
CHAPTER VIII

GALOIS THEORY

1. Automorphism groups and fixed fields

Let K ⊇ F be a field extension. Denote by G(K/F ) the set of all automorphisms σ of K which fix F ,
i.e., such that σ(a) = a for a ∈ F . It is easy to verify that G(K/F ) is a group. G(K/F ) can be defined for
any extension, but it is most interesting in the case of finite normal extensions, which, from the previous
chapter, we know are the same a splitting fields of specific polynomials.

Proposition. Let K be a splitting field of a nonconstant polynomial f(X) ∈ F [X ]. Then G(K/F ) is
finite. In particular, if x1, . . . , xn are the distinct roots of f(X) in K, then G(K/F ) is isomorphic to a
subgroup of the group of permutations of {x1, ..., xn}, so its order divides n!.

Proof. Let σ be an automorphism of K fixing F . If x = xi is a root of f(X), then f(σ(x)) = σ(f(x))—
since σ fixes F—so σ(x) is also a root of f(X). Since K = F (x1, . . . , xn), σ is completely determined by its
effect on the set {x1, . . . , xn}. Since σ is one-one, it induces a permutation s of that set. It is clear that the
mapping σ 7→ s preserves composition so it is a group monomorphism. �

Example. Let α =
√

2 and β =
√

3. Then it is clear that Q[α, β] is normal over Q since it is the splitting
field of (X2 − 2)(X2 − 3). We calculate G = G(Q[α, β]/Q). Any element σ of G may be identified with a
permutation of the set of roots {x1 = α, x2 = −α, x3 = β, x4 = −β}. Since X2 − 2 is in Q[X ] and splits
in Q[α, β], σ must permute its roots and similarly for X2 − 3. It follows that σ(α) = ±α and σ(β) = ±β.
There are of course 4! permutations of the set of roots but the above remark tells us that any acceptable
permutation (except the identity) contains either the 2-cycle (x1 x2) or the 2-cycle (x3 x4) or of course both.
To simplify the notation, we just use the subscripts. That leaves 4 possible elements:

Id, (1 2), (3 4), and (1 2)(3 4).

In fact, each of these permutations does arise from some σ ∈ G. For, by our general theory about roots
of irreducible polynomials, we know there is an automorphism τ : Q[α] → Q[α] such that τ(α) = −α. By
normality, we may conclude that there is an automorphism of Q[α, β] extending τ . Any such extension
must yield either the permutation (1 2) or the permutation (1 2)(3 4) (or both such extensions might occur.)
A similar remark applies to β. If we can obtain two of the nontrivial permutations listed above, G must
also contain the third since it is a group. If not, the only possible alternative is that the only realizable
permutation of the roots is (1 2)(3 4). To show that this can’t happen, consider the subfield Q[αβ]. Since αβ
is a root of X2−6, it follows as above that there is an automorphism of Q[α, β] sending αβ to −αβ. However,
(1 2)(3 4) sends αβ to (−α)(−β) = αβ. It follows that G is isomorphic the subgroup of S4 consisting of all
four listed elements. That group, of course, is the Klein 4-group.

Notice that the reasoning above is quite involved. A common mistake made by beginners is to pick out
some plausible permutations of the roots and then assert without further discussion that G(K/F ) consists
of those permutations. But, for a permutation of the roots to come from an automorphism, it must preserve
all the relations among the roots, and to prove that could be quite difficult because those relations are not
generally known explicitly. Usually, it is better to use indirect reasoning as above.
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78 VIII. GALOIS THEORY

Given a (usually finite normal) extension K ⊇ F , we have considered the group G(K/F ). On the other
hand, if K is any field, and P is any group of automorphisms of K, we define

KP = {x ∈ K | σ(x) = x for all σ ∈ P}

and we call it the fixed field of P . (It is easy to check that it is in fact a field.) We shall see below that if
P is a finite group, then K ⊇ KP is a finite normal extension, and moreover [K : KP ] = |P |. This is one
part of the main theorem of Galois Theory. First, however, we shall list some formal properties of the two
operations we have described relating groups to field extensions.

Theorem. Let K be a field.
(a) If K ⊇ L ⊇ F , then G(K/L) ≤ G(K/F ).
(b) If Q ≥ P are automorphism groups of K, then KQ ⊆ KP .
(c) For each subfield F of K, we have KG(K/F ) ⊇ F . Moreover, if F = KP for some group of automor-

phisms of K, then KG(K/F ) = F .
(d) For each group P of automorphisms of K, we have G(K/KP ) ≥ P . Moreover, if P = G(K/F ) for

some subfield F , then G(K/KP ) = P .

