
CHAPTER V

MODULES

1. Modules

Let A be a ring. A left module M over A consists of an abelian group (also denoted M) and a law of
composition A×M → M (denoted (a, x) 7→ ax) such that

a(bx) = (ab)x for a, b ∈ A and x ∈ M,

1x = x for x ∈ M,

(a + b)x = ax + bx for a, b ∈ A and x ∈ M,

a(x + y) = ax + ay for a ∈ A and x, y ∈ M.

The last statement asserts that ρ(a) : M → M defined by ρ(a)(x) = ax is an endomorphism of the
underlying abelian group of the module, while the first three statements assert that ρ : A → End(M)
is a ring homomorphism. Conversely, given such a homomorphism, we may define a module structure on M
by setting ax = ρ(a)(x).

Similarly, a right module M over A consists of an abelian group (also denoted M) and a binary operation
(x, a) 7→ xa such that

(xb)a = x(ba) for a, b ∈ A and x ∈ M,

x1 = x for x ∈ M,

x(a + b) = xa + xb for a, b ∈ A and x ∈ M,

(x + y)a = xa + ya for a ∈ A and x, y ∈ M.

In this case ρ : A → End(M) defined by ρ(a)(x) = xa is not a homomorphism but an anti-homomorphism.
Note the similarities between these notions and the notion of a group acting on a set. However, in this

case there is more structure to be taken account of.
If the ring A is commutative, we need not really distinguish between right and left modules since ab = ba,

and every anti-homomorphism is also a homomorphism and vice versa. However, in the non-commutative
case the distinction is often important.

Various elementary facts (like 0x = 0 for all x ∈ M) follow easily from the definitions, and we shall assume
these facts without further discussion.

Modules are best initially thought of as abelian groups with additional structure. In particular, we would
expect most of the basic facts we derived earlier for groups (hence for abelian groups) to hold true.
Examples:

1) Let A = Z. Then if M is any abelian group, we may define a Z-module structure on M by (n, x) 7→
nx = the sum of n copies of x if n is positive, the negative of −n copies of x if n is negative, and 0
if n = 0.

2) Let A = k be a field. Then a module over k is called a vector space. We hope that you have studied
vector spaces in an earlier course. Many facts about vector spaces remain true for modules, but in
many ways the theory of modules is considerably richer. For example, if a 6= 0 in a field k, then
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46 V. MODULES

ax = 0 ⇒ x = 0 since we can multiply by a−1. The corresponding fact in an arbitrary module is of
course not generally true.

3) Let A be a ring. Then using multiplication in A to define the operation, we may view A either as a
left or a right module over itself.

4 Let k be a field, and let A = Mn(k) be the ring of n × n matrices with entires in k. Let V = kn

visualized as n × 1 matrices or column vectors. Let A act on V by matrix multiplication ax where
a ∈ A, x ∈ V . Then V becomes a left A-module. If we visualize V as 1× n matrices or row vectors,
then matrix multiplication xa makes V a right A-module.

We shall now proceed to develop the basic theory of modules as we did earlier for groups and rings. We
shall generally restrict attention to left modules, but the theory for right modules is exactly the same with
appropriate change of notation.

Let A be a ring and M a left A-module. An additive subgroup N of M (as abelian group) is called a
submodule if a ∈ A, x ∈ N ⇒ ax ∈ N.

Examples:
1 If A = Z then a submodule is just a subgroup.
2 If A is a field, then a submodule is called a subspace.
3 If A is viewed as a left module over itself, then a submodule is just a left ideal. Similarly, if it is

viewed as a right module over itself, then a submodule is a right ideal.

Let A be a ring and M a left A-module. If a is an additive subgroup of A and N is an additive subgroup
of M , then we define aN to be the additive subgroups of M generated by all products ax with a ∈ a and
x ∈ N . The basic formulas developed earlier for products of additive subgroups in a ring are also true in
this more general situation:

(ab)N = a(bN), (a + b)N = aN + bN, and a(N + L) = aN + aL.

If S is a subset of a left module M over A, then as above, we may denote by AS the additive subgroup of M
generated by all products ax with a ∈ A and x ∈ S. It is easy to see that it is a submodule and it is called
the submodule generated by S.

The sum N + L and intersection N ∩ L of two submodules is a submodule. (It is even true that an
intersection of infinitely many submodules is a submodule.)

Let M and M ′ be left A-modules. A function f : M → M ′ is called a module homomorphism if it is a
homomorphism of additive groups and consistent with the actions:

f(x + y) = f(x) + f(y) for x, y ∈ M

f(ax) = af(x) for a ∈ A, x ∈ M.

This may be simplified to
f(ax + y) = af(x) + f(y) for a ∈ A, x, y ∈ M.

(If A is a field, recall that a module homomorphism is called a linear function or linear transformation.)
Let A be a ring, M a left A-module, and N a submodule. The factor group M/N (as additive abelian

group) may be made into an A-module by defining a(x + N) = ax + N for a coset x + N ∈ M/N . The
canonical epimorphism is then a module homomorphism.

Let f : M → M ′ be a homomorphism of left A-modules. Then it is easy to check that Ker f is a
submodule of M and Im f is a submodule of M ′. Moreover, the group theoretic isomorphism M/ Ker f →
Im f of the first isomorphism theorem is easily seen to be a module isomorphism. Similarly, the various
homomorphisms and isomorphisms in the second and third isomorphism theorems are also easily seen to be
module homomorphisms.

There is a collection of simple notions concerning modules which have entered algebra from algebraic
topology. These concepts are important in developing the theory of homology and cohomology groups, but
they have also turned out to be useful ways to discuss certain aspects of module theory.
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A sequence of module homomorphisms

M ′ f−→ M
g−→ M ′′

is called exact (at M) if Ker g = Im f . A longer sequence is called exact if it is exact at each stage. An exact
sequence of the form

0 −→ M ′ f−→ M
g−→ M ′′ −→ 0

is called a short exact sequence. (Note that the homomorphisms on the left and right need not be further
specified since there is only one homomorphism from the 0 module to any given module and there is only
one homomorphism from any given module to the 0 module.) The assertion that the sequence is exact at M ′

is just that Ker f = Im0 = {0}, i.e., that f is a monomorphism. The assertion that the sequence is exact at
M is that Ker g = Im f which is isomorphic to M ′. The assertion that the sequence is exact at M ′′ is that
M ′ = Ker0 = Im g, i.e., that g is an epimorphism. Hence M ′′ ∼= M/ Ker g = M/ Im f and Im f ∼= M ′. Hence
such a short exact sequence generalizes the situation in which M ′ is a submodule of M and M ′ = M/M ′. A
useful short exact sequence in the case A = Z is

0 −→ Z k−→ Z −→ Z/kZ −→ 0

where the homomorphism on the left is shorthand for multiplication by the integer k.
In module theory, we also commonly use the additional terminology (which could in fact have been defined

earlier for groups). For f : M → M ′ a module homomorphism:

Coker f = M ′/ Im f

Coim f = M/ Ker f ∼= Im f.

