MATH 218 PROBLEM SET 1

JOEY ZOU

The exercises in this problem set regard distribution theory and Fourier theory. They can be completed with material covered up to the end of Week 2 (Lecture 4).

Problem 1: Let $\phi \in C_c^{\infty}(U)$ where $U \subset \mathbb{R}^n$ is open. For $h \in \mathbb{R}^n$, let

(1)
$$\tau_h \phi(x) := \phi(x-h)$$

Note that $\tau_h \phi \in C_c^{\infty}(U)$ as well if h is sufficiently small. (a) For t > 0, let

$$\phi_{h,t} = \frac{\phi - \tau_{th}\phi}{t}.$$

Show, if t > 0 is sufficiently small, that $\phi_{h,t} \in C_c^{\infty}(U)$ as well, and that

$$\phi_{h,t} \to h \cdot \nabla \phi$$

as $t \to 0^+$ in the topology of $C_c^{\infty}(U)$.

(b) Let $u \in \mathcal{D}'(\mathbb{R}^n)$. For $h \in \mathbb{R}^n$, let $\tau_h u$ be the distribution defined by

$$(\tau_h u, \phi) := (u, \tau_{-h} \phi) \text{ for } \phi \in C_c^{\infty}(\mathbb{R}^n)$$

Show that if $u \in C_c^{\infty}(\mathbb{R}^n)$, then this definition agrees with the definition in (1). Moreover, for any $u \in \mathcal{D}'(\mathbb{R}^n)$, if we let

$$u_{h,t} = \frac{u - \tau_{th} u}{t}$$

for $h \in \mathbb{R}^n$ and t > 0, then show that $u_{h,t} \to h \cdot \nabla u$ in the sense of distributions (i.e. in the topology of $\mathcal{D}'(\mathbb{R}^n)$) as $t \to 0^+$.

Problem 2: For $a \in \mathbb{C}$ with Re a > -1, define $\chi_+^a : \mathbb{R} \to \mathbb{R}$ by

$$\chi^a_+(x) = \begin{cases} \frac{x^a}{\Gamma(a+1)} & x > 0\\ 0 & x \le 0 \end{cases}$$

where Γ is the gamma function (this is a meromorphic function whose poles are at $0, -1, -2, \ldots$, and it satisfies $\Gamma(1) = 1$ and $\Gamma(z+1) = z\Gamma(z)$ for z away from the poles). Recall as well that x^a is defined as $e^{a \ln(x)}$ for x > 0 and $a \in \mathbb{C}$, where $\ln(x)$ is real-valued for x > 0.

(a) Show that $\chi^a_+ \in L^1_{loc}(\mathbb{R})$ and $\chi^a_+ = \frac{d}{dx}\chi^{a+1}_+$ for any Re a > -1.

JOEY ZOU

(b) For $n \in \mathbb{N}$, define $\chi^a_{+,n}$ for Re a > -n as follows: define $\chi^a_{+,1} = \chi^a_+$ as above, and if $\chi^a_{+,n-1}$ is defined for all Re a > -n+1, define

$$\chi^a_{+,n} := \frac{d}{dx} \chi^{a+1}_{+,n-1} \quad \text{for } a > -n.$$

For any $a \in \mathbb{C}$, show that $\chi^a_{+,n} = \chi^a_{+,n'}$ for any n, n' > -Re a. Thus, for any $a \in \mathbb{C}$, we can define

(2)
$$\chi^a_+ := \chi^a_{+,n} \text{ for } any \ n > -\text{Re } a.$$

Note for a with $\operatorname{Re} a > -1$ that this agrees with the original definition.

- (c) Let $a \in \mathbb{R}$. Show that χ^a_+ (as defined in (2)) is homogeneous of degree a.
- (d) For any $\phi \in C_c^{\infty}(\mathbb{R})$, let $f_{\phi} : \mathbb{C} \to \mathbb{C}$ be the function

$$f_{\phi}(a) = (\chi_{+}^{a}, \phi)$$

where χ^a_+ is defined in (2). Show that f_{ϕ} is an entire analytic function.

