M,_1(F).)
However, it is not a subring since its identity does not agree with the identity of the overring M, (F').

A function f : A — B where A and B are rings is called a homomorphism of rings if it is a homomorphism
of additive groups, it preserves products: f(zy) = f(z)f(y) for all z,y € A, and finally it preserves the
identity: f(1) = 1.

Examples: The canonical epimorphism Z — Z/nZ is a ring homomorphism. However, the inclusion of
M, —1(F) in M, (F) as suggested in example 3) above is not a ring homomorphism.

A subset a is called a left ideal of A if it is an additive subgroup and in addition ax € a whenever a € A
and x € a. If we require instead that xa € a, then a is called a right ideal. Finally, a is called a two-sided
ideal if it is both a left ideal and a right ideal. Of course, for a commutative ring all these notions are the
same.

Examples:

1) It is easy to see that any additive subgroup nZ is an ideal in Z.

2) Let A = M,(F). Let L; be the set of n by n matrices which are zero except possibly in the jth
column. It is not hard to see that L; is a left ideal in A. Can you give an example of a right ideal?
There are no two-sided ideals in A. (See the Exercises.)

The following notation is useful. Let a and b be subsets of A, at least one of which is an additive subgroup
of A. Let ab denote the set of all sums of elements of the form ab with @ € a and b € b. It is not hard to
see that ab is an additive subgroup of A. (Clearly, it is closed under addition. Can you see why it is closed
under taking negatives—i.e. additive inverses?) Using this notation, an additive subgroup a of A is a left
ideal if and only if Aa C a. If a is a left ideal of A, and if

a=Ax; +Axe + -+ Ax

we say that a is generated by z1,...,2,. (Note that all the notation used above has been defined already, at
least if we use the shorthand Ax = A{z}.) If a = Az is generated by a single element, we call it a principal
left ideal. Similar concepts apply to right ideals. In a commutative ring, of course, we need not distinguish
so we just use the terms “principal ideal.”

A ring is called a principal ideal ring if it is a commutative ring and every ideal is principal. The principal
ideal ring which should come immediately to mind is Z. (We saw in an exercise that every subgroup of Z
is of the form nZ for some non-negative integer n, so the same is true for every ideal. In fact, for Z, every
additive subgroup is an ideal.)

We can repeat much of the theory of groups, subgroups, and normal subgroups in the context of rings,
subrings, and (two-sided) ideals.

Let f : A — B be a homomorphism of rings. It is easy to see that the image of the homomorphism is
a subring of B. Let b be an ideal in B (left, right, or two-sided). Then f~1(b) = {a € A|f(a) € b} is an
ideal in A (respectively left, right, or two-sided.) For, it is certainly a subgroup, and a € A,z € f~1(b) =
flaz) = f(a)f(x) € b so ax € f~1(b). In particular, {0} is a two-sided ideal in B so Kerf = f~1(0) is a
two-sided ideal in A.

Let A be a ring and let a be an ideal (always two-sided if not further specified.) Since a is a subgroup
of A as abelian group, we may construct the factor group A/a. As usual, it consists of all co-sets x + a
with € A. We can in fact make A/a into a ring as follows. First note that for z, y € A, the coset zy + a
depends only on the cosets of x and y. For, z = 2’ moda, y =y moda = z — 2’ and y —y' € a. Thus,
zy—a'y = xy—2'y+a'y—2'y = (x—2')y+2'(y—y’) € asince ais a two-sided ideal. Hence zy = 2’y’ mod a
as claimed. It follows that we can define a binary operation on A/a by setting

(x+a)(y+a)=zy+a.
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We leave it to the student to show that A/a becomes a ring with respect to the operations of addition and
multiplication inherited from A. (You need to show that the associative law for multiplication holds, 1 + a
is a two-sided identity, and the two distributive laws hold. These follow easily from the corresponding facts
in A.) A/ais called the factor ring of A modulo a. Note that the canonical group epimorphism A — A/a is
a ring homomorphism in essence because the product on the right is defined to make it such.

We may now restate the basic isomorphism theorems for groups. To prove them, one need only check
that the basic isomorphisms preserve products as well as sums. (That they preserve sums follows because
the group theoretic theorems apply already to the additive groups.)

THEOREM. (First Isomorphism Theorem). Let f : A — B be a homomorphism of groups. Define
f +A/Kerf - Imf by f (a+Ker f) = f(a). Then f is a ring isomorphism.

THEOREM. (Second Isomorphism Theorem). Let A’ be a subring of A, and let a be an ideal in A. Then
A’ + ais a subring of A and z + AN a ~ z + a defines a ring isomorphism A'/A’ Na = (4’ +a)/a.

THEOREM. (Third Isomorphism Theorem). Let f : A — B be a ring epimorphism. a ~» f(a) and
b ~ f~1(b) provides a one-to-one correspondence between the set of ideals of A containing Ker f and the
ideals of B. In addition, if Ker f C a, then A/a = B/ f(a).