Associated with a module homomorphism f : M → M ′ are two short exact sequences

0 → Ker f −→ M −→ Coim f → 0

0 → Im f −→ M ′ −→ Coker f → 0

and the longer exact sequence

0 → Ker f −→ M
f−→ M ′ −→ Coker f → 0

which can be thought of as obtained by piecing together the two previous short exact sequences.
One often has to deal with a complicated system of modules, submodules, factor modules, and homo-

morphisms of such. Given such a situation, we often want to prove that some crucial homomorphism is an
isomorphism. For example, suppose f : M → L is a module homomorphism, M ′ is a submodule of M ,
and L′ is a submodule of L such that f(M ′) ⊆ L′. Since f(M ′) ⊆ L′, it is not hard to see that f induces
a module homomorphism f ′′ : M/M ′ → L/L′. Let f ′ : M ′ → L′ denote the restriction of f to M ′. It
is not hard to prove that if f ′ and f ′′ are monomorphisms, then f is also a monomorphism, and similarly
for epimorphisms. A general method for dealing with such issues is the so-called 5-lemma which we dissect
below into two 4-lemmas.

Proposition. Suppose in the diagram

M1
α1−−−−→ M2

α2−−−−→ M3
α3−−−−→ M4yf1

yf2

yf3

yf4

L1 −−−−→
β1

L2 −−−−→
β2

L3 −−−−→
β3

L4
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the rows are exact and each square commutes. If f2 and f4 are monomorphisms, and f1 is an epimorphism,
then f3 is a monomorphism.

Proof. The argument proceeds by “diagram chasing.” Let x ∈ M3 go to 0 under f3. Then since the
right square commutes, it goes to 0 under f4α3 i.e., α3(x) goes to zero under f4. Since the latter is a
monomorphism, α3(x) = 0. Hence by the exactness of the top row, x = α2(y) for some y ∈ M2. By
commutativity, f2(y) goes to 0 under β2 so by the exactness of the bottom row, we have β2(y) = β1(z) for
some z ∈ L1. Since f1 is an epimorphism, z = f1(u) for some u ∈ M1. Since the left hand square commutes,
f2 takes α1(u) to f2(y) so since f2 is a monomorphism, we have y = α1(u). Hence, x = α2(y) = α2(α1(u)) =
0. It follows that f3 is a monomorphism as claimed. �
Note: The proof is much easier to follow by pointing at the diagram on a blackboard or on paper.

Proposition. Suppose in the diagram

M2
α2−−−−→ M3

α3−−−−→ M4
α4−−−−→ M5yf2

yf3

yf4

yf5

M2 −−−−→
β2

M3 −−−−→
β3

M4 −−−−→
β4

M5

the rows are exact and each square commutes. If f2 and f4 are epimorphisms, and f5 is an monomorphism,
then f3 is an epimorphism.

Proof. Exercise.

Proposition. Suppose in the diagram

M1
α1−−−−→ M2

α2−−−−→ M3
α3−−−−→ M4

α4−−−−→ M5yf1

yf2

yf3

yf4

yf5

M1 −−−−→
β1

M2 −−−−→
β2

M3 −−−−→
β3

M4 −−−−→
β4

M5

the rows are exact and each square commutes. If f2 and f4 are isomorphisms, f1 is an epimorphism, and f5

is a monomorphism then f3 is an isomorphism.

Direct products and direct sums.
Let {Mi | i ∈ I} be an indexed family of left A-modules (where the indexing set I can be finite or infinite.)

By definition, the set theoretic product
∏

Mi of the family consists of all sequences

(xi)i∈I with xi ∈ Mi.

(Technically a “sequence” is a function from I to the union of the sets Mi such that xi, the value of the
function at i, belongs to Mi.) We may make the set theoretic product into a left A-module by defining

(xi) + (yi) = (xi + yi) and a(xi) = (axi).

It is easy to check that this provides a module structure, and we call this module the direct product module.

Consider the subset of the product module consisting of all sequences (xi) such that xi = 0 for all but
a finite number of i ∈ I. It is not hard to see that this forms an A-submodule of

∏
Mi. This A-module is

called the direct sum module and it is denoted
⊕

i∈I Mi.
The two concepts introduced above could just as well have been defined for abelian groups or for arbitrary

groups. For rings, however, the “sum” as defined above would not have been a subring because it would not
have contained the identity. It is important to have a more abstract way to describe these objects so that
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we may see analogies when going from one such “category” to another. We do this by exhibiting so called
universal mapping properties.

First we consider the product. Let P =
∏

Mi and let pi : P → Mi denote the projection of an element
onto its ith component. Assume L is any other module for which we are given module homomorphisms
fi : L → Mi for each i ∈ I. Then there is a unique module homomorphism f : L → P such that

L
↘ fi

f ↓ Mi commutes for each i ∈ I.
↗ pi

P

For, if there is such a homomorphism, we must have pi(f(z)) = fi(z) for each i ∈ I. Thus, f(z) = (fi(z))i∈I

so f is unique. On the other hand, this formula defines a function f which is easily seen to be a module
homomorphism.

Note that any other module P ′ with homomorphisms p′i : P ′ → Mi having the same universal mapping
property just described would have to be isomorphic to the product P . For, using the universal property, we
would have unique homomorphisms between P and P ′ in both directions making the appropriate diagrams
commute. The composition P → P ′ → P would make all the appropriate triangles commute, but so would
the identity P → P make all those diagrams commute. Hence, by uniqueness, that composition would be
the identity. Similarly, the composition in the other direction would be the identity. In other words, the
universal mapping property defines the product up to isomorphism. The only reason to define it in the
specific way we did is to show that at least one such object exists.

Consider next the sum. Let S =
⊕

Mi. For each i, define hi : Mi → S by hi(v) = (xi) where xj = v
for j = i and xj = 0 for j 6= i. Let K be any other module for which there are module homomorphisms
gi : Mi → K for each i ∈ I. Then, there is a unique module homomorphism g : S → K such that

K
↖ gi

g ↑ Mi commutes for each i ∈ I.
↙ si

S

We leave the proof as an exercise for the student. (Use the fact that S is generated as a module by the
submodules Mi.)