(e) For any $k \in \mathbb{N}$, show that

$$\chi_+^{-k-1} = \delta^{(k)}$$

where $\delta^{(k)}$ is the kth distributional derivative of the Dirac delta.

(f) If $0 \notin \text{supp } \phi$ and a is not a negative integer, show that

$$(\chi^a_+,\phi) = \int_0^\infty \frac{1}{\Gamma(a+1)} x^a \phi(x) \, dx$$

Here, we interpret $\frac{1}{\Gamma(a+1)}$ as the entire analytic function which agrees with $1/\Gamma$ away from the poles of Γ (note in particular that this number equals 0 when *a* is a negative integer). In particular, if *a* is not a negative integer, then away from 0 we have that χ^a_+ is given by the same formula as before, while if *a* is a negative integer the pairing gives zero, i.e. χ^a_+ is supported only at 0 when *a* is a negative integer.

Problem 3: This problem concerns extending homogeneous distributions on $\mathbb{R}^n \setminus \{0\}$ to distributions on \mathbb{R}^n . See Section 3.2, particularly Theorem 3.2.3, of Hörmander's *The Analysis of Linear Partial Differential Operators* Vol. 1 [Hör90].

In this problem, a denotes a real number.

(a) Fix $u \in \mathcal{D}'(\mathbb{R}^n \setminus \{0\})$ and $\phi \in C_c^{\infty}(\mathbb{R}^n \setminus \{0\})$. Consider the function $f(t) = (u, \phi(tx))$ for $t \in \mathbb{R}$. Show that

$$f'(1) = \left(u, \sum_{i=1}^{n} x_i \partial_i \phi\right).$$

(b) Suppose that $u \in \mathcal{D}'(\mathbb{R}^n \setminus \{0\})$ is homogeneous of degree a. Show that

$$\left(u,\sum_{i=1}^{n} x_i\partial_i\phi\right) + (a+n)(u,\phi) = 0$$

for any $\phi \in C_c^{\infty}(\mathbb{R}^n \setminus \{0\})$.

2

(c) Suppose $\psi \in C_c^{\infty}(\mathbb{R}^n \setminus \{0\})$ satisfies

$$\int_0^\infty r^{a+n-1}\psi(r\omega)\,dr = 0 \quad \text{for all } \omega \in \mathbb{S}^{n-1}$$

Let $\phi : \mathbb{R}^n \setminus \{0\} \to \mathbb{C}$ be defined in polar coordinates by

$$\phi(r\omega) = r^{-(a+n)} \int_0^r s^{a+n-1} \psi(s\omega) \, ds$$

Show that $\phi \in C_c^{\infty}(\mathbb{R}^n \setminus \{0\})$, and $\sum_{i=1}^n x_i \partial_i \phi + (a+n)\phi = \psi$. Conclude that $(u, \psi) = 0$ for all distributions $u \in \mathcal{D}'(\mathbb{R}^n \setminus \{0\})$ homogeneous of degree a.

We now assume either a > -n or $a \notin \mathbb{Z}$. We now show that distributions on $\mathbb{R}^n \setminus \{0\}$ which are homogeneous of degree a where can be extended to \mathbb{R}^n . Let $x_+^a = \Gamma(a+1)\chi_+^a$, where χ_+^a is defined in (2). Note that x_+^a restricted to $\mathbb{R} \setminus \{0\}$ equals x^a for x > 0 and 0 for x < 0.