Proof. The proofs of these facts are quite straightforward. We leave (a), (b), and (d) as exercises for
the student, and concentrate on the proof of (c).

By definition, all σ ∈ G(K/F ) fix F . So KG(K/F ) ⊇ F .
Suppose further that F = KP . Then by the first part of (d), we have G(K/F ) ≥ P . By (b) and the first

part of (c), we have F ⊆ KG(K/F ) ⊆ KP = F , so they are equal. �

Suppose now that K is a field, P is a finite group of automorphisms of K, and F = KP . Let x ∈ K,
and let {x = x1, . . . , xr} be the orbit of x under the action of P . Thus, xi = σi(x) for some σi ∈ P . (Of
course, it will generally be the image of many such elements of P , any two of which differ by an element of
the isotropy group Px.) Let f(X) =

∏
(X − xi). The coefficients of f(X) are

a1 =
∑
i

xi (sum of the roots)

a2 = −
∑
i<j

xixj (sum of the products of roots, 2 at a time)

a3 =
∑
i<j<k

xixjxk (sum of the products of roots, 3 at a time)

...

ar = (−1)rx1x2...xr (product of the roots).

The sums (without the signs) are called the elementary symmetric functions. It is clear that these quantities
are fixed by any permutations of the roots. In particular, since σ ∈ P must permute the elements of any
orbit, it follows that σ fixes each of the coefficients ai. Thus, f(X) ∈ F [X ] since F = KP .

Proposition. With the above notation, f(X) is irreducible over F .

Proof. Let m(X) be the minimal polynomial of x over F . Then since x is a root of f(X), m(X) | f(X).
On the other hand, every σ(x) is a root of m(X) since σ(m(x)) = m(σ(x)) (since the coefficients of m(X)
are fixed by σ.) Thus, each X − xi divides m(X), and by unique factorization in K[X ] (and the fact that
the X − xi are distinct, hence relatively prime linear polynomials), it follows that m(X) is divisible by
f(X) =

∏
(X − xi). Since both are monic, the two polynomials are equal, and f(X) is irreducible. �

It now follows that if P is a finite group of automorphisms of K, then K is normal over KP . For, we have
show that the minimal polynomial over KP of any element of K splits completely in K. But we have shown
more: that every such minimal polynomial splits into distinct linear factors X − xi. Such a polynomial is
called separable over F .
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An element x in an extension L ⊇ F is called separable over F if its minimal polynomial is separable.
(If L is not normal over F , the splitting would take place in a still larger normal extension.) An extension
L ⊇ F is called separable if it is algebraic and each element x ∈ L is separable over F . Note that separability
over F always implies separability over an extension E ⊇ F since the minimal polynomial over E divides
the minimal polynomial over F in E[X ].

From what we have done above, if Q is a finite group of automorphisms of K, then K ⊇ KQ = F is a
normal, separable extension. We will shortly show that it is also finite. By (c) of the Theorem, KG(K/F ) = F .
In fact, the properties just listed to conclude that that this equality holds.

Proposition. If K ⊇ F is any finite, normal, separable extension, then KG(K/F ) = F .

(Note: The result is true more generally for extensions of infinite degree which are algebraic, normal, and
separable.))

Proof. Let x ∈ KG(K/F ). The minimal polynomial m(X) of x over F splits in K[X ] into distinct linear
factors because of the assumptions of separability and normality. If it had degree > 1, then m(X) would
have at least two distinct roots x, x′ ∈ K. By our basic automorphism theorems, σ(x) = x′ would define an
isomorphism σ : F [x] ∼= F [x′] fixing F , and we could extend it to an automorphism σ of K fixing F . Thus,
we would have σ ∈ G(K/F ) with σ(x) = x′, and that contradicts x ∈ KG(K/F ). Hence, m(X) ∈ F [X ] is
linear of the form X − x, so x ∈ F . �

Exercises.

1. Let ω = e(2πi)/3, and let α = 3
√

2; let K = Q[α, ω]. Show that G(K/Q) is isomorphic to the full
symmetric group S3. Do this without using the Main Theorem of Galois Theory (in the next section) by
showing that every permutation of the roots of X3 − 2 arises from a some autormorphism of K. See the
calculation done in the section of G(Q[

√
2,
√

3]/Q).

2. Let K be a field and G a group of automorphisms of K. Show that KG is a subfield of K.

3. Let K be a field.
Prove the following parts of the Proposition in the text.
(a) If K ⊇ L ⊇ F , then G(K/L) ≥ G(K/F ).
(b) If Q ≥ P are automorphism groups of K, then KQ ⊆ KP .
(d) For each group P of automorphisms of K, we have G(K/KP ) ≥ P .
(d’) If P = G(K/F ) for some subfield F , then G(K/KP ) = P .
In proving (d’), you may assume (a), (b), (c), and (d) have been proved. But of course don’t assume (c)

in proving (d), since the proof of (c) in the text depends on (d). (You shouldn’t need it in any case.)