As with the product, the sum is in fact defined up to isomorphism by the universal mapping property.
In the case of a finite indexing set, the two notions are of course the same. In particular, we are interested

in having a criterion for determining when a given module M is isomorphic to the direct sum of two modules
M ∼= M ′ ⊕M ′′. In that case there are homomorphisms

p′ : M → M ′, p′′ : M → M ′′

and
h′ : M ′ → M, h′′ : M ′′ → M

defined by composing the homomorphisms defined above with the given isomorphism, and a simple calcula-
tion shows that p′ ◦h′ = idM ′ and p′′ ◦h′′ = idM ′ . For example, if M is actually equal to the sum (product),
then h′ sends x′ ∈ M ′ into (x′, 0) and p′ projects this back onto x′.

Generally, given p : M → M ′′, we say that h : M ′′ → M splits p if p ◦ h = idM ′′ .

Proposition. Assume p : M → M ′′ is split by h : M ′′ → M . Then M ∼= Ker p⊕M ′′.

Proof. Let M ′ = Ker p. Define h′ : M ′ → M to be the inclusion of M ′ in M . Let p′ : M → M ′ be
defined by p′(x) = x − h(p(x)). Since p(p′(x)) = p(x) − p(h(p(x))) = p(x) − p(x) = 0 (—use ph = idM ′—),
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it follows that p′(x) ∈ Ker p = M ′ as required. We will show that the homomorphisms p and p′ have the
universal mapping property for a product. Note that for any x ∈ M , we have

x = p′(x) + h(p(x)).

Suppose we are given q : M → M ′′ and q′ : K → M ′. If there is a homomorphism f : K → M such that
pf = q and p′f = q′ then

f(x) = p′(f(x)) + h(p(f(x))) = q′(x) + h(q(x)).

Hence, if there is such an f , it is unique. On the other hand, it is straightforward to check that if f is defined
by

f(x) = q′(x) + h(q(x))

then it is a homomorphism with the desired properties. �
Notes: It would have been just as easy to show that the homomorphisms h and h′ satisfy the universal
mapping property for a sum. Also, in the representation

x = p′(x) + h(p(x)),

we have p′(x) ∈ Ker p = Im h′ and h(p(x)) ∈ Im h = Ker p′. Moreover, Ker p ∩ Im h = {0} so that M is the
direct product of the two submodules Kerp and Imh is the sense described in group theory.

Exercises.
1. Suppose in the diagram

M2
α2−−−−→ M3

α3−−−−→ M4
α4−−−−→ M5yf2

yf3

yf4

yf5

L2 −−−−→
β2

L3 −−−−→
β3

L4 −−−−→
β4

L5

the rows are exact and each square commutes. If f2 and f4 are epimorphims, and f5 is an monomorphism,
show that f3 is an epimoprhism.

2. Free Modules

Let A be a ring. As usual, we shall discuss left A-modules. The corresponding theory for right modules
is exactly the same except for notation. Recall in the case that A is a field that every module (vector space)
has a basis. You were probably only shown the proof of this fact in the case of finitely generated modules
(finite dimensional vector spaces), but it holds quite generally. (See the Exercises.) We want to develop a
corresponding theory for modules over an arbitrary ring. Unfortunately, it is not generally true that every
module over a general ring has a basis. Those modules for which it is true are called free.

We proceed as in the case of vector spaces. Let M be a left A-module. A subset X of M is said to
generate (or span) M if and only if M = AX—i.e., if and only if every element z ∈ M may be written∑

axx where the sum ranges over X and all but a finite number of coefficients ax = 0. As in the case of
vector spaces such a sum is called a linear combination of the elements of X . A set X is said to be linearly
independent if and only if

∑
axx = 0 ⇒ ax = 0 for all x ∈ X . If X is a linearly independent subset of M ,

then
∑

axx =
∑

bxx (where the coefficients on both sides are in A and all but a finite number are 0) implies
ax = bx for all x ∈ X . A subset X of M is called a basis if it is linearly independent and it generates M .
Then every element in M may be expressed uniquely in the form

∑
axx where ax ∈ A and ax = 0 for all

but a finite number of x ∈ X . As mentioned above, M is said to be free if it has a basis.
Suppose M is free with basis X . Consider the family of modules {Ax | x ∈ X} where for each x ∈ X , Ax

is just A viewed as a left module over itself. Let S be the direct sum of this family as defined in the previous
section. Define φ : M → S by φ(z) = (ax)x∈X where z =

∑
axx is the unique representation of z ∈ M in
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terms of the basis. Since ax = 0 for all but a finite number of x ∈ X , it follows that φ(x) ∈ S. Also, it is easy
to see that φ is a module homomorphism. In the other direction, define µ : S → M by µ((ax)) =

∑
axx.

The result is well defined because the argument is in S and all but a finite number of coefficients are 0. Also,
it is a module homomorphism, and it is clear that φ and µ are inverses so they are isomorphisms. Hence, if
M is free, then it is isomorphic to a direct sum of copies of A. Conversely, it is not hard to see that any such
direct sum is free. For if S =

⊕
i∈I Ai where each Ai = A, consider the element di which has all components

0 except the ith component which is 1. It is easy to check that the set {di | i ∈ I} is a basis for S. Note
that by this construction, we may form a free module with a basis {di | i ∈ I} in one-to-one correspondence
with an arbitrary set I. Often we oversimplify and identify di with i so that we may think of I as imbedded
in S as a basis. With that convention, we call S the free module on the set I. (Question for thought: do
you think a direct product of copies of A is always free?) Let F be a free module with basis X . Since each
element of F is uniquely expressible as a linear combination of the basis elements, a homomorphism from F
into another module is determined completely by its values on the basis and these values may be specified
arbitrarily.

Proposition. Suppose F is a free module and g : M → M ′′ is an epimorphism of modules. For each
module homomorphism f ′′ : F → M ′′ there is a module homomorphism f : F → M such that f ′′ = g ◦ f .

F
∃f ↓↘ f ′′

M → M ′′ −→ 0
g

Proof. Choose a basis X for F . As mentioned above, we may define a homomorphism by specifying it
on a basis. For each x ∈ X , choose z ∈ M such that g(z) = f ′′(x) and set f(x) = z. Then g(f(x)) = f ′′(x)
for each x in a basis, and hence g ◦ f = f ′′ as required. �

Let M be any module. We may represent it as an epimorphic image of a free module as follows. Let X be
any generating set for M . (There is always at least one such set, namely M itself, but usually we can find
a generating set considerably smaller.) Let F be the free module on a set Y in one-to-one correspondence
with X . Since Y may be viewed as imbedded in F , we may define a homomorphism f : F → M by sending
an element y ∈ Y to the corresponding element x ∈ X . Since any element of M can be written as a linear
combinations of elements of X , it is clear that f is an epimorphism. Let R be the kernel of f . It follows
that M ∼= F/R. All this is reminiscent of the theory of free groups. By analogy with that case R is called
the module of relations , and we say that we have a presentation of M as a factor module of a free module.