Note: Applying the Third isomorphism theorem to the canonical epimorphism A — A/b yields for a C b

A/a = (A/b)/(a/b).

Exercises.

1. Let a,b, and ¢ be additive subgroups of a ring A.
(a) Prove that a(bc) = (ab)c.
(b) Prove a(b + ¢) = ab + ac.

2. Fill in the details of the proof of the second isomorphism theorem for rings. In so doing, you may assume
the truth of the second isomorphism theorem for groups and that the first isomorphism theorem for rings
has been proved. In particular, you may assume that the canonical homomorphism from a ring to the ring
modulo a two sided ideal is a ring homomorphism.

3. Let F be a field. Prove that M, (F) has no nontrivial proper two sided ideals. Hint: Let e;; be the
matrix with 1 in the ¢, j position and zeroes elsewhere. Show that if @ = (a;;) is an n by n matrix, then
ErsA€yy = Asulry-

4. Let A and B be rings. Let A x B be the direct product of A and B as additive abelian groups and
endow it with a multiplicative structure by using componentwise operations. (a) Show that A x B becomes
a ring.
(b) Let p: A x B — A be the projection of the product onto the first factor. Is p a ring homomorphism?
(c) Let i : A — A x B be defined by i(a) = (a,0). Is ¢ a ring homomorphism?

5. Prove the assertion about U(Z/nZ) in the text.

2. Maximal Ideals

A left ideal is called mazimal if it is a proper ideal and it is not contained in any other proper ideals.
(Similarly for right ideals or two-sided ideals.) For example, in Z, ideals and subgroups are the same, and
since nZ C mZ < m | n, it follows that nZ is maximal if and only if n is prime.

From the Third Isomorphism Theorem, it follows that a (two-sided) ideal a in a ring A is maximal if and
only if the factor ring A/a has no nontrivial proper (two-sided) ideals. Such a ring is called a simple ring.
As we shall see in the latter part of this course, the most important examples of simple non-commutative
rings are matrix rings M, (F') over a field F and related rings. Division rings are also clearly simple rings.
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In the commutative case, a ring A is simple if and only if it is a field. For, suppose « # 0 in A. Then Ax
is a non-zero ideal and by simplicity, it follows that Ax = A. Thus the equation zy = 1 has a solution y,
and x is invertible.

[The concept of maximal left ideal (or maximal right ideal) is tied to the notion of simple module which
we shall discuss at length later.]

We want to show that every ring has epimorphic images which are simple. In view of the above discussion,
this amounts to showing that every ring has a maximal two-sided ideal. More generally, we shall prove

THEOREM. Let A be a nontrivial ring and let a be a proper left (right, two-sided) ideal of A. Then there
exist mazimal left (right, two-sided) ideals in A containing a.

The proof of this theorem depends on the method of transfinite induction which we discuss in its most
commonly used form: Zorn’s Lemma. This principle is closely linked to a set of assertions in Set Theory all
equivalent to the so-called Axiom of Choice. Naively, the Axiom of Choice asserts that given a collection
(perhaps very “large”) of sets, one can form a set by choosing one element from each set. That does not
sound very profound, but when used in full generality it can produce startling results. (The so-called Banach-
Tarski “paradox” in measure theory is one result.) For this reason, many mathematicians are reluctant to
use the most general axiom of choice and its consequences. However, it is difficult to do some important
mathematics without it, as the above theorem illustrates.

The particular consequence of the axiom of choice which we shall use is Zorn’s Lemma. It involves a
certain property of some partially ordered sets. (A set S is a partially ordered set if there is a relation a < b
defined on S satisfying

(i) a<aforallae s,
(i) a<band b<a= a=0b, and
(iii) a<band b<c=a<c

A subset C of a partially ordered set S is said to be linearly ordered if given any two elements a,b € C either
a < b or vice versa. A partially ordered set S is said to be inductively ordered if for any linearly ordered
subset has an upper bound. An element m of a partially ordered set is called maximal if m < a = m = a.
We may now state

ZORN’S LEMMA. Any element of a nonempty inductively ordered set is bounded above by a maximal
element.

Clearly, by suitable change of terminology we can deal with minimal elements. Zorn’s Lemma is in fact
equivalent to the Axiom of Choice so unless you are interested in the logical intricacies, it is just as good to
take it as an axiom and proceed from there. That is what we shall do here.

We are now ready to prove the existence of a maximal left ideal in a ring A. Let S be the set of all proper
left ideals of A ordered by inclusion. It is nonempty since (0) is an ideal. (In a field, it could be the unique
maximal ideal.)

This set is inductively ordered. For, let C be any collection of left ideals in A with the property that for
any two ideals in C, one is contained in the other. Form the union b of all the ideals in C. It certainly is
an upper bound since it contains them all, and moreover it is a left ideal. For, first it is a subgroup since
if ,y € b, each is in some left ideal in C' so they are both in the larger of the two, and so is their sum or
difference. It is even easier to see that a € A,x € b = ax € b. Finally, it is a proper left ideal since otherwise
1 € b which means that 1 is in one of the ideals in C' so that one of those ideals is not proper.