(d) For $\phi \in C_c^{\infty}(\mathbb{R}^n)$, define

$$(R_a\phi)(y) = (x_+^{a+n-1}, \phi(xy))_{\mathbb{R}} \quad \text{for } y \in \mathbb{R}^n \setminus \{0\}$$

Show that $R_a \phi \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$ and that $R_a \phi$ is homogeneous of degree -n - a. (e) Suppose $\phi_1, \phi_2 \in C_c^{\infty}(\mathbb{R}^n \setminus \{0\})$, and $R_a \phi_1 = R_a \phi_2$ on $\mathbb{R}^n \setminus \{0\}$. Show that $(u, \phi_1) =$

- (u, ϕ_2) for all distributions $u \in \mathcal{D}'(\mathbb{R}^n \setminus \{0\})$ homogeneous of degree a.
- (f) Let $\psi \in C_c^{\infty}((0,\infty))$ satisfy

$$\int_0^\infty \psi(t) \frac{dt}{t} = 1$$

For $\phi \in C_c^{\infty}(\mathbb{R}^n)$ (not necessarily supported away from zero), show that $\psi(|x|)R_a\phi(x) \in C_c^{\infty}(\mathbb{R}^n \setminus \{0\})$, and $R_a(\psi(|x|)R_a\phi)(x) = (R_a\phi)(x)$ for all $x \in \mathbb{R}^n \setminus \{0\}$. Conclude that if ϕ is supported away from zero, then

$$(u,\psi(|x|)R_a\phi) = (u,\phi)$$

for all distributions $u \in \mathcal{D}'(\mathbb{R}^n \setminus \{0\})$ homogeneous of degree a.

(g) Given $u \in \mathcal{D}'(\mathbb{R}^n \setminus \{0\})$ homogeneous of degree a, let \tilde{u} be the distribution on \mathbb{R}^n defined by

$$(\tilde{u},\phi) := (u,\psi(|x|)R_a\phi)$$

Show that \tilde{u} is indeed a distribution on \mathbb{R}^n whose restriction to $\mathbb{R}^n \setminus \{0\}$ is u.

Problem 4: Let $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ satisfy $\int_{\mathbb{R}^n} \varphi(x) dx = 1$, and for $\epsilon > 0$ let $\varphi_{\epsilon}(x) = \epsilon^{-n} \varphi(x/\epsilon)$.

- (a) Show that φ_{ϵ} converges to δ in the sense of distributions as $\epsilon \to 0^+$.
- (b) Show that $|\varphi_{\epsilon}|^2$ does **not** converge in the sense of distributions.

Upshot: There does not exist an operator $\mathcal{D}'(\mathbb{R}^n) \times \mathcal{D}'(\mathbb{R}^n) \to \mathcal{D}'(\mathbb{R}^n)$ which extends the notion of pointwise multiplication (say defined initially on $C_c^{\infty}(\mathbb{R}^n) \times C_c^{\infty}(\mathbb{R}^n)$) which is also continuous on $\mathcal{D}'(\mathbb{R}^n) \times \mathcal{D}'(\mathbb{R}^n)$, since we can find a sequence φ_n in $C_c^{\infty}(\mathbb{R}^n)$ converging to δ in $\mathcal{D}'(\mathbb{R}^n)$ such that $\varphi_n \cdot \overline{\varphi_n}$ does not converge.

Problem 5:

(a) Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is a smooth function such that $\nabla f(x) \neq 0$ when f(x) = 0. Note that $f^{-1}(0)$ is a smooth codimension 1 submanifold of \mathbb{R}^n , i.e. a hypersurface. Show that

$$\delta(f) = \frac{dS}{|\nabla f|},$$

where dS is the Euclidean surface measure on the $f^{-1}(0)$.

(b) With f as in part (a), let $\Omega = \{f > 0\}$, and let $u = \mathbb{1}_{\Omega}$ be the indicator function of Ω . Let $\phi_j \in C_c^{\infty}(\mathbb{R}^n)$, $1 \le j \le n$, and $\phi = (\phi_1, \ldots, \phi_n)$. Show that

$$\sum_{j=1}^{n} \left(\partial_{j} u, \phi_{j} \right) = \left(\delta(f), \phi \cdot \nabla f \right).$$

Problem 6: Let $a : \mathbb{R}^{n+1}_{\xi,\tau} \setminus \{0\} \to \mathbb{C}$ and $H : \mathbb{R}^{n+1}_{x,t} \to \mathbb{R}$ be defined by

$$a(\xi,\tau) = \frac{1}{|\xi|^2 + i\tau}$$

and

$$H(x,t) = \begin{cases} (4\pi t)^{-n/2} e^{-|x|^2/4t} & t > 0\\ 0 & t \le 0 \end{cases}.$$

Here, |.| is the norm on \mathbb{R}^n .