4. Let K be a field.
(a) Let K ⊇ L ⊇ F . Show that for each τ ∈ G(K/F ), G(K/τ(L)) = τG(K/L)τ−1.
(b) Similarly, if τ is an autormorphism of K and H is a group of automorphisms of K, show that

KH′ = τ(KH) for H ′ = τHτ−1.

5. Let K = k(X) be the field of rational functions in an indeterminate X over a field k of characteristic
0. Show that σ : X 7→ −X and τ : X 7→ 1 −X define automorphisms of K. Show that σ and τ are both
of order 2, but τσ is of infinite order. Show that the fixed field of the cyclic group H generated by τσ is k.
Note that K ⊇ k is not an algebraic extension.

2. Galois’s Main Theorem

Theorem. (First Basic Lemma on degree) Let Q be a finite group of automorphisms of the field K, and
let F = KQ. Then K ⊇ F is finite, and [K : F ] ≤ |Q|.

Proof. Let n = |Q|. We shall show that any n + 1 elements of K are linearly dependent over F . Let
Q = {σ1 = Id, . . . , σn}, and let {x1, . . . , xn+1} be a subset of K with n+ 1 elements. Consider the system
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of equations

σ1(x1)t1 + σ1(x2)t2 + · · ·+ σ1(xn+1)tn+1 = 0

σ2(x1)t1 + σ2(x2)t2 + · · ·+ σ2(xn+1)tn+1 = 0
...

σn(x1)t1 + σn(x2)t2 + · · ·+ σn(xn+1)tn+1 = 0

Since there are more unknowns than equations, there exists a nontrivial solution vector [t1, . . . , tn+1] in
Kn+1. We shall show that there exists a solution vector [t1, . . . , tn+1] in Fn+1, so the first equation will give
the desired dependence relation.

Suppose that among all nontrivial solution vectors [t1, . . . , tn+1] we choose one with the number s of non-
zero ti minimal. Moreover, suppose, for convenience, that t1, . . . , ts 6= 0 (and the remaining ti = 0.) Finally,
if necessary divide by ts to be able to assume that ts = 1. Let σ ∈ Q, and apply σ to the entire system
of equations with these ti. The rows of the coefficient matrix are just permuted so that we get essentially
the same system of equations but with solution vector [σ(t1), . . . , σ(ts) = 1, 0, . . . , 0]. Since the system is
homogeneous, it follows that the vector of differences

[σ(t1)− t1, . . . , σ(ts)− ts = 0, 0, . . . , 0]

is also a solution. However, this contradicts the minimality of s unless all the differences are zero, i. e.

σ(t1) = t1

σ(t2) = t2

...

σ(tn+1) = tn+1

(Of course, some of these equations just assert that 0 = 0.) Since this must be true for all σ ∈ Q, it follows
that the ti chosen as above are in F = KQ. �

As above, let Q be a finite group of automorphisms of the field K, and let F = KQ. We want to show
that [K : F ] ≥ |Q| so that in view of what we just proved, the two are equal. To do this we need a theorem
originally due to Dedekind and in its abstract form attributed to E. Artin. Let K be a field. For any set
M , we may make the set Map(M,K) of functions f : M → K into a vector space over K by defining

(af)(m) = af(m) a ∈ K,m ∈M.

Theorem. (Artin’s Theorem on Characters). Let M be a group and K a field. The set Hom(M,K∗)
viewed as a subset of Map(M,K) is a linearly independent set.

Proof. Abbreviate S = Hom(M,K∗). As the theorem suggests, any function into K∗ can certainly be
viewed as a function into K, so we may view S as a subset of Map(M,K).

Consider dependence relations

(1)
∑
σ∈S

xσσ = 0

where of course all but a finite number of the coefficients are zero. Assume there is a non-trivial relation
and choose such a relation for which the number of coefficients xσ 6= 0 is minimal. Note that there must be
at least two such coefficients since no σ = 0. (Each takes values in K∗.)

Let k ∈M . Then ∑
xσσ(km) =

∑
xσσ(k)σ(m) = 0
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for all m ∈M . Thus, ∑
xσσ(k)σ = 0.

Similarly, for any given τ ∈ S, we have

τ(k)
∑

xσσ =
∑

xστ(k)σ = 0.

Hence,

(2)
∑

xσ(σ(k)− τ(k))σ = 0.

Choose τ such that xτ 6= 0. Then in (2), xτ ((τ(k) − τ(k)) = 0, so at least one more coefficient is zero than
in (1). This leads to a contradiction unless all the coefficients in (2) are zero, i. e.