By Zorn’s Lemma, S contains a maximal element as claimed.

The corresponding arguments for right or two-sided ideals are basically the same.

Exercises.
1. Let F be afield, and let A= F X F' x ---x F be the n-fold cartesian product of F' with itself made into
a ring by component-wise operations. Find all the maximal ideals in A.

2. (a) Let I be the set of all non-units in a ring A. Prove that if I is a 2-sided ideal then A/T is a division
ring.
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(b) Suppose A has the property that for each x € A either x is a unit or 1 —  is a unit. Show that the
set of non-units forms a 2-sided ideal.

3. The Chinese Remainder Theorem

The multiplication of additive subgroups of A satisfies the associative and distributive laws:

a(bc) = (ab)c
a(b+c¢) =ac+ac
(a+b)c = ac+ be.

(See the Exercises for Section 1.)

Moreover, it is not hard to see that if a is a left ideal then ab is also a left ideal. Similarly, if b is a right
ideal then ab is a right ideal. In particular, if a is a left ideal and b is a right ideal, then ab is a two-sided
ideal.

Note that in the above formulas, we have used the sum a + b of two additive subgroups of A. (Since as
additive group, A is abelian, the subgroup a-+ b in fact consists of all sums z+y wherex €aandy € b.) If a
and b are left (right, two-sided) ideals then a+b is a left (right, two-sided) ideal, the smallest such containing
a and b. Similarly, we can form the intersection anb of 2 left (right, two-sided) ideals, and the result is again
a left (right, two-sided) ideal. More generally, any arbitrary intersection of left (right, two-sided) ideals is
again a left (right, two-sided) ideal: in fact the largest left (right, two-sided) ideal contained in all the ideals.

Note that if a and b are two-sided ideals, then so is ab and in addition ab C anb.

Let A and B be rings. We can form the additive group A x B, and we can define a multiplication operation
on it by

(a,b)(a’,b") = (ad’,bb’).

It is straightforward to check that A x B becomes a ring with this operation. It is called the direct product
ring. Consider the subgroup A x {0} = {(a,0) | @ € A}. A simple calculation shows that it is closed under
either left or right multiplication by arbitrary elements of A x B so it is a two-sided ideal. In fact, it is the
kernel of the map A x B — B defined by (a,b) — b. (That map is clearly a ring epimorphism.) Similarly,
{0} x B is a two-sided ideal in A, the kernel of the projection A x B — A.

The Chinese Remainder theorem gives us a way of dissecting a ring into a direct product under appropriate
circumstances.

THEOREM. (Chinese Remainder Theorem) Let A be a ring, and suppose a;,i = 1,2,...,n are two-sided
ideals in A such that

a+a;=A fori#j.

Then
Ala HA/CH where a = N;a;.

Note: The property a + b = A for two sided ideals is called comazximality.

PrROOF. Let p; : A — A/a; be the canonical epimorphism, and define p : A — [[A/a; by p(a) =
(p1(a),...,pn(a)). Clearly, p is a ring homomorphism, and

Kerp={a|pi(a)=0fori=1,...,n} =Na,.

The theorem will follow from the first isomorphism theorem if we can show that p is an epimorphism.

Let d; be the element (0,...,1,...,0) which is 0 at all components except the ith where it is one.
It clearly suffices to show that d; = p(a;) for some a; € A for each i = 1,...,n. (For, in that case
p(aa;) = p(a)p(a;) = p(a)d; = p;(a) and clearly the direct product is generated by elements of this form.)
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On the other hand, to say p(a) = d; amounts to asserting that p;(a) = 1 and p;(a) = 0 for j # 4. This
in turn amounts to asserting that ¢ = 1 mod a; and ¢ = 0 mod a; for j # i. By hypothesis, a; + a; = A.
Assume first n > 2 and ¢ > 2. Then

A=AA= (a; +a1)(a; + az)

= a? + a;a2 + a10; + a0z

Coa;+aag
since the first 3 terms are contained in a;. However, A is the whole ring, so

A=a; +aias.
Iterating this argument shows that
A=q;+a]

where a] is the product in order of all the ideals ajaz . .. a, with the ith term a; omitted. The same argument

works with a change of notation if ¢ = 1 or 2 and n > 2. For n = 2, simply take aj = az and a, = a;.
It follows in any event that we can write

1 = b; + a; where b; € a; and a; € a).
We have a; = 1 mod a; and since a; € a; C a; for j # i, we also have a; = 0 mod a; for j # i as required. [

Example: Let A = Z. Then two ideals nZ and mZ are comaximal if and only if ged(n,m) = 1. For, if
nZ +mZ = Z, the equation nx +my = 1 has integral solutions x,y, and it is easy to see that n and m have
to be relatively prime. Conversely, if n and m are relatively prime, since nZ +mZ = dZ for some d, it is easy
to see that d = 1 so the ideals are comaximal. Also, in this case, it is easy to see that (nZ) N (mZ) = nmZ
so that the Chinese Remainder Theorem (in its original form) asserts that if ged(n,m) = 1, then given a
and b, we can find x such that £ = a mod m and x = b mod n, and such an z is unique mod mn. We leave
it to the student to state the corresponding result for n integers m; which are relatively prime in pairs.

