MATH 218 PROBLEM SET 1

JOEY ZOU

The exercises in this problem set regard distribution theory and Fourier theory. They
can be completed with material covered up to the end of Week 2 (Lecture 4).

Problem 1: Let ¢ € C>°(U) where U C R" is open. For h € R™, let

(1) Tho(x) = ¢(x — h).
Note that 7,0 € C°(U) as well if h is sufficiently small.

(a) Fort >0, let

one = 202

Show, if ¢t > 0 is sufficiently small, that ¢, € C°(U) as well, and that
Onp —h-Vo

as t — 07 in the topology of C°(U).
(b) Let u € D'(R™). For h € R, let 7,u be the distribution defined by

(Thu, @) := (u, 7_p9) for ¢ € C°(R").

Show that if u € C°(R™), then this definition agrees with the definition in (|1]).
Moreover, for any u € D'(R"™), if we let

for h € R" and ¢ > 0, then show that uj; — h - Vu in the sense of distributions
(i.e. in the topology of D'(R™)) as t — 0.

Problem 2: For a € C with Re a > —1, define x4 : R — R by

x>0
a () = T'(a+1)
X+( ) {0 2 <0

where I' is the gamma function (this is a meromorphic function whose poles are at
0, —1, =2, ..., and it satisfies I'(1) = 1 and I'(z + 1) = 2I'(2) for z away from the
poles). Recall as well that 2 is defined as e*™® for 2 > 0 and a € C, where In(z) is
real-valued for x > 0.

(a) Show that x4 € Lj,.(R) and x% = £ %™ for any Re a > —1.
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(b) For n € N, define x% ,, for Re a > —n as follows: define x4 ; = x% as above, and
if x4 ,,_1 is defined for all Re a > —n + 1, define
XL, = ixa“ for a > —n.
+,n dr +,n—1

For any a € C, show that x4, = x4, for any n,n" > —Re a. Thus, for any
a € C, we can define

(2) X% = x4, for any n > —Re a.

Note for a with Re a > —1 that this agrees with the original definition.
(¢) Let a € R. Show that x% (as defined in (2))) is homogeneous of degree a.
(d) For any ¢ € C°(R), let f, : C — C be the function

fola) = (X5, 9)

where x4 is defined in . Show that f, is an entire analytic function.
(e) For any k € N, show that
X-T-k_l _ 5(16)’
where 6% is the kth distributional derivative of the Dirac delta.

(f) If 0 ¢ supp ¢ and a is not a negative integer, show that

o 1
o = —a° dz.
(W1t) = [ ol da
Here, we interpret ﬁ as the entire analytic function which agrees with 1/T°

away from the poles of I' (note in particular that this number equals 0 when a is
a negative integer). In particular, if a is not a negative integer, then away from 0
we have that x¢ is given by the same formula as before, while if a is a negative
integer the pairing gives zero, i.e. x4 is supported only at 0 when a is a negative
integer.

Problem 3: This problem concerns extending homogeneous distributions on R™\{0}
to distributions on R"™. See Section 3.2, particularly Theorem 3.2.3, of Hérmander’s
The Analysis of Linear Partial Differential Operators Vol. 1 [Hor90].

In this problem, a denotes a real number.

(a) Fix v € D'(R"\{0}) and ¢ € C*(R"\{0}). Consider the function f(t) =
(u, ¢(tx)) for t € R. Show that

(b) Suppose that u € D'(R™\{0}) is homogeneous of degree a. Show that

(u, Zxﬁ@) + (a+n)(u,¢) =0

for any ¢ € C°(R™\{0}).
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(c) Suppose ¥ € C*(R"\{0}) satisfies
/OO rtlh(rw)dr =0 for all w € S"1
Let ¢ : R"\{0} — zf be defined in polar coordinates by

P(rw) = r=(atm) /?“ sl (sw) ds.
0

Show that ¢ € C°(R™\{0}), and > ", 2;0i¢ + (a + n)¢ = 1. Conclude that
(u,1) = 0 for all distributions v € D'(R™\{0}) homogeneous of degree a.
We now assume either a > —n or a € Z. We now show that distributions on R™\{0}
which are homogeneous of degree a where can be extended to R”. Let 2% = I'(a+1)x%,
where x4 is defined in (2)). Note that 2% restricted to R\{0} equals 2* for > 0 and
0 for x < 0.

(d) For ¢ € C°(R"), define

(Rad)(y) = (24" d(ay))r  for y € R™\{0}.
Show that R,¢ € C*(R"\{0}) and that R,¢ is homogeneous of degree —n — a.
(e) Suppose ¢1,po € CX(R™\{0}), and R,¢1 = Rap2 on R™\{0}. Show that (u,¢,) =
(u, ¢2) for all distributions u € D'(R™\{0}) homogeneous of degree a.
(f) Let v € C2°((0,00)) satisfy
> dt
0

For ¢ € C2°(R™) (not necessarily supported away from zero), show that ¢ (|z|) R,é(x) €
C(R™\{0}), and R,(¥(|z])Ra@)(z) = (Ra¢)(x) for all z € R"\{0}. Conclude

that if ¢ is supported away from zero, then

(u, (|z]) Radp) = (u, )
for all distributions v € D'(R™\{0}) homogeneous of degree a.
(g) Given u € D'(R™\{0}) homogeneous of degree a, let 4 be the distribution on R"
defined by
(@, ) := (u, ¥(|x]) Rad).

Show that @ is indeed a distribution on R™ whose restriction to R"\{0} is u.

Problem 4: Let ¢ € C°(R") satisfy [, ¢(x)dr = 1, and for € > 0 let pc(z) =
e "p(x/e).