σ(k) = τ(k)

for all σ such that xσ 6= 0. However, there is at least one σ 6= τ with xσ 6= 0 since at least two of the
coefficients in (1) had to be non-zero. Hence, we can choose k such that σ(k) 6= τ(k), which is also a
contradiction. So there were no dependence relations to start. �

Consider now the group Aut(K) of all field automorphisms of K. Aut(K) is a subset of Hom(K,K)
which in turn is a subset of Map(K,K). However, any element of Hom(K,K) necessarily takes 0 into 0 so
it is completely determined by its effect on K∗. Thus, Hom(K,K) can in fact be identified with a subset of
Map(K∗,K). If we make this identification, then Hom(K,K) becomes a K-subspace of Map(K∗,K) using
the same definition of K-action as given above. (Check that xf is a homomorphism if f is!)

Corollary. Let K be a field. Then Aut(K) is a linearly independent subset of Hom(K,K). In other
words, any set of distinct automorphisms of K is linearly independent over K.

Proof. Given the above identifications, Aut(K) is a subset of Hom(K∗,K∗) which in turn is a lin-
early independent subset of Map(K∗,K). Since Aut(K) is in fact contained in Hom(K,K), it is a linearly
independent subset of the latter subspace. �

Corollary. (2nd Basic Lemma on Degree). Let K ⊇ F be a finite field extension. Then [K : F ] ≥
|G(K/F )|. In particular, if Q is a finite group of automorphisms of K, and F = KQ then [K : F ] ≥ |Q|.

Proof. Note that HomF (K,K) is in fact a K-subspace of Hom(K,K) if we view the former as a K-vector
space through (xf)(y) = xf(y). For, if f is F -linear, then

(xf)(ay) = xf(ay) = xaf(y) = axf(y) = a(xf)(y)

for x, y ∈ K and a ∈ F . However, if [K : F ] = n, then we may write

K = Fx1 ⊕ Fx2 ⊕ · · · ⊕ Fxn.

In view of this, it is easy to see that

HomF (K,K) ∼= HomF (Fx1,K)⊕HomF (Fx2,K)⊕ · · · ⊕HomF (Fxn,K)
∼= K ⊕K ⊕ · · · ⊕K (n times)

and in fact these are isomorphisms of vector spaces over K. It follows that dimK HomF (K,K) = n. Since
G(K/F ) ⊆ HomF (K,K) and its elements are linearly independent over K the first result follows. The
second follows because from the previous section G(K/KQ) ≥ Q. �

We are now ready to state the main theorem of Galois theory which relates intermediate fields of a finite,
normal, separable extension K ⊇ F to subgroups of G(K/F ). Note that if K is any field, and Q is a
finite group of automorphisms of K, then we have shown that K ⊇ F = KQ is a finite, normal separable,
extension. Conversely, we have shown that if K ⊇ F is finite, normal, and separable, then G(K/F ) is finite
and KG(K/F ) = F . Hence, we can either start with a subfield F of K for which K ⊇ F is finite, normal,
and separable or we may start with a finite group Q of automorphisms of K.
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Theorem. (Galois’s Main Theorem). Let K ⊇ F be a finite, normal, separable extension. Let G =
G(K/F ).

(A) (i) For each subgroup H of G, we have G(K/KH) = H.
(ii) For each subfield L with K ⊇ L ⊇ F , we have KG(K/L) = L

Hence, H 7→ KH and L 7→ G(K/L) provide a one-to-one correspondence between subgroups of G(K/F )
and intermediate subfields L.

(B) If the subgroup H corresponds to the intermediate subfield L, then [K : L] = |H|. In particular,
[K : F ] = |G(K/F )|.

(C) If the subgroup H corresponds to the intermediate subfield L, then H is normal in G⇔ L ⊇ F is a
normal extension. Moreover, in that case

G/H ∼= G(L/F ).

Proof. We first prove (A) and (B).
(i) Let L = KH . Then we know that G(K/L) ⊇ H on purely formal grounds. Hence, the first and

second basic lemmas on degree show

[K : L] ≥ |G(K/L)| ≥ |H| ≥ [K : L].

It follows that G(K/L) = H as claimed and incidentally their common order its [K : L] which proves
(B).

(ii) Since K ⊇ F is finite, normal and separable, the same is true of K ⊇ L. However, for such extensions
we have already proved that KG(K/L) = L.