It is not hard to see that the group of units in a direct product ring is the direct product of the unit
groups in the components:

UAx B)=U(A) xU(B).
Hence, if n and m are relatively prime, we get from the Chinese remainder theorem
U(Z/nmZ) = U(Z/nZ) x U(Z/mZ).

By definition, the Euler ¢ function is given by

¢(n) = the order of U(Z/nZ)
= the number of 7,0 < i < n, ged(i,n) = 1.

Hence, if ged(n, m) = 1, then

d(nm) = ¢(n)p(m).
Since for a prime power, ¢(p”) = p" —p" 1, the above result lets us determine the order of U(Z/nZ) for any
n.

Exercises.

1. Let p be a prime and let n = p”. The ring homomorphism Z/p"Z — Z/pZ takes units into units.

(a) Show that U(Z/p"/Z) — U(Z/pZ) is onto. Hint: Show that the kernel is U, , = 1 + pZ/p"Z.

We will show later in the course that U(Z/pZ) is cyclic of order p — 1. Use this in what follows.

(b) Show that U(Z/p"Z) contains an element of order p — 1.

(c) Show that U(Z/p"Z) is the direct product of a cyclic group of order p — 1 with Up ..

(d) Show that Up . is cyclic. Hint: Use induction on r.

(e) Conclude that U(p") is cyclic if p is odd or if p =2 and r = 1,2 and it is the direct product of a cyclic
group of order two with a cyclic 2-group if p = 2 and r > 2. This is a famous theorem of Gauss in number
theory.
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4. Domains

A ring A is called a domain if it is commutative and for z,y € A, xy = 0 implies z = 0 or y = 0. (If
xy = 0 without = or y = 0, then z and y are called zero divisors.)
Examples:

1) Any field is of course a domain.

2) Z is a domain.

3) The set of all complex numbers of the form a + bi with a,b € Z is a domain since it is a subring of
the field C. This ring is called the ring of Gaussian integers and it is denoted Z[i].

4) Note that M, (F') has lots of zero divisors. (Of course, it is also not commutative.) Any direct product
of rings will also have lots of zero divisors: multiply elements non-zero in different components.

Clearly, any subring of a field is a domain. Conversely, any domain can be imbedded as a subring of a
field as follows. Let E be the set of pairs (a,b) where a,b € A and b # 0. Define a relation ~ on E by
(a,b) ~ (¢,d) if and only if ad = be. Tt is not difficult to check that this is an equivalence relation. (For
example, (a,b) ~ (¢,d) and (¢,d) ~ (e, f) = ad = bc and c¢f = de = adf = bcf = bde = d(af —be) =0 =
af = be = (a,b) ~ (e, f). Note the argument uses both the fact that A is commutative and that it is a
domain.) Let @ denote the set of equivalence classes of this relation. Denote the equivalence class of (a,b)
by a/b. Define operations on @ by

a/b+c/d = (ad + bc)/bd

and

(a/b)(c/d) = (ac)/(bd).

Several tedious but routine arguments show that these operations are well defined (i.e., the results depend
only on the equivalence classes of the operands), and that @ with these operations is a ring. The 0 element
is 0/1 (= 0/d for any d # 0 in A), and the identity is 1/1 (= d/d for every nonzero d € A.) Every nonzero
element of @ is a unit; in fact (a/b)(b/a) = 1/1 for any nonzero a and b in A. Hence, @Q is a field.

Define ¢ : A — @ by i(a) = a/1. Tt is easy to see that ¢ is a ring homomorphism. It is in fact a
monomorphism. For, i(a) = a/1 =0/1< al = (1)(0) = 0. Hence, Im3 is a ring isomorphic to A. Moreover,
every nonzero element a/b can be written

afb = (a/1)(1/b) = (a/1)(b/1)""

as a quotient in @ of elements in Im¢.

The above construction embeds a ring isomorphic to A in a field—which is not exactly what was promised.
However, it is easy to use this construction to imbed A itself in a field. Namely, let @’ be the union of A
and the complement of i(A) in Q. Define operations on @’ in the obvious way. That is, when an operand or
the result of an operation in @ happens to be in i(A), just use the corresponding element of A instead. @Q’
will then be a field isomorphic to @ and it will contain A.

It is more to the point, however, to consider in general ring monomorphisms j : A — P where P is a
field such that every element of P can be written i(a)i(h)~* for a,b # 0 in A. We have demonstrated the
existence of one such monomorphism. If j: A — P and j' : A — P’ are two such then it is easy to see that
h : P — P’ defined by h(j(a)j(b)~!) = j'(a)j’(b)~! is well defined and a ring isomorphism. Moreover, it
makes the diagram below commute »

L h

“/ \=
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Finally, if the diagram commutes, i. e. h(j(a)) = j'(a) then h is clearly the same homomorphism as defined
above. Hence, the isomorphism h is unique given that the above diagram commutes.