(a) Show that ¢, converges to ¢ in the sense of distributions as e — 07.

(b) Show that |¢.|* does not converge in the sense of distributions.

Upshot: There does not exist an operator D'(R™) x D'(R™) — D’'(R") which
extends the notion of pointwise multiplication (say defined initially on C2°(R™) x
C2°(R™)) which is also continuous on D'(R™) x D’'(R"), since we can find a sequence
o in C°(R™) converging to ¢ in D'(R™) such that ¢, - @, does not converge.
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Problem 5:

(a) Suppose f: R™ — R is a smooth function such that V f(z) # 0 when f(z) = 0.
Note then that f~!(0) is a smooth codimension 1 submanifold of R", i.e. a

hypersurface. Show that

as
o(f) = ik

where dS is the Euclidean surface measure on the f~1(0).
(b) With f as in part (a), let Q@ = {f > 0}, and let u = 1 be the indicator function
of Q. Let ¢; € CX(R"), 1 <j<n,and ¢ = (¢1,...,¢,). Show that

n

> (O5u,5) = (3(f), ¢+ V1),

=1
Problem 6: Let a : R¢T'\{0} — C and H : R} — R be defined by
1
a(§,7) = G

and

(dt) /2= l2P/4 ¢ 5
H(x,t):{() e

Here, |.| is the norm on R™.

(a) Show that @ and H are both locally integrable on R"™ and furthermore that
they define tempered distributions, i.e. a € S’(R’g’tl) and H € S'(RIT).
(b) Show that the Fourier transform of H equals a.

Problem 7:
(a) Let H(x) = 1yz>0y be the Heaviside function. Show that the Fourier transform
of f:R—=R, f(zr) =e ““H(x) (where € > 0) is given by

f&) = 7

(b) Conversely, show by direct computation (i.e. without invoking the Fourier Inver-

sion formula and part (a)) that the inverse Fourier transform of g(§) = iﬁi—e is
f(x) defined in part (a). (Hint: First show that if gr(§) = 11— r(§)g(§), then
gr — ¢ in 8'(R). To compute the inverse Fourier transform of gg, you need to

evaluate the integral

1 R eil‘f

% R Zf + €
This integral, or rather its limit/asymptotics as R — oo, can be evaluated using
contour integration, by taking a semicircular contour with the semicircle lying

either in the upper or lower half plane, chosen appropriately so that the exponen-
tial factor € is exponentially decaying and not growing in that half plane.)
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Problem 8: Recall that the distributions (z 4 i0)~! on R are defined by
¢ lim @) 4.
=0t Jp T I 1€

(a) Show that the limit on the RHS does indeed exist for any ¢ € C2°(R).
(b) Show that

(z —i0)"" — (2 4+10)"' = 27idy.
(c) Compute the Fourier transforms of (z 4 i0)~.

Problem 9: For n > 3, consider the distribution

u:5<xi—§x?).
i=1

This is a distribution of order —2 well-defined on R™\{0}, so by Problem 3 there is a
unique way to extend this to a homogeneous distribution of order —2 defined on R™
when n > 3.

Show that u € §'(R™), and compute its Fourier transform in the case n = 4.

Problem 10: The purpose of this problem is to derive the stationary phase lemma
for the particular quadratic phase function (x,y) + x -y on R®*" using the Fourier
inversion formula. See Theorem 7.7.3 of Hormander’s The Analysis of Linear Par-
tial Differential Operators Vol. 1 [Hor90] for the most general version of quadratic
stationary phase, as well as generalizations to non-quadratic phase functions.

For n € N, we view R*® = R" x R", with coordinates (z,y) where z,y € R".

(a) Let ¢,v € C*(R™). For A > 0, consider the integral

1) = [ M oa)ity) dody.
R2n
Show that A"I(\) — (2m)"¢(0)¥(0) as A — +oo. Furthermore, show that if
¢ € C°(R™) is constant in a neighborhood of the origin, then
XI(X) = (2m)"¢(0)1(0) = O(A™Y)
as A — +oo for any N > 0. (Hint: show that I(\) equals

5 L oemie de

by making the substitution £ = —Az.)
(b) Suppose ¢, ¢ € C*(R™) are constant in a neighborhood of the origin. For multi-
indices «, 3, let

) = [ €2y ota)u(y) do dy,

Show that if a # 3, then I, s(\) = O(A™Y) for all N > 0. In addition, show that
i N L 0 (M) = (2m)"alg(0)9(0) = O(A™Y)
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for all N > 0, where a! = aqlag!. ..o, if @ = (a1, a9, ..., ay).
Suppose that f(z,y) = 2%y’ g(x,y) for some multi-indices  and 3 and for some
g € C>*(R?*"). Show that

/ Y (2. y) da dy = O\l 18D)
R2n

as A — oo.
Now let f be any function in C°(R?"), and let

If(A) = / e f(x,y) dr dy.
R2n
Show that I;(\) admits the asymptotic expansion
i*lozog £(0)

oy~ () S0 e,

[0

in the sense that for any integer N > 0 we have

A" ilolgege
- () 2 SE e - open,

|oe] <N

Hint: Use Taylor’s theorem, which states that for any f € C*°(R™) and any
N > 0 we have

f(Z): Z @'Yf(o)zy_i_ Z R»Yf<Z>Z’Y

|
!
[vI<N [v|=N

for some choice of functions R, f which are also smooth. Also note that since in
our case we have f € C°(R?"), there exist ¢, € C°°(R") which are identically
one near the origin such that f(x,y) = f(x,y)o(z)Y(y).
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