(C) Suppose first that L ⊇ F is a normal intermediate extension. If σ is an automorphism of K which
fixes F , then the general characterization of normality assures us that σ(L) = L. Hence, we may define
an automorphism σ′ of L by restricting σ to L. The map σ  σ′ clearly defines a homomorphism of
G(K/F )→ G(L/F ). It is an epimorphism since because of the normality of K ⊇ F , any automorphism σ′

of L which fixes F can be extended to an automorphism σ of K. The kernel of this epimorphism is the set
of all automorphisms σ of K which restrict to the identity on L, i.e. which fix L. Thus the kernel is G(K/L)
so that subgroup of G(K/F ) is normal and G(K/F )/G(K/L) ∼= G(L/K).

To prove the converse we need the following simple Lemma.

Lemma. Let K ⊇ L ⊇ F . Then for each τ ∈ G(K/F ), we have

G(K/τ(L)) = τG(K/L)τ−1.

Proof of Lemma. Left to the student as an exercise.
The converse now follows because if G(K/L) is normal in G(K/F ), we may conclude that G(K/τ(L)) =

G(K/L) so that the Galois correspondence tells us that τ(L) = L. Since this holds true for every automor-
phism of K (normal over F ) fixing F , it follows from our general characterization of normality that L ⊇ F
is normal. �

Notes.
1. The initial example of a finite, normal, separable extension was K ⊇ F = KQ where Q is a finite

group of automorphisms of K. In this case, it is in fact true that G(K/F ) = Q, the original group of
automorphisms used to define F . For, generally, G(K/KQ) ≥ Q, while |G(K/KQ| = [K : KQ] = |Q| by the
two basic inequalities on degree. Hence, G(K/F ) = Q if F = KQ./

2. Unfortunately, we don’t usually encounter extensions by considering fixed fields of groups of automor-
phisms. Also, we don’t yet know that the splitting field of a separable polynomial is separable, which the
way we might more naturally expect to encounter a finite normal extension. We will investigate criteria for
separability in the next section. In particular, we will establish that every extension of a field of characteristic
0, e.g., Q, is separable.
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Example 1. Let K = Q[
√

2,
√

3]. We saw before that G(K/Q) consists of 4 elements id, σ, τ , στ where
σ(
√

2) = −
√

2, σ(
√

3) =
√

3, τ(
√

2) =
√

2, τ(
√

3) = −
√

3. The lattice of subgroups of G is

{Id}∣∣∣∣
{Id, σ} {Id, τ} {Id, στ}∣∣∣∣

G = {Id, σ, τ, στ}

The corresponding lattice of subfields is

Q[
√

2,
√

3]∣∣∣∣
Q[
√

3] Q[
√

2] Q[
√

6]∣∣∣∣
Q

(Note that it is customary to write the lattice of subgroups upside-down so that each subgroup appears in
the position of the subfield it fixes.) In this case the group is abelian, and all the intermediate subfields are
normal. The factor groups (i.e. the groups of the intermediate extensions) are cyclic of order 2.

Example 2. As in an earlier discussion in C, let ω = e(2πi/3), and let α = 3
√

2 be the real cube root of
2. Then we have the lattice of subfields of K = Q[α, ω]

K = Q[α, ω]
2

Q[α] Q[ω]
3

Q

The numbers on the left give the indicated degrees. For, α is a root of X3− 2 which is irreducible over Q so
α is of degree 3 over Q, and ω is a root of X2 +X+ 1 so [K : Q[α]] ≤ 2. Since ω is not real, it is not in Q[α]
so that degree is 2. It follows that the total degree is 6, hence by Galois’s Main Theorem, |G(K/Q)| = 6. It
follows that G(K/Q) ∼= the full permutation group of the roots {α, αω, αω2} ∼= S3. Let σ ∈ G correspond
to the three cycle (ααω αω2). It is easy to see that σ(α) = αω and σ(ω) = ω. (Can you “construct” such
an automorphism directly by using appropriate extension theorems?) Let τ correspond to the transposition
(αω αω2). It is not hard to see that τ(α) = α and τ(ω) = ω2. We know the subgroups of G. There is a
unique (hence normal) subgroup {Id, σ, σ2} of order 3 and index 2. Its fixed field is clearly Q[ω] which it
follows is the only intermediate field of degree 2 over Q. There are 3 subgroups of order 2: {Id, τ} with
fixed field Q[α], {Id, τσ} with fixed field Q[αω], and {Id, τσ2} with fixed field Q[αω2]. These are the only
intermediate subfields of K. (Can you see what Q[α+ω] and Q[αω+ αω2] are?) We leave it to the student
to draw the complete lattice diagrams for subgroups and subfields.

Exercises.
1. Draw the complete lattices of subfields and subgroups in Example 2. Identify the subfields Q[ω − ω2]
and Q[α+ ω].
2. Assume that all field extensions in characteristic zero are separable; in particular, all extensions of Q
are separable.