We call such a field P (more correctly, the monomorphism j) a quotient field or field of fractions of A,
and it is unique up to unique isomorphism in the sense described above. As mentioned earlier, we can in
fact assume j is an actual inclusion.

One can generalize the above construction by considering only pairs (a,s) where s is restricted to any
appropriate subset of A. For example, the field of fractions of Z is the field Q of rational numbers. However,
we might consider the subring of Q of all fractions with denominators relatively prime to some fixed integer.
These form a ring called a localization. The concept of localization is extremely important in algebra, and
we shall return to it later.

Exercises.

1. Show that any finite domain is a field.

5. Polynomial rings

Let B be a commutative ring, and let A be a subring. If U is a subset of B, we denote by A[U] the
smallest subring of B containing A and U. We call it the subring generated by A and U (or just by U where
there is only one A under consideration.) If U = {uy, ua, ..., u,} we use the notation Afus, ..., up].

If U = {u} consists of a single element, then A[u] must contain every polynomial ag+aiu-+azsu®+- - -+a,u"
with coeflicients a; in A. On the other hand, the sum and product of two such polynomials in u are again
polynomials in u, so the set of such polynomials is a subring of B containing A and u. Hence, Afu] is the
subring of polynomial expressions in u with coefficients in A.

It is clear from the definition that A[U U V] = A[U][V]. Using that rule, it is not hard to see what
Aluq, ..., uy] looks like.

Two polynomial expressions in an element u in B are of course equal if corresponding coefficients are
equal. However, the converse statement may not be true. For example, in Z[i] (as a subring of C) we have
i+1i2 = —1+1. In general, there may be many relations among the powers of u. As in the case of a free
group, we are motivated to construct a ring A[X] generated by A and an element X called an indeterminate
and such that there are no non-trivial relations among the powers of X.

More generally, we proceed as follows. Let X be a set. A monomial in the set X is defined to be a
function from X to the set of non-negative integers which assumes the value 0 for all but a finite number of
elements z € X. We denote such a function in the following special form

I

reX

The set M (X) of all such monomials becomes a monoid under the operation defined by

I C I G I

The monomial 1 is that with all exponents (i.e., values of the function) equal to 0. The values n, are called
the exponents of the monomial. Clearly, they completely determine it.

A polynomial in the set of indeterminates X is defined to be a function from the monoid M (X) to the
ring A which is zero except for a finite number of monomials. Such a function is represented formally

> alwp

Polynomials are then added and multiplied according to the rules

D a(wp+ > b =" (a(u) + b(u)u
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and
O alwm) O bww) => clo)o

where c¢(0) = > a(u)b(v)—the sum being taken over all pairs (i, v) such that uv = o. Note that there
are only finitely many such pairs such that a(u)b(v) # 0, so the sum is well defined. It is routine but very
tedious to show that with these operations, the set of all such polynomials forms a ring which we denote by
AlX].

We use the common notation f(X) to denote a polynomial in the indeterminates X. If X = {z}, we just
write f(z). The values of the polynomial a(u) are called its coefficients, and since it has just been defined
as a function on monomials, clearly the polynomial is completely determined by its coefficients.

As above, we use appropriate notation if X is finite or if it consists of a single element. Note that if B
is any ring containing A[X] as a subring, then the subring generated by A and X is just A[X], so the new
notation is consistent with the previous notation. But it is certainly possible to get confused when using
this notation. One must distinguish the case in which the set X is a set of indeterminates (as just discussed)
rather than some arbitrary subset of B.

Let A be a commutative ring, and let X be a set. We may define a ring homomorphism i : A — A[X]
by i(a) = the polynomial all of whose coefficients a(u) = 0 except for a(l) = a. We call i(a) a constant
polynomial. Clearly, i is a ring homomorphism, and its image - the subring of constant polynomials - is
isomorphic to A. In most cases, we oversimplify and just identify A with i(A) as a subring of A[X]. Similarly,
we usually identify X and M (X) with subsets of A[X].

More generally, if A is a commutative ring, we call a ring homomorphism j : A — B into a commutative
ring B an A-algebra. (Using the term loosely, we may just call B an A-algebra.) A similar concept may be
defined if B is non-commutative, but it is a bit more involved, so we shall save the general concept for later.
The polynomial ring plays the same role for A-algebras that the free group plays for groups.

THEOREM. Let A and B be commutative rings, and let j : A — B be a ring homomorphism. Let X be a
set, and suppose there is a function o : X — B. Then there is a unique Ting homomorphism

J:AX]— B

such that J(a) = j(a) fora € A and J(z) = a(z) for z € X.

PRrROOF. For any such J, it is clear that

J (H x"”) = Ha(x)""

where the product on the right is calculated in the ring B. Also, for any polynomial f(X) = > a(u)u, we

must have
J(F(X) = jlalw)J(n)

where J(u) is as above. On the other hand, it is not hard to check that J defined by these formulas is in
fact a ring homomorphism with the right properties. [

Note that since a polynomial is completely determined by its coefficients, it is easier to define this mapping
than was true for the analogous case for free groups.