Proposition. Let F be a module. If F is free then every epimorphism f : M → F splits.

Proof. Suppose F is free and consider the diagram

F
∃g ↓↘ id

M → F −→ 0
f

The homomorphism which we know exists by the previous proposition splits f . �

Exercises.

1. Let V be a vector space over the field k. Show that V has basis. Hint: Use Zorn’s Lemma to construct
a maximal linearly independent set. Show that such a set must be a basis.

2. Let A be a ring and let a be a 2-sided ideal in A. Let M be an A-module and let X ⊆ M . Set
X̄ = {x + aM | x ∈ X} be the corresponding subset of the A/a-module M/aM .

(a) Show that X̄ generates M/aM over A/a if X generates M over A.
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(b) Suppose X is a basis for M . Show that the mapping

x 7→ x + aM

is one-to-one. Show also that X̄ is linearly independent over A/a.
Conclude that X̄ is a basis for M/aM .

3. Vector spaces

We assume that you are familiar with the basic concepts of linear algebra. In particular, you should
know that every finitely generated vector space has a basis and that the number of elements in such a basis
is an invariant of the vector space called the dimension. You should know the relationship between linear
transformations and matrices. You should know something about the theory of determinants for square
matrices (and the corresponding linear transformations.) In particular, you should know that a square
matrix over a field is invertible if and only if its determinant is non-zero. We shall investigate some of these
questions and related questions for other rings than fields, but we will assume familiarity with the field case
and not dwell on these topics as much as we might were they totally unfamiliar.

4. Rank

Let A be a commutative ring and let F be a finitely generated free module. We shall show that the
number of elements in a basis for F depends only on F , not on the basis. (The corresponding result is true
for non-finitely generated free modules but is harder to prove because of the need to deal with transfinite
cardinals.) The proof is based on a trick which reduces the problem to one for vector spaces where we already
know what is true.

Let A be any ring and suppose a is a 2-sided ideal in A. Suppose M is a left A-module; consider the
submodule aM and the factor module M/aM . Since each element of a clearly acts as the 0-endomorphism
of M/aM , it is not hard to see that M/aM becomes a module over the factor ring A/a in a natural way.
Also, one may prove that if X ⊆ M is linearly independent or generates M as an A-module, the same is
true for the set X̄ = {x + aM | x ∈ X}. (See the Exercises.) It follows that if M is free over A with basis
X , then M/aM is free over A/a with basis X̄.

Suppose now that F is free and finitely generated over a commutative ring A. We know that there is
at least one maximal ideal m in A. Apply the above analysis to F/mF as a module—i.e., vector space—
over A/m—which is a field. By the invariance of dimension for vector spaces, we know that the number of
elements in a basis for F/mF does not depend on the basis. Since any basis for F over A yields a basis of
the same size for F/mF over A/m, we are done.

In the case of a free module over any arbitrary commutative ring, we call the number of elements in a
basis the rank of the module. In the case of vector spaces rank and dimension mean the same thing.

If A is not commutative, we cannot necessarily define the concept of rank. The problem is that if m is
a maximal 2-sided ideal, all we can say is that A/m is simple. It is possible to have a simple ring A which
is isomorphic to the direct sum of two copies of itself as a left module. Hence the number of elements in
a basis would not be independent of the basis for such a ring. However, for many important classes of
non-commutative rings, it is possible to define the concept of rank for free modules. We shall study one such
class in the last third of this course.

Suppose F is free over A of rank n. Then as we saw earlier, F is isomorphic to the direct sum of n copies of
A. We denote that direct sum by An. As is common in the case of vector spaces, we may exhibit the elements
of An either as n by 1 matrices (or column vectors) or as 1 by n matrices (or row vectors) with entries in A.
Denote by ei the element of An with ith component 1 and all others 0. Then {ei | i = 1, 2, . . . , n} is a basis
for An called the canonical basis.

Exercises.
1. Show that Q is not a free abelian group.
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5. Torsion

Let A be a domain, and let M be an A-module. An element x ∈ M is called a torsion element provided
∃a ∈ A such that a 6= 0 and ax = 0. Denote by Mt the set of all torsion elements of M . Mt is submodule of
M . For, if ax = 0 and by = 0 then ab(x + y) = 0. Also, if ax = 0 then a(bx) = 0 for any b ∈ A.

We say that M is torsion free if Mt = {0}—i.e., if 0 is the only torsion element. We say M is a torsion
module if M = Mt. The module M/Mt is always torsion free. For, a(x + Mt) = ax + Mt = Mt (the 0 coset)
if and only if ax ∈ Mt. However, if ax is a torsion element, there is b ∈ A(b 6= 0) such that b(ax) = 0 so
ba 6= 0 kills x and x ∈ Mt. Thus x + Mt is the 0 coset as required.
Examples:

1) A = Z. Any abelian group is a Z-module. Any finite abelian group is a torsion module. The additive
group of the rationals Q is torsion free, but it is not free. (See the Exercises.) The group Q/Z is a
torsion module, but it is not finite. (It is not every finitely generated. Proof?)

2) Let V be a finite dimensional vector space over a field k. Let B = Endk(V ) denote the ring of all
linear transformations (module homomorphisms) of V into itself. (As usual, B may be identified
with the ring of n by n matrices with entries in k.) Then V may be viewed as a left module over
B where fx = f(x) for f ∈ B and x ∈ V . B is of course not a domain; it is not even commutative
if n > 1. Let f : V → V be a fixed linear transformation of V , and consider the subring k[f ] of
B generated by f . k[f ] is commutative, but it is still not a domain. We rectify this situation by
considering k[f ] as the epimorphic image of A = k[X ] (where X is an indeterminate) under the ring
homomorphism defined by g(X) 7→ g(f) for each g(X) ∈ k[X ]. Then V becomes a left A-module
under the operation defined by

g(X)v = g(f)(v) for g(X) ∈ k[X ] and v ∈ V.

V is a torsion module over A. For, given any v ∈ V , the elements

v, f(v), f(f(v) = f2(v), . . . , f i(v), . . .

cannot form a linearly independent set, since V is finite dimensional. Hence, some linear combination

a0v + a1f(v) + · · ·+ akfk(v) = 0

i.e.,
(a0id + a1f + · · ·+ akfk)v = 0

i.e.,
(a0 + a1X + · · ·+ akXk)v = 0.