Consider the splitting field in K C of the rational polynomial X4 − 2.
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(a) Let α be a real fourth root of 2. Show that K = Q[α, i] is that splitting field. Show that [Q[i] : Q] = 2
and [Q[α] : Q] = 4. Show that Q[i] ∩ Q[α] = Q and conclude [Q[α, i] : Q] = 8. Conclude also that
[Q[α, i] : Q[i]] = 4, [Q[α, i] : Q[alpha] = 2].

(b) The four roots of X4 − 2 are α, iα,−α,−iα. Show that there exists an automorphism σ of K fixing i
and such that σ(α) = iα. Show that the orbit of α under the subgroup generated by σ consists of the above
roots, and conclude σ has order four.

(c) Show there exists and automorphism τ of K fixing α and such that τ(i) = −i. Show that τ has order
two and that τστ−1 = τστ = σ3.

(d) Determine all subgroups of G(K/Q) and the corresponding lattice of subfields of K. Identify which
are normal and which are not.
3. Prove or disprove the following: A normal extension of a normal extension is normal.

3. More about separability

As defined above, a polynomial is separable if it splits in its splitting field into distinct linear factors;
otherwise it is called inseparable. In the inseparable case, there are repeated roots, i.e. in its splitting field,
f(X) has factors of the form (X − u)2. It turns out that an irreducible polynomial can be inseparable only
in very special circumstances. To deal with this issue, we need the formal derivative of a polynomial. If
f(X) ∈ F [X ] with f(X) =

∑
aiX

i, we define Df(X) =
∑
iaiX

i−1. (The formal term 0a0X
−1 is interpreted

as 0.) This formal derivative has the usual formal properties of a derivative.

Proposition. D(f(X) + g(X)) = Df(X) + Dg(X).

D(f(X)g(X)) = Df(X)g(X) + f(X)Dg(X)

Proof. Calculate f(X +H) in F [X,H] = F [X ][H] and notice that Df(X) is the coefficient of H. The
rules follow easily from this fact. �

Proposition. Let y be a root of f(X) ∈ F [X ] in some extension E ⊇ F . (i) (X − y)2 divides f(X) in
E[X ] if and only if f(y) = Df(y) = 0. (ii) An irreducible polynomial f(X) ∈ F [X ] is inseparable if and
only if DF (X) is the zero polynomial.

Proof.

(i) Assume first that y is a multiple root. Then

f(X) = (X − y)2g(X) in E[X ].

Hence DF (X) = 2(X − y)g(X) + (X − y)2Dg(X) and so Df(y) = 0.
Conversely, assume that y is not a repeated root. Then

f(X) = (X − y)g(X) where g(y) 6= 0.

Hence Df(X) = g(X) + (X − y)Dg(X) so Df(y) = g(y) 6= 0.
(ii) If f(X) is inseparable, it has a multiple root in some splitting field. If y is such a root, by (i)

Df(y) = 0. If f(X) is irreducible, it follows that it is the minimal polynomial of any one of its
roots, so f(X) | Df(X). Since degDf(X) < deg f(X), that is not possible unless Df(X) is the
zero polynomial. Conversely, if Df(X) is the zero polynomial, then every root in any extension is
multiple by (i). �

Corollary. If F is a field of characteristic 0, then every irreducible polynomial, hence every algebraic
extension, is separable.

Proof. Df(X) =
∑
iaiX

i−1 = 0 in F [X ] if and only if ai = 0 for all i > 0 not divisible by the
characteristic p of F . (If i ≡ 0 mod p then iai = 0 is possible without ai = 0.) If the characteristic is 0, we
are done. �
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Example. We show how to construct an inseparable extension. Let F = Fp(T ) be the field of rational
functions in an indeterminate T with coefficients in the field Fp with p elements. The polynomial Xp− T ∈
F [X ] is irreducible. For, suppose x is a root of Xp − T in some extension of F . Then

(X − x)p = Xp − xp = Xp − T.
(Use the binomial theorem and the fact that the binomial coefficients(

p

i

)
≡ 0 mod p for 0 < i < p.)

Hence, the minimal polynomial of x must be a power (X − x)i. Were i < p, it would follow that x ∈ F .
For, in that case the coefficient −ix of Xi−1 is in F . So, since i < p, x ∈ F . However, xp = T , and it is not
hard to see that T is not a power of any element of F . It follows that F [x] ⊇ F is of degree p, the minimal
polynomial of x factors there as (X − x)p, and F [x] ⊃ F is certainly not a separable extension. (But it is
normal. Why?)