- (a) Show that a and H are both locally integrable on \mathbb{R}^{n+1} , and furthermore that they define tempered distributions, i.e. $a \in \mathcal{S}'(\mathbb{R}^{n+1}_{\xi,\tau})$ and $H \in \mathcal{S}'(\mathbb{R}^{n+1}_{x,t})$.
- (b) Show that the Fourier transform of H equals a.

Problem 7:

(a) Let $H(x) = \mathbb{1}_{\{x>0\}}$ be the Heaviside function. Show that the Fourier transform of $f : \mathbb{R} \to \mathbb{R}$, $f(x) = e^{-\epsilon x} H(x)$ (where $\epsilon > 0$) is given by

$$\hat{f}(\xi) = \frac{1}{i\xi + \epsilon}.$$

(b) Conversely, show by direct computation (i.e. without invoking the Fourier Inversion formula and part (a)) that the inverse Fourier transform of $g(\xi) = \frac{1}{i\xi+\epsilon}$ is f(x) defined in part (a). (*Hint*: First show that if $g_R(\xi) = \mathbb{1}_{[-R,R]}(\xi)g(\xi)$, then $g_R \to g$ in $\mathcal{S}'(\mathbb{R})$. To compute the inverse Fourier transform of g_R , you need to evaluate the integral

$$\frac{1}{2\pi} \int_{-R}^{R} \frac{e^{ix\xi}}{i\xi + \epsilon} \, d\xi.$$

This integral, or rather its limit/asymptotics as $R \to \infty$, can be evaluated using contour integration, by taking a semicircular contour with the semicircle lying either in the upper or lower half plane, chosen appropriately so that the exponential factor $e^{ix\xi}$ is exponentially decaying and not growing in that half plane.) **Problem 8**: Recall that the distributions $(x \pm i0)^{-1}$ on \mathbb{R} are defined by

$$\phi \mapsto \lim_{\epsilon \to 0^+} \int_{\mathbb{R}} \frac{\phi(x)}{x \pm i\epsilon} \, dx$$

(a) Show that the limit on the RHS does indeed exist for any $\phi \in C_c^{\infty}(\mathbb{R})$.

(b) Show that

$$(x-i0)^{-1} - (x+i0)^{-1} = 2\pi i\delta_0$$

(c) Compute the Fourier transforms of $(x \pm i0)^{-1}$.

Problem 9: For $n \geq 3$, consider the distribution

$$u = \delta \left(x_n^2 - \sum_{i=1}^{n-1} x_i^2 \right).$$

This is a distribution of order -2 well-defined on $\mathbb{R}^n \setminus \{0\}$, so by Problem 3 there is a unique way to extend this to a homogeneous distribution of order -2 defined on \mathbb{R}^n when $n \geq 3$.

Show that $u \in \mathcal{S}'(\mathbb{R}^n)$, and compute its Fourier transform in the case n = 4.

Problem 10: The purpose of this problem is to derive the stationary phase lemma for the particular quadratic phase function $(x, y) \mapsto x \cdot y$ on \mathbb{R}^{2n} using the Fourier inversion formula. See Theorem 7.7.3 of Hörmander's *The Analysis of Linear Partial Differential Operators* Vol. 1 [Hör90] for the most general version of quadratic stationary phase, as well as generalizations to non-quadratic phase functions.