Note that our primary interest in this example is the structure of V in reference to the linear transformation
f . Our resort to the polynomial ring k[X ] is just to be able to work with a domain and its attendant
advantages.

Exercises.
1. Prove that a free module over a domain is torsion free.

6. Modules over a PID

The structure of finitely generated modules over a PID is particularly easy to describe. Since Z is a PID,
that means that we have a good structure theorem for finitely generated abelian groups. Similarly, since
k[X ] is a PID if k is a field, using the analysis at the end of the previous section, we obtain a good structure
theorem for the behavior of a vector space with respect to a fixed linear transformation.

We shall use two facts about PIDs which were developed while proving that every PID is a UFD. Let A
be a PID.

(a) Let d = gcd(a, b) in A. Then the equation ax + by = d has a solution x, y in A.
(b) Any strictly increasing chain of ideals in A must terminate. (Equivalently, any sequence d1, d2, . . . ,

where at each stage, di+1 is a non-associate divisor of di, must stop.)
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Theorem. Let A be a PID. Any submodule M of a finitely generated free A-module F is also free.
Moreover,

rank(M) ≤ rank(F ).

Note: The theorem is in fact true for arbitrary free modules over a PID but the non-finitely generated case
is harder to prove.

Proof. We proceed by induction on n = rank(F ). The theorem is clearly true for free modules of rank
0. (What does it mean to say that the empty set is a basis for a module?)

Let X be a basis for F with n elements and pick out a subset X ′ of X with n−1 elements. The submodule
F ′ of F spanned by X ′ clearly has X ′ as a basis so it is free of rank n− 1. Also, we have

F ∼= F ′ ⊕A.

Denote by p′′ : F → A the corresponding projection onto the second summand A. Note that F ′ = Ker p′′.
Also, p′′(M) is an A-submodule of A—that is p′′(M) is an ideal in A. Since A is a PID, p′′(M) = Ax′′ for
some x′′ ∈ A. Consider the short exact sequence

0 −→ Ker p′′ ∩M −→ M −→ Ax′′ −→ 0.

Since Ax′′ is free, the sequence must split, that is

M ∼= Ax′′ ⊕ (Ker p′′ ∩M).

However, Ker p′′ ∩M = F ′ ∩M is a submodule of F ′ so by induction, we may assume it is free and has rank
≤ n− 1. Since a direct sum of free modules is certainly free and since the ranks add, we are done. �

Suppose now that M is an arbitrary finitely generated module over the PID A. We know that we can
find a finitely generated free module F and an epimorphism φ : F → M . Let R = kerφ. To determine the
structure of M , we shall investigate the isomorphic module F/R. Since both F and R are free, we shall
attempt to capitalize on this fact by picking convenient bases for them. In fact, we shall show that it is
always possible to pick a basis for F such that appropriate multiples of its elements form a basis for R.

First, choose a basis {x1, . . . , xn} for F . (Ordinarily, you would choose the basis so that it is carried onto
some specified set of generators of M under the presentation F → M .) Similarly, choose a spanning set
{y1, . . . , ym} for R. Eventually, we will find a basis for R, but allowing a spanning set at this stage allows a
bit more flexibilty. We may write

yi =
n∑

j=1

sjixj i = 1, 2, . . . , m.

The coefficients sji form an n×m matrix S with entries in the ring A. Since A is commutative, and we need
not distinguish between left and right modules, we may also write this as

yi =
n∑

j=1

xjsji i = 1, 2, . . . , m,

which in turn may be summarized in a pseudo-matrix equation

[ y1 y2 . . . ym ] = [ x1 x2 . . . xn ] S.

The entries in the ‘x’ and y’ matrices are elements of F , but the products are computed by the usual rule
for multiplication of matrices.

Suppose we change to another basis {x′1, x′2, . . . , x′n} for F . Again using pseudo-matrix notation, since
the old basis elements can be expressed uniquely in terms of the new basis elements, we can write

[ x1 x2 . . . xn ] = [ x′1 x′2 . . . x′n ]P
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where P is an n × n matrix with entries in A. Note that P must necessarily be an invertible matrix in
Mn(A), since we can reverse the roles of the two bases to express the new basis elements in terms of the old
basis by means of a matrix P ′. That P and P ′ are inverses follows easily by noting that the products PP ′

and P ′P express each basis uniquely in terms of itself.
Consider next spanning sets for R with m elements related to the first spanning set by

[ y′1 y′2 . . . y′m ] = [ y1 y2 . . . ym ] Q

where Q is an m ×m invertible matrix in the ring Mm(A). Every spanning set for R may be obtained by
such an equation if we drop the assumption that Q is invertible. Indeed, it need not even be a square matrix,
i.e., the number of y′ need not be m. But we shall restrict attention to spanning sets for R obtained by
invertible Q.

Putting these pseudo-matrix equations together, we obtain

[ y′1 y′2 . . . y′m ] = [ x′1 x′2 . . . x′n ] PSQ

We shall show below that the n × m matrix S′ = PSQ may be made diagonal by suitable choice of the
invertible matrices P and Q. Just what we mean by ‘diagonal’ will be clear from what follows.

Suppose first that n ≥ m. In this case, S′ will have the form

S′ =




d1 0 . . . 0
0 d2 . . . 0
...

... . . .
...

0 0 . . . dm
...

... . . .
...

0 0 . . . 0




where there are n − m rows of zero at the bottom (or no such rows if n = m). Then the pseudo-matrix
equation

[ y′1 y′2 . . . y′m ] = [ x′1 x′2 . . . x′n ] S′

tells us that
y′1 = d1x

′
1, y

′
2 = d2x

′
2, . . . , y

′
m = dmx′m.

If some of the di are zero, we may clearly assume that they occur at the end, and that d1, d2, . . . , ds are
all nonzero for some s. Then it is clear that the set of y′i = dixi, i = 1, . . . , s span R (since the remaining
y′i = 0). It is also not hard to see that they form a linearly independent set (since A is a domain). Hence,
they form a basis for R.

Suppose instead that n < m. Then S′ has the form

S′ =




d1 0 . . . 0 0 . . . 0
0 d2 . . . 0 0 . . . 0
...

... . . .
... 0 . . . 0

0 0 . . . dn 0 . . . 0




where there are m− n columns of zero at the end. In this case, we have

y′1 = d1x
′
1, y

′
2 = d2x

′
2, . . . , y

′
n = dnx′n, y′n+1 = · · · = y′m = 0.