We now analyze the general structure of a monic, irreducible polynomial f(X) over a field F of charac-
teristic p. We have seen above that if f(X) is inseparable, then (since Df(X) = 0) all coefficients ai = 0 for
i ≡ 0 mod p. Hence, in fact f(X) is a polynomial in Xp : f(X) = g(Xp) for some g(X) ∈ F [x]. Clearly, g(X)
is also irreducible. (However, we could easily start with an irreducible g(X) but not have g(Xp) irreducible.)
If g(X) is inseparable, then we can repeat the argument with it. Iterating in this way we conclude that
f(X) = g(Xpe) for some irreducible, separable g(X) ∈ F [X ].

Let g(X) =
∏

(X − xi) in its splitting field where because of separability, the roots x1, x2, . . . , xr are
distinct. Then

f(X) = g(Xpe)) =
r∏
i=1

(Xpe − xi).

For each i, adjoin a root yie of Xpe −xi. Since (X−yi)p
e

= Xpe −yp
e

i = Xpe −xi, it follows that the unique
factorization of f(X) in its splitting field is

f(X) = g(Xpe) =
r∏
i=1

(X − yi)p
e

.

Hence, f(X) = h(X)p
e

where h(X) has coefficients in the splitting field of f(X) and splits there into distinct
linear factors.

A field F is called perfect if every irreducible polynomial in F [X ] (hence every algebraic extension of F )
is separable. Thus, fields of characteristic 0 are perfect.

Theorem. Every finite field is perfect.

Proof. Let F be a finite field of characteristic p, and consider the function φ : F → F defined by
φ(x) = xp. (x+ y)p = xp + yp because of the argument given above about binomial coefficients, and clearly
(xy)p = xpyp. Hence, φ is a field monomorphism of F into itself. Since F is finite φ must also be an
epimorphism, i.e. it is an isomorphism of F onto itself. (φ is often called a Frobenius map although this
confuses it with a related but more complicated notion in algebraic number theory bearing the same name.)

Let f(X) ∈ F [X ] be an irreducible polynomial. As noted above, if f(X) is inseparable, it must be of the
form

f(X) = a0X
pk + a1X

p(k−1) + · · ·+ ak−1X
p + ak.

Since φ is an epimorphism, we have ai = bpi with bi ∈ F for each i = 0, 1, . . . , k. It follows that

f(X) = (b0Xk + b1X
k−1 + · · ·+ bk)p

contradicting the irreducibilty of f(X). Hence, every irreducible polynomial over F is separable. �

The above arguments show that any extension of a field of characteristic zero or of a finite field is
separable. Another way to be sure that an extension is separable is to obtain it as a splitting field of a
separable polynomial. That would allow us for example to apply Galois Theory to at least some extensions
of Fp(X), although not every extension of that field is separable.
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Theorem. Let f(X) ∈ F [X ] be a separable polynomial, and let K be a splitting field for f(X). Then
K ⊇ F is a separable extension. In particular, Galois’s Main Theorem applies to it.

Proof. We proceed by induction on [K : F ].
Choose a root x ∈ K of f(X) and let m(X) be its minimal polynomial. Let {x = x1, x2, . . . , xr} be

the orbit of x under the action of G(K/F ). Since xi 7→ xj defines an F -isomorphism F [xi] → F [xj ]
which can be extended to an automorphism of K, we know that this orbit is the set of all distinct roots of
m(X). Since f(X) is separable, each of its factors is separable, hence m(X) is separable. It follows that
r = degm(X) = [F [x] : F ]. On the other hand, an element of G(K/F ) fixes F [x] if and only if it fixes x so
that the stabilizer of x is just G(K/F [x]). Hence, (G(K/F ) : G(K/F [x]) = r = [F [x] : F ]. By induction,
viewing f(X) as a polynomial in F [x][X ], we may assume K ⊇ F [x] is separable so |G(K/F [x])| = [K : F [x]]
by Galois’s Main Theorem. Thus, we have

|G(K/F )| = [K : F [x]][F [x] : F ] = [K : F ].

However, also by Galois’s Main Theorem,

|G(K/F )| = [K : KG(K/F )].

(K ⊇ KG(K/F ) is separable, and G(K/K(G/F )) = G(K/F ).) Since KG(K/F ) ⊇ F in any case, we may
conclude that F = KG(K/F ) so the extension is separable. �

Corollary. Let K ⊇ E ⊇ F where K is a finite, normal extension of F . Then E ⊇ F is separable if
and only if the number of distinct isomorphisms σ : E → K fixing F is [E : F ].

Proof. We leave this as a challenging exercise for the student. It amounts to showing that (G(K/F ) :
G(K/E)) = [E : F ].

Corollary. Let L ⊇ E ⊇ F where [L : F ] <∞. L is separable over F if and only if L is separable over
E and E is separable over F .