Let X and Y be disjoint sets. Using the universal mapping property described above, one may define
appropriate homomorphisms

AX]Y] — A[X UY] and A[X UY] — A[X][Y]
such that both compositions are the identity. Hence,

A[X][Y] 2 A[X UY] = A[Y][X].
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Exercises.

1. (a) Let A= Q[X] where Q is the field of rational numbers. Show that A/A(X? —1) = Q x Q.
(b) Show that the natural homomorphism Z[X]/Z[X](X? — 1) — Z x Z is not an epimorphism.

2. Let A= k[X,Y] where k is a commutative ring.
(a) Show that U(A) = U(k).
(b) Show that A/AX = k[Y].

6. Unique Factorization

Let A be a domain. If a,b € A, we say a | b if 3¢ € A such that b =ac. If a | b and b | a, we say that a
and b are associates. That amounts to saying that a is a unit times b or vice-versa.
An element p #£ 0 of A is called irreducible provided

a|p=-aisaunitorp]|a.

In the special case, A = Z, we use the term prime for a positive irreducible element.
A domain A is called a unique factorization domain (UFD) provided

(UF1) Every nonzero non-unit in A is a product of irreducible elements.
(UF2) Given two factorizations of the same element, there is a one-to-one correspondence between the two
sets of irreducible factors such that corresponding factors are associates.

Examples:

1) As you are undoubtedly aware, the Fundamental Theorem of Arithmetic asserts that Z is a UFD.
2) Every field is trivially a UFD since there are no irreducible elements.
3) The following ring is not a UFD. Let A be the subring of C given by A = Z[«] where « is one of the
two roots of a®> = —5. Note that every element of A may be written uniquely a + ba where a and
b € Z. Define
N(a+ba) = (a + ba)(a — ba) = a® + b

By explicit calculation, it is easy to see that N(zy) = N(z)N(y) for x and y € A. Since N is
multiplicative on A, it necessarily takes U(A) into U(Z) = {1,—1}. Conversely, if N(z) = £1, it
follows that & must be a unit. Consider now the equations

6=(3)(2)=(1—a)l+a).

By means of appropriate arguments using N (z) it is possible to show that 2,3,1+ «, and 1 — « are
all irreducible, and that 2 and 3 are not associates of either 1 + « or 1 — a.. (Details left to you.) It
follows that A cannot be a UFD since UF2 fails.

Principal Ideal Domains. A commutative ring A is called a principal ideal domain (PID) if it is a
domain and every ideal is of the form Az for some x € A.
Examples:
1) We have remarked previously that every ideal in Z is principal. The crucial step (done in an exercise
on subgroups of Z) used the division algorithm.
2) Let k be a field. Then A = k[X,Y] where X and Y are indeterminates is not a PID. For, the ideal
AX + AY is not principal since if it were X and Y would have to be multiples of the same element
of A, but X and Y are clearly non-associate irreducible elements.

THEOREM. FEwvery PID A is also a UFD.

PRrOOF. First we demonstrate UF1. Let a be a nontrivial non-unit. If ¢ cannot be written as a product
of irreducible elements, we may by a sequence of proper factorizations (of previously found factors) produce
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a sequence a = a1, as | a1,...,0an41 | an,... where successive factors are not associates. It follows that the
sequence of ideals
Aa; C Aay C --- C Aa, C ...

forms a strictly increasing chain. (Otherwise, two successive generators would have to divide one another.)
Let a be the union of all of the ideals in that chain. Because it is an increasing chain, it follows that a is
again an ideal. (See the proof of the existence of maximal ideals using Zorn’s Lemma.) Hence, a = Aa for
some a € A since every ideal is principal. However, we must have a € Aa,, for some n so «a is divisible by a,
and hence by every a,, with m > n. On the other hand, a,, € Aa = a so a also divides a,,. It follows that
a and a,, are associates for every m > n—which is nonsense.

To prove UF2, we derive instead the following statement:

(UF2") If p is irreducible and p | ab then p | a or p | b.

UF2’ implies UF2 because if we had two factorizations of the same element into irreducible elements, we
could use UF2’' and the fact that we are operating in a domain to strike off associate factors from both
factorizations (possibly producing units in their place because the stricken factors need only be associates)
until we run out of factors.

To prove UF2’ suppose p does not divide a, and consider the ideal Ap + Aa which they generate. Let
Ap+ Aa = Aw. Since v | p and since p is irreducible, either v is a unit or it is an associate of p. In the latter
case, since v | a, we would have p | a; hence we may assume v is a unit. In that case Ap + Aa = A, and we
may write 1 = xp + ya for appropriate x,y € A. Hence, b = bxp + bya, and since both terms are divisible by
p (since p | ab), it follows that p | b as required. O

Note that UF1 and UF2 together imply UF2’. For, if p is irreducible and divides xy then up to an
associate it must appear in the unique factorization of zy. However, it is clear that the unique factorization
of xy is the product of the unique factorizations of z and y. Hence, p must occur (up to an associate) in one
of those.