Again we can assume some of the di = 0 and place these at the end. As above, we find that a subset of the
y′i consisting of multiples of the corresponding x′i forms a basis for R.

Assuming that a matrix with entries in a PID may be diagonalized as described above, we have the
following result.
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Theorem. Let A be a PID and suppose M is a finitely generated module over A. Then M is isomorphic
to a direct sum of modules

M ∼= A/d1A⊕A/d2A⊕ · · · ⊕A/drA

where d1, d2, . . . , dr are non-units in A. (Some of the di may be zero.)

Note. A module isomorphic to A/dA for some d ∈ A is called a cyclic module. It is clearly generated by a
single element.

Proof. Assume as above that d1, d2, . . . , ds are non-zero and ds, ds+1, . . . , dn = 0. Then

F = Ax′1 ⊕Ax′2 ⊕ . . . Ax′s ⊕ . . . Ax′n
R = daAx′1 ⊕ d2Ax′2 ⊕ . . . dsAx′s ⊕ . . . 0

It follows easily that

F/R ∼= A/d1A⊕A/d2A⊕ · · · ⊕A/dnA.

(The last n− s terms yield the direct sum of that many copies of A. i.e., a free A-module of rank n− s.) If
any di is a unit, then A/diA ∼= 0, and we may omit that term.

We must still prove the required diagonalization theorem. In so doing, we shall add an additional re-
quirement about the di; that after suitable rearrangment each divides the next. Then the di turn out to be
unique and are called the invariant factors of the matrix S.

Theorem. (Invariant Factors Theorem) Let A be a PID and let S be an n×m matrix with entries in A.
There exist an invertible n×n matrix P and an invertible m×m matrix Q such that S′ = PTQ is diagonal
and moreover the diagonal entries satisfy d1 | d2 | · · · | dl. Moreover, the diagonal entries so derived are
unique up to associates.

Proof. We first address the issue of the existence of a diagonalization. The uniqueness question will be
deferred until later.

We proceed by applying row and column operations to the matrix S as in ordinary linear algebra over a
field. Such operations may be performed by multiplying S on either the left or right by appropriate invertible
basic matrices. There are four such types of basic matrices.

(i) The matrix Ei,j(c) obtained by adding c times the ith row of the identiy matrix to the jth row, where
c ∈ A. If we multiply a matrix by this matrix on the left, the result is the matrix obtained by adding c times
the ith row to the jth row. If we multiply instead on the right, the result is the matrix obtained by adding
c times the jth column to the ith column. (Note the switch between i and j.)

(ii) The matrix Ei(c) obtained by multiplying the ith row of the identity matrix by the invertible element
c ∈ A. If we multiply a matrix by this matrix on the left, the result is the matrix obtained by mulitplying
the ith row by c. If we multiply instead on the right, the result is the matrix obtained by multiplying the
ith column by c.

(iii) The matrix Eij obtained by interchanging the ith and jth rows of the identity matrix. If a matrix
is multiplied on the left by such a matrix, its ith and jth rows are interchanged. If a matrix is multiplied
on the right instead, the corresponding columns are interchanged. Such a matrix is called a permutation
matrix .

These matrices and the corresponding operations suffice for linear algebra over a field, indeed, as we
shall see, over a Euclidean domain. They are called elementary matrices and the correspond row or column
operations are called elementary operations . Each such matrix is invertible, and the corresponding row or
column operation is reversible. But for a PID, we need one additional type of basic matrix.

(iv) Assume a, b ∈ A and d = gcd(a, b). Then we may write d = ax+by for appropriate x, y ∈ A. Consider
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the matrix
i j

i

j




1 0 . . . 0 . . . 0 . . . 0
... 1

...
0 0 . . . x . . . y . . . 0
...

...
0 0 −b/d . . . a/d . . . 0
...

...
0 0 0 1




We leave it to the student to show this matrix is invertible.
If a matrix S has a in row i and some column and b in row j and the same column, then multiplying S

by the above matrix on the left results in a matrix which has ax + by = d in row i and that column and
(−b/d)a + b(a/d) = 0 in row j and the same column. Simiarly, analogous results in a given row may be
produced by multiplying by an appropriate matrix on the right.

To construct the desired invertible matrices P and Q, we perform an appropriate sequence of row and
column operations. P then is then obtained by taking the product of the corresponding elementary matrices
for the row operations and Q is obtained by the product of the corresponding column operations, and then
inverting . (You should think about why the inversion is necessary.)

If S = 0, there is nothing to do, so assume it has at least one non-zero column.
Start with the first column of S. If it consists only of 0’s, we may exchange it with a nonzero column.

If the first entry of this column is zero, we may exchange the first row with a row in which the first entry
is not zero. Consider the other non-zero entries in the first column. By multiplying by a sequence of type
(iv) matrices on the left, we put the gcd of the set of non-zero entries in the first entry and make all other
entries zero.

Apply the same reasoning to the first row of the new S. That will yield a matrix with all entries in the first
row zero except for the entry in the 1, 1 postion, which will divide the previous such entry. Unfortunately
the needed row or column operations may produce non-zero entries in the first column of the new S. But
we can iterate this procedure, alternating between clearing the first column and clearning the first row. At
each stage the entry in the 1, 1 postion will divide the corresponding entry at the previous stage. In a PID
we can’t have an infinite sequence of non-zero elements, each of which divides the previous element, unless
at some point one of those elements is a unit. Hence, either the process stops because both the first row and
first column have been cleared, or the first entry is a unit. In the latter case, we may just apply type (i) row
or column operations to clear the first row or first column as needed without affecting the already cleared
column or row. Call the entry in the 1, 1 position d1. Then S has been reduced to a matrix of the form




d1 0 . . . 0
0 s2,2 . . . s2,m

...
... . . .

...
0 sn,2 . . . sn,m




We may now proceed by induction on the size of the matrix to diagnalize S.
Finally we must show that the diagonal entries can be chosen so they divide each other in order. Consider

d1 and d2. Choose s, t ∈ A such that

d1s + d2t = d = gcd(d1, d2).

Ignoring everything but the first two rows and columns, we have

[
1 1
0 1

] [
d1 0
0 d2

]
=

[
d1 d2

0 d2

]
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and [
d1 d2

0 d2

] [
s −d2/d
t d1/d

]
=

[
d 0

d2t d1d2/d

]

Note that d | d′ = d1d2/d, and d | d2t. By subtracting an appropriate multiple of the first row from the
second, we may put the matrix in diagonal form with the first diagonal entry dividing the second. Arguing
the same way for d1 and each of the other diagonal entries, we see that we can arrange that d1 divides each
of the diagonal entries. To complete the argument, argue inductively on the submatrix starting in the 2, 2
position.