Proof. The “only if” has already been discussed; in any event it is fairly clear.
Suppose conversely that L ⊇ E and E ⊇ F are separable. We may construct a normal closure K ⊇ F

containing L. By the previous corollary,

(G(K/F ) : G(K/L)) = (G(K/F ) : G(K/E))(G(K/E) : G(K : L))

= [E : F ][L : E] = [L : F ].

Hence, L ⊇ F is separable. �

Exercises.

1. Prove the Corollary in the section.
Let K ⊇ E ⊇ F where K is a finite, normal extension of F . Then E ⊇ F is separable if and only if the

number of distinct isomorphisms σ : E → K fixing F is [E : F ].
See the note on the proof for a hint.

2. Let K ⊇ F be an extension of fields of characteristic p 6= 0. Let F ′ be the subset of all elements of K
such that xq ∈ F for q a power of p (depending generally on x).

(a) Show that F ′ is a subfield of K containing F .
(b) Suppose K is finite and normal over F . Show that any automorphism of K which fixes F also fixes

F ′.
(c) Show that KG(K/F ) = F ′.
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4. Primitive elements

Theorem. If E ⊇ F is a finite separable extension, then E = F (x) for some x.

x is called a primitive element. Note that this result eliminates quite a bit of potential complication. If
we had proved it earlier, we could have shortened some of the proofs a bit. Earlier developments of Galois
theory depended strongly on this result. However, from our current point of view, the result is seen to be a
lucky side effect rather than a fundamental fact which reveals the basic structure of the theory.

Proof of the Theorem. The proof is based on the following result.

Lemma. E ⊇ F is algebraic and E = F (x) if and only if there are only a finite number of intermediate
fields between E and F .

It is clear that the lemma implies the theorem. For, if E ⊇ F is finite and separable, then E =
F (x1, x2, . . . , xn) for appropriate elements x1, x2, . . . , xn in E, and if we adjoin the remaining roots of the
minimal polynomials of these elements we obtain a finite normal separable extensionK of F withK ⊇ E ⊇ F .
By Galois’s main theorem, there are only finitely many intermediate fields between K and F so the same is
true of E and F , hence by the lemma E ⊇ F has a primitive element.

Proof of the Lemma. Suppose that E = F (x) where x is algebraic over F . Let m(X) ∈ F [X ] be the
minimal polynomial of x. If L is any intermediate field, let g(X) ∈ L[X ] be the minimal polynomial of x
over L. Let g(X) = Xk+u1X

k−1 + · · ·+uk−1X+uk where u1, . . . , uk ∈ L. E = F (x) = L(x) so [E : L] = k.
However, g(X) is certainly an irreducible polynomial in L′ = F (u1, . . . , uk) still with x as root, so we also
have [E : L′] = k. It follows that L = L′ = F (u1, . . . , uk). Since (in E) m(X) has only finitely many monic
factors (by unique factorization), it follows that there can only be finitely many L.

Conversely, suppose there are only finitely many intermediate fields between E and F . Then E is a finite
extension of F . For, if we choose x1 not in F , x2 not in F (x1), x3 not in F (x1, x2), etc. that process must
eventually stop or we would obtain infinitely many subfields; hence E = F (x1, x2, . . . , xn) for appropriate
elements x1, x2, . . . , xn in E. Moreover, each element x of E is algebraic over F , since otherwise F (x),
F (x2), F (x3), . . . , F (xi), . . . is easily seen to be a strictly decreasing chain of intermediate subfields. Thus,
E = F (x1, x2, . . . , xn) is finite over F .

To show E = F (x) for some x, we separate out two cases: F is finite and F is infinite. If F is finite,
the result follows from the characterization of finite fields in the next chapter. If F is infinite, we argue
by induction on [E : F ] as follows. Choose y ∈ E, y 6∈ F ; there are certainly only finitely many subfields
between E and F (y), so we can conclude by induction that E = F (y)(z) = F (y, z) for some z. Consider the
intermediate fields F (ay + bz) for a, b ∈ F . They can’t all be different so we can find two such intermediate
fields

F (ay + bz) = F (a′y + b′z) = L

where we may assume ab′ − a′b 6= 0 since F is infinite. If we put

ay + bz = t

a′y + b′z = t′

we can solve (using Cramer’s Rule) for y and z in terms of t and t′ which are in L, so it follows that y, z ∈ L.
Hence F (y, z) ⊆ L, i.e. E = F (y, z) = L = F (t) = F (t′). �

Exercises.
1. Let K be the subfield of C which is the splitting field of X4− 2. Find γ ∈ K such that K = Q[γ]. Find
the minimum polynomial of γ.
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