We saw earlier that the reason why we know that Z is a PID is because of the division algorithm. More
generally, we define a Euclidean domain to be a domain A together with a function

¢: A—{0} — the set of non-negative integers

such that

(E1) alb= ¢(a) < ¢(b)
and

(E2) for each a,b # 0 € A,3q,r € A such that a = bq+ r and ¢(a) < ¢(b) or r = 0.
Examples:

1) For Z take ¢(n) = |n|.

2) For Z[i] take ¢(z) = |z|>.

3) Let k be a field and let A = k[X] be the polynomial ring over k in a single indeterminate X.
Take ¢(f(X)) = deg f(X) = the highest power of X occurring with non-zero coefficient. We have
deg(f(X)g(X)) = deg f(X)+deg g(X). Using ordinary long division of polynomials yields a division
algorithm as required.

4) There are PID’s which are not Euclidean but showing that a ring is not Euclidean is tricky.

THEOREM. FEvery Euclidean domain is a PID.

PrROOF. Left to the student.

Exercises.
1. Let k be a field. Show that k[X] is a Euclidean domain using N(f(X)) = deg f(X).
2. Show that every Euclidean domain is a PID.
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7. Unique factorization in polynomial rings and Gauss’s Lemma
We shall prove the following important theorem.
THEOREM. If A is a UFD, then the polynomial ring A[X] in a single indeterminate is o UFD.
By induction, this gives
COROLLARY. If A is a UFD, then the polynomial ring A[X1,...,Xy,] in n indeterminates is a UFD.

In this way we may construct UFD’s by starting for example with some PID such as a field k or Z. The
rings constructed, however, may not be PID’s. For example, Z[X] is not a PID. To see this, consider the
ideal (p, X) generated by p and X where p is a prime. If it were principal, its generators would have to be
divisible by the same element which is not possible since they are clearly non-associate irreducible elements
of the ring. Similarly, as mentioned earlier, k[ X, Y] is not a PID (using basically the same reasoning), but
it is a UFD.

To prove the theorem, we need to introduce some concepts. First note that in a UFD A, we may
unambiguously define the concept of greatest common divisor (GCD) at least up to associates: given two
nontrivial non-units, examination of their unique factorizations shows that there is a factor of both of them
which is divisible by all other factors common to both. For f(X) € A[X], define ¢(f)—called the content of
f(X)—to be the GCD of all its coefficients. A polynomial is called primitive if its content is a unit.

LEMMA. Let f(X) and g(X) be non-constant polynomials in A[X| where A is a UFD. Then ¢(fg) and
c(f)c(g) are associates in A. In particular, the product of primitive polynomials is primitive.

PROOF. Let f(X) = ¢(f)f1(X) where f1(X) is primitive. Up to associates, we have ¢(dg(X)) = de(g) for
any primitive polynomial g(X). So we need only prove that the product of primitive polynomials is primitive.
Let the first polynomial have coefficients ag, - . . , a,, and let the second polynomial have coefficients by, . . ., by, .
The coefficients of the product are given by

C = Z aibj

i+j=k
Suppose p is an irreducible element of A which divides every c;. Suppose p | ag,...,as—1 but p does not
divide as. (There is such an s since the content is a unit.) Similarly, suppose p | bo,...,br—1 but p does

not divide b;. Then p divides every term in ¢z except possibly asb;. On the other hand, since p divides
Cs+t, it must also divide asb, and since it is irreducible it must divide as or b;—a contradiction. Hence, the
coefficients of the product do not have a common irreducible factor so its content is a unit. [

To prove the theorem, we use the lemma to reduce the general case to the case to the case in which A
is a field. In that case, we know the polynomial ring A[X] is a UFD since it is a Euclidean domain (hence
PID, hence UFD).

Let f(X) € A[X]. As above, we can factor it into its content times a primitive polynomial. The content
has a unique factorization in A by hypothesis. Hence, we may assume f(X) is primitive and has degree
greater than zero. Let @ be the field of fractions of A. As before, we may view A imbedded as a subring of
Q, and similarly we may view A[X] imbedded as a subring of Q[X]. By the field case, we may factor f(X)
in Q[X] into a product of factors irreducible in Q[X]. For each such factor, since the coefficients are in @,
there is a common denominator d such that d times the factor is in A[X]. Since any non-zero element of A
(or even @) is a unit in Q[X], the new polynomial is also irreducible in Q[X]. (Note that any polynomial
in A[X] which is irreducible in Q[X] is necessarily irreducible in A[X] since a factorization in the smaller
ring A[X] would also be a factorization in Q[X].) Form Df(X) where D is the product of the common
denominators for all the factors just discussed. It is clearly the product of irreducible polynomials in A[X].
Compare contents. The content of Df(X) is just D since f(X) is primitive. The content of the product
is the product of the contents of the factors by the lemma. If we remove the content of each factor from
the equation, we get a factorization of f(X) as a product of polynomials in A[X] which are irreducible in
Q[X]—hence also in A[X].
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Suppose we had two factorizations of f(X) into irreducible factors in A[X]. Comparing contents as above,
we can reduce the question of uniqueness to the case that f(X) is primitive in which case any irreducible
factors in A[X] are also primitive - as above. In Q[X] two factorizations would have to be the same except for
multiplication by units. However, it is not hard to see that the only units in Q[X] are the non-zero constants.
(Use the fact that the degree of a product is the sum of the degrees.) Since two primitive polynomials in
A[X] differing by a factor in @ must in fact differ by a unit in A (—use Gauss’s Lemma and the fact that
any element in @ is a quotient of elements of A—) we are done. [