We have now proved everything asserted in the theorem except for the uniqueness. The uniqueness may
be proved by methods similar to those used. However, we shall use an alternate argument which will be
developed in below. �

Note that the above process may actually be embodied in an effective algorithm provided we have a way
to solve equations of the form ax + by = d = gcd(a, b) in A. In a Euclidean domain, we may always use the
Euclidean algorithm to solve such equations. (If you have never encountered the Euclidean algorithm, you
should look it up immediately in a book on elementary number theory.) Hence for Euclidean domains, the
above argument is actually a constructive proof of the existence of invariant factors. In fact, for a Euclidean
domain, one may accomplish the reduction to diagonal form without use of the type (iv) imbedded 2 by 2
matrices; the elementary row and column operations suffice because the steps in the Euclidean algorithm
can be accomplished by subtraction of multiples.

Let us return to the cyclic decompostion

M ∼= A/d1A⊕A/d2A⊕ . . . A/dsA⊕An−s

obtained previously. The last n−s summands (if any) give a free module as indicated. The first s summands
clearly form a torsion module since any element in that sum is killed by d1 . . . ds. Using the direct sum
decomposition, it is not hard to see that every torsion element is contained in this sum so the torsion
submodule of M

Mt
∼= A/d1A⊕A/d2A⊕ · · · ⊕A/dsA and M/Mt

∼= An−s.

If M is torsion free, i.e., M={0}, then M ∼= An is free. Thus, we have

Corollary. Every finitely generated torsion free module over a PID is free.

If M is not finitely generated, the corresponding result is false. For, take A = Z and M = Q.

Uniqueness questions. By the above theorems, we know that we may write a finitely generated module
over a PID as

M ∼= A/d1A⊕A/d2A⊕ · · · ⊕A/dsA⊕An−s

where we may assume d1 | d2 | · · · | ds and no di is a unit. We shall show that under this assumption the
invariant factors d1, d2, . . . , ds are unique up to associates. From this it will follow that the invariant factors
in the diagonalization of a matrix over A are unique up to associates if they satisfy the divisibility condition.
For associated with any diagonalization of the matrix is a decomposition of the appropriate F/R, so the
module theorem implies the matrix theorem. (There are a few technical difficulties having to do with the
number of invariants of the matrix which are units. That number can be recovered from the available data.
The details are left to the student.)

We start with a few more general comments which are interesting in their own right. Let A be a PID,
and suppose that M is an A-module. For each irreducible element p in A, define

Mp = {x ∈ M | pix = 0 for some positive integer i}.

It is a routine task to check that Mp is a submodule of M .
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Theorem. Let A be a PID and let M be a A-module. Then Mt =
⊕

p Mp where the sum is taken over
a set of irreducible elements of A containing one irreducible for each equivalence class of associates.

Proof. Let M ′ =
⊕

p Mp. Clearly, M ′ is a submodule of Mt. Let x ∈ Mt. Then the set {a ∈ A | ax = 0}
is clearly an ideal so it is of the form Ad for some d ∈ A. Ad is called the order ideal of x, and we say x
has order d. d is of course only unique up to associates. Let p be an irreducible factor of d, and suppose
d = ped′ where d′ is relatively prime to p. Then we can solve the equation

pes + d′t = 1

in A. We have
x = pesx + d′tx

and ped′tx = 0 so d′tx ∈ Mp. Also, x′ = pesx satisfies d′x = 0. Continuing in this way, we may write x as a
sum of elements in various Mp for non-associate primes plus an additional element whose order divides the
order of the additional element obtained at the previous stage. Since we can’t have an infinite sequence of
proper divisors in a PID, the process must stop with a decomposition of x as desired. This shows that Mt

is the sum (possibly not direct) of the Mp.
To show that the sum is direct, it suffices to show that a representation of the form

x =
∑

xp where xp ∈ Mp,

and where p ranges over a set of irreducibles as above, is unique. Suppose
∑

xp =
∑

yp

where xp and yp ∈ Mp and as usual all but a finite number of terms in each sum are zero. Then

∑
(xp − yp) = 0.

For each term in the sum, pick a power mp of p to kill that term. Fix an irreducible q and let m′ =
∏

mp

where the product is over all p occurring in the sum except p = q. Then m′ kills off every term in the sum
except xq−yq. Hence, we must have m′(xq−xq) = 0 also. However, if qe(xq−yq) = 0, since gcd(m′, qe) = 1,
it is easy to see that xq − yq = 0 as required. �

Mp is called the p-primary component of M , and the above decomposition is called the primary decom-
position.

We approach the problem of uniqueness by noting that n− s is uniquely determined by M since it is the
rank of M/Mt which is free. Hence, we need only show how to recover the invariants d1, . . . , ds from Mt.
Suppose

ds = pes1
1 pes2

2 . . . pesm
m

is a decomposition of ds as a product of powers of non-associate irreducible elements of A. Since A is a PID
(hence UFD), this representation is unique up to order and factors which are units. Since we may clearly
always change to an associate, we shall ignore unit factors. Then for i = 1, 2, . . . , s− 1, we may write

di = pei1
1 pei2

2 . . . peim
m

where because of the divisibility conditions we have

0 ≤ e1j ≤ e2j ≤ · · · ≤ esj for j = 1, 2, . . . , m.

(Here we have again used the fact that di can always be changed by a unit.) Suppose now that

Mt = Ax1 ⊕Ax2 ⊕ · · · ⊕Axs
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where xi has order di. Consider the primary decomposition of Axi

Axi = Mi1 ⊕Mi2 ⊕ · · · ⊕Mim

where Mij is the pj-primary component of Axi. Then since as a direct summand, Mij is an epimorphic
image of Axi

∼= A/diA, it is clear that Mij is of the form A/hA for some h ∈ A. Since every element of Mij

is of order a power of pj , it is not hard to see that h is an associate of

p
eij

j

which is the exact power of pj dividing di. Also, by rearranging the terms in the direct sum decomposition
of Mt, we have

Mt = N1 ⊕N2 ⊕ · · · ⊕Nm

where
Nj = M1j ⊕M2j ⊕ · · · ⊕Mkj .

Since Nj is clearly pj-primary, it is not hard to see that Nj is in fact the pj-primary component of M . Thus,
Nj is determined just by M , not by any particular direct sum decomposition of M . Hence, to show that the
di are unique up to associates, it will suffice to show that Nj completely determines the orders

p
eij

j

of the Mij for i = 1, 2, . . . , s. This follows from the following lemma.