For $n \in \mathbb{N}$, we view $\mathbb{R}^{2n} = \mathbb{R}^n \times \mathbb{R}^n$, with coordinates (x, y) where $x, y \in \mathbb{R}^n$. (a) Let $\phi, \psi \in C_c^{\infty}(\mathbb{R}^n)$. For $\lambda > 0$, consider the integral

$$I(\lambda) = \int_{\mathbb{R}^{2n}} e^{i\lambda x \cdot y} \phi(x) \psi(y) \, dx \, dy.$$

Show that $\lambda^n I(\lambda) \to (2\pi)^n \phi(0) \psi(0)$ as $\lambda \to +\infty$. Furthermore, show that if $\phi \in C_c^{\infty}(\mathbb{R}^n)$ is constant in a neighborhood of the origin, then

$$\lambda^n I(\lambda) - (2\pi)^n \phi(0)\psi(0) = O(\lambda^{-N})$$

as $\lambda \to +\infty$ for any N > 0. (*Hint*: show that $I(\lambda)$ equals

$$\frac{1}{\lambda^n} \int_{\mathbb{R}^n} \phi(-\xi/\lambda) \hat{\psi}(\xi) \, d\xi$$

by making the substitution $\xi = -\lambda x$.)

(b) Suppose $\phi, \psi \in C_c^{\infty}(\mathbb{R}^n)$ are constant in a neighborhood of the origin. For multiindices α, β , let

$$I_{\alpha,\beta}(\lambda) = \int_{\mathbb{R}^{2n}} e^{i\lambda xy} x^{\alpha} y^{\beta} \phi(x) \psi(y) \, dx \, dy.$$

Show that if $\alpha \neq \beta$, then $I_{\alpha,\beta}(\lambda) = O(\lambda^{-N})$ for all N > 0. In addition, show that

$$i^{-|\alpha|}\lambda^{|\alpha|+n}I_{\alpha,\alpha}(\lambda) - (2\pi)^n \alpha!\phi(0)\psi(0) = O(\lambda^{-N})$$

JOEY ZOU

for all N > 0, where $\alpha! = \alpha_1!\alpha_2!\ldots\alpha_n!$ if $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$.

(c) Suppose that $f(x,y) = x^{\alpha}y^{\beta}g(x,y)$ for some multi-indices α and β and for some $g \in C_c^{\infty}(\mathbb{R}^{2n})$. Show that

$$\int_{\mathbb{R}^{2n}} e^{i\lambda x \cdot y} f(x, y) \, dx \, dy = O(\lambda^{-n - \max(|\alpha|, |\beta|)})$$

as $\lambda \to \infty$.

(d) Now let f be any function in $C_c^{\infty}(\mathbb{R}^{2n})$, and let

$$I_f(\lambda) = \int_{\mathbb{R}^{2n}} e^{i\lambda x \cdot y} f(x, y) \, dx \, dy.$$

Show that $I_f(\lambda)$ admits the asymptotic expansion

$$I_f(\lambda) \sim \left(\frac{2\pi}{\lambda}\right)^n \sum_{\alpha} \frac{i^{|\alpha|} \partial_x^{\alpha} \partial_y^{\alpha} f(0)}{\alpha!} \lambda^{-|\alpha|},$$

in the sense that for any integer N > 0 we have

$$\left|I_f(\lambda) - \left(\frac{2\pi}{\lambda}\right)^n \sum_{|\alpha| < N} \frac{i^{|\alpha|} \partial_x^{\alpha} \partial_y^{\alpha} f(0)}{\alpha!} \lambda^{-|\alpha|}\right| = O(\lambda^{-n-N}).$$

Hint: Use Taylor's theorem, which states that for any $f \in C^{\infty}(\mathbb{R}^m)$ and any N > 0 we have

$$f(z) = \sum_{|\gamma| < N} \frac{\partial^{\gamma} f(0)}{\gamma!} z^{\gamma} + \sum_{|\gamma| = N} R_{\gamma} f(z) z^{\gamma}$$

for some choice of functions $R_{\gamma}f$ which are also smooth. Also note that since in our case we have $f \in C_c^{\infty}(\mathbb{R}^{2n})$, there exist $\phi, \psi \in C_c^{\infty}(\mathbb{R}^n)$ which are identically one near the origin such that $f(x, y) = f(x, y)\phi(x)\psi(y)$.

References

[Hör90] Lars Hörmander. The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis. Springer-Verlag, Berlin, 2nd edition, 1990.