Gauss’s Lemma. The lemma is often called Gauss’s Lemma. But, if you carefully examine the proof
the the theorem, you will implicit in it the following result.

If A is a UFD, Q is its field of fractions, and f(X) € A[X] is a non-constant polynomial, then any factor-
ization h(X) = F(X)G(X) into non-constant polynomials in Q[X] yields a factorization h(x) = f(z)g(x) in
A[X] where f(X) is a constant multiple of F(X) and g(z) is a constant multiple of G(X).

This result is intimately related to the previous lemma and is usually included under the rubric Gauss’s
Lemma.

We saw earlier that an ideal a in a commutative ring A is maximal if and only if A/a is a field. An ideal
p is called prime if and only if A/p is a domain—that is A/p has no zero divisors. Thus, p is prime if and
onlyifzyep=xcporyenp.

If A is a domain and Ap is prime, then p is necessarily irreducible. For, suppose p = ab. Since ab € Ap,
either a € Ap or b € Ap, so that either a is an associate of p or b is an associate of p and the other is a unit.
Conversely, we have

ProroSITION. If A is a UFD and p is irreducible, then Ap is prime.
PROOF. This is just a restatement of Uf2": p|azy = plxzorp|y. O

Note that a maximal ideal is necessarily prime since every field is a domain. The converse is not in general
true.
Example:

Let A = k[X,Y] be a polynomial ring in two indeterminates with coefficients in a field k. By the above
proposition, AX is prime since X is irreducible. However, AX C AX + AY and they are not equal, so AX
is not maximal. (AX + AY is maximal. Why?)

THEOREM. A domain A is a PID if and only if it is a UFD and every prime ideal is mazimal.

PROOF. Suppose A is a PID. We already know it is a UFD. Let Ap be a prime ideal so p is irreducible.
If Ap C Agq for some g € A, then ¢ | p so ¢ is a unit or ¢ is an associate of p. In the former case Ag = A and
in the latter case Aq = Ap. Hence Ap is maximal.

Conversely, suppose the two conditions in the statement of the theorem hold. Let a be an ideal in A.
If a = A, it is principal so assume a does not contain a unit. For each element a € a, consider its unique
factorization a = p; ... p, into irreducibles. Since a is not a unit, » > 1. Let s be the minimum value attained
by r for all elements a € a. s is a function of the ideal a. We proceed by induction to show that all ideals
with given s are principal. Let

a=p1...ps with p; all irreducible

be an element of a for which the minimum is attained. Consider
o ={r€A|pxeal.

o' is an ideal since p1x,p1y € a = p1(z +y) € a and similarly pyjz € a and z € A = p1zz = zp1z € a.
Since py ...ps € a’, there are elements of a’ which may be represented as products of fewer than s irreducible
elements. Thus, by induction we may assume a’ is principal—a’ = Aq. We have Agp; = a’p; C a by
definition. We shall show they are equal. Since p; is irreducible, Ap; is prime and hence by hypothesis, it is
maximal. Let y € A, y not in Ap;. Since A/Ap; is a field, we can solve the congruence

zy = 1 mod Apq,



44 IV. RING THEORY

that is we can find z and z € A such that
zy =14 zp;

or
1 =2y —zp:1.

Multiply this equation by ps...ps. We get

P2...Ps =P2...PsTY — ZP1P2 - - . Ps-

Since a = py .. . ps, the right hand side is in a if y € a. Suppose now that y € a — a’py. Then y is not in Ap;.
For, if it were of the form up1, since it is in a, v would have to be in a’ so that y = up; would be in a’p;. We
may now use the above equation. Since the left hand side has been written with fewer than s irreducibles,
this contradicts the minimality of s for a. Hence, a = a’p; = Agp; as claimed. O

1. Prove the second form of Gauss’s Lemma stated in the text: if A is a UFD, @ is its field of fractions, and
f(X) € A[X] is a non-constant polynomial, then any factorization h(X) = F(X)G(X) into non-constant
polynomials in Q[X] yields a factorization h(z) = f(x)g(z) in A[X] where f(X) is a constant multiple of
F(X) and g(z) is a constant multiple of G(X). Moreover, show that if f(X) is primitive, then so are f(x)
and g(z).