Lemma. Let A be a PID and suppose p is an irreducible element of A. Suppose also that M is an
A-module with a direct sum decomposition

M = Ax1 ⊕Ax2 ⊕ · · · ⊕Axs

where xi has order
pei i = 1, 2, . . . , s

where e1 ≤ e2 ≤ · · · ≤ es. Then e1, . . . , es are determined by M and not by the particular direct sum
decomposition.

Proof. Consider the chain of submodules

. . . ph+1M ⊆ phM ⊆ · · · ⊆ p2M ⊆ pM ⊆ M.

Since p kills each factor module
pjM/pj+1M

it follows that the factor module is in fact a module over A/pA. Since p is irreducible, and since A is a PID,
it follows that pA is maximal and A/pA is a field. Hence, pjM/pj+1M is a vector space over A/pA. Let
lj = dim pjM/pj+1M for j = 0, 1, 2, . . . Now use the direct sum decomposition assumed in the statement of
the lemma, and the fact that

dim pjAxi/pj+1Axi = 0 or 1

depending on whether or not pjxi = 0, i. e. on whether or not j ≥ ei. It is clear that by determining the
differences lj − lj+1 for j = 0, 1, . . . we may determine the numbers ei. �

Theorem. Let M be a finitely generated module over a PID A. The invariants d1 | d2 | · · · | ds (none a
unit or zero) associated with the direct sum decomposition

M ∼= A/d1A⊕A/d2A⊕ · · · ⊕A/dsA⊕An−s

are uniquely (up to associates) determined by M . Also n− s = rank(M/Mt).
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Application to Linear Algebra. One may use the above theory to derive the usual results about
canonical forms in linear algebra. We shall outline briefly how to do this, but we shall not attempt to recover
all those theorems, which you should have seen in a Linear Algebra course.

Let k be a field and let V be a finite dimensional vector space over k. Let f : V → V be a k-linear
function on V , and let {v1, v2 . . . , vn} be a basis for V over k. Then the matrix C of f is defined by

f(vi) =
n∑

j=1

cjivj i = 1, 2, . . . , n.

As before, let k[X ] act on V by Xv = vX = f(v). Consider the free k[X ]-module F = k[X ]n with the
standard basis elements ei chosen with ith component 1 and the other components zero. (Then ei may be
visualized as the ith column of the identity matrix in Mn(k[X ]).) Map F onto V by sending ei 7→ vi, and
let R be the kernel. Then

n∑
j=1

cjiej −Xei 7→
n∑

j=1

cjivj − f(vi) = 0

for each i = 1, 2, , . . . , n. Consider the characteristic matrix with entries in k[X ]:

C(X) =




c11 −X a12 . . . c1,n

c21 c22 −X . . . c2,n

...
... . . .

...
cn1 cn2 . . . cnn −X




By the above calculation, its columns are in R. In fact, they span R. For, let R′ denote the submodule of
R they do span, and let V ′ = F/R′. Note that V = F/R is an epimorphic image of V ′. From the Invariant
Factors Theorem, there are invertible matrices P and Q in Mn(k[X ]) such that PC(X)Q is a diagonal
n × n matrix with d1(X)|d2(X)| . . . |dn(X) on the diagonal. (There must be n invariant factors by degree
considerations. Some might be units; indeed some must be units as we shall see below.) Take determinants;
we get

d1(X)d2(X) . . . dn(X) = unit det(C(X)).

But det(C(X)) is the characteristic polynomial of the original linear function f , so it is not the zero poly-
nomial. Moreover, the sum of the degrees of the di(X) must add up to the degree of the characteristic
polynomial, which is n. It follows that none of the di(X) is zero, and

V ′ ∼= k[X ]/d1(X)⊕ k[X ]/d2(X)⊕ · · · ⊕ k[X ]/dn(X).

It is not hard to see that dimk k[X ]/di(X) = deg di(X), so it follows that dimk V ′ = n. Hence, V ′ ∼= V , and
R′ = R.

From this analysis, we can derive a canonical form for f . Namely, find the invariant factors of the
characteristic matrix C(X). Each term k[X ]/di(X) in the cyclic decomposition of F/R corresponds to an
subspace of V invariant under f . Moreover with respect to an appropriate basis, f restricted to this subspace
has the same matrix as multiplication by X does on k[X ]/di(X). However, the latter matrix is quite easy
to exhibit. It is what is called the companion matrix to the polynomial di(X). In fact, by keeping track of
the row and column operations in Mn(k[X ]), one determine just what the appropriate bases are in V .

Exercises.
1. Let M be the direct product of denumerably many copies of Z. Show that M is not free by following
the steps outlined below.

(a) Take as true the fact, stated but not proved in the section, that any subgroup N of a free abelian
group M is free, whether M is finitely generated or not. Under this assumption, assume M is free, fix a
prime p, and consider the subgroup N of M consisting of all sequences

(a1, a2, . . . , an, . . . )
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such that the power of p dividing an goes to infinity as n goes to infinity or such that an = 0 for all sufficiently
large n. Then under the stated assumptions, N is also free. Show that if {xi}i∈I is a basis for N then the
set of cosets {x̄i}i∈I in N/pN is a basis for the latter vector space over the field Z/pZ.

(b) With the notation as in (a), let ei be the element of N which is one in the ith position and zero
elsewhere. Show that N/pN has a denumerable basis over Z/pZ. Under the assumption that all bases for a
vector space have the same cardinality, show that every basis of N is denumerable.

(c) From (b), conclude that N is denumerable. Show on the other hand that N contains a subgroup
with the same cardinality as M which by the Cantor diagonlization argument is non-denumerable. Hint:
Consider the monomorphism M → M which sends

(a1, a2, . . . , an, . . . ) 7→ (pa1, p
2a2, . . . , p

nan, . . . ).

2. Let p be a prime number and let Jp be the subgroup of Q/Z consisting of all elements of order a power
of p. Verify from the primary decomposition theorem that Q/Z is isomorphic to the direct sum of the
subgroups Jp with p ranging over the set of primes. Show that each Jp is not a finitely generated abelian
group.
3. Suppose M is the abelian group generated by {x1, x2, x3} subject to the relations

2x1 + 4x2 − 2x3 = 0
5x1 − 3x2 + 2x3 = 0.

Find a decomposition of M as a direct sum of cyclic groups.
4. Find the invariant factors over Z of the matrix


 2 0 0

0 9 0
0 0 6




5. Use the theory described in the section to show that if V = R2 and f : V → V is given with respect to
the standard basis by the matrix [

1 1
2 1

]

then V is a cyclic R[X ]-module. What is its order? Find a matrix representation for f as a companion
matrix.


