
MATH 218 PROBLEM SET 1

JOEY ZOU

The exercises in this problem set regard distribution theory and Fourier theory. They
can be completed with material covered up to the end of Week 2 (Lecture 4).

Problem 1: Let φ ∈ C∞c (U) where U ⊂ Rn is open. For h ∈ Rn, let

(1) τhφ(x) := φ(x− h).

Note that τhφ ∈ C∞c (U) as well if h is sufficiently small.

(a) For t > 0, let

φh,t =
φ− τthφ

t
.

Show, if t > 0 is sufficiently small, that φh,t ∈ C∞c (U) as well, and that

φh,t → h · ∇φ

as t→ 0+ in the topology of C∞c (U).
(b) Let u ∈ D′(Rn). For h ∈ Rn, let τhu be the distribution defined by

(τhu, φ) := (u, τ−hφ) for φ ∈ C∞c (Rn).

Show that if u ∈ C∞c (Rn), then this definition agrees with the definition in (1).
Moreover, for any u ∈ D′(Rn), if we let

uh,t =
u− τthu

t

for h ∈ Rn and t > 0, then show that uh,t → h · ∇u in the sense of distributions
(i.e. in the topology of D′(Rn)) as t→ 0+.

Problem 2: For a ∈ C with Re a > −1, define χa+ : R→ R by

χa+(x) =

{
xa

Γ(a+1)
x > 0

0 x ≤ 0

where Γ is the gamma function (this is a meromorphic function whose poles are at
0, −1, −2, . . . , and it satisfies Γ(1) = 1 and Γ(z + 1) = zΓ(z) for z away from the
poles). Recall as well that xa is defined as ea ln(x) for x > 0 and a ∈ C, where ln(x) is
real-valued for x > 0.

(a) Show that χa+ ∈ L1
loc(R) and χa+ = d

dx
χa+1

+ for any Re a > −1.
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(b) For n ∈ N, define χa+,n for Re a > −n as follows: define χa+,1 = χa+ as above, and
if χa+,n−1 is defined for all Re a > −n+ 1, define

χa+,n :=
d

dx
χa+1

+,n−1 for a > −n.

For any a ∈ C, show that χa+,n = χa+,n′ for any n, n′ > −Re a. Thus, for any
a ∈ C, we can define

(2) χa+ := χa+,n for any n > −Re a.

Note for a with Re a > −1 that this agrees with the original definition.
(c) Let a ∈ R. Show that χa+ (as defined in (2)) is homogeneous of degree a.
(d) For any φ ∈ C∞c (R), let fφ : C→ C be the function

fφ(a) = (χa+, φ)

where χa+ is defined in (2). Show that fφ is an entire analytic function.
(e) For any k ∈ N, show that

χ−k−1
+ = δ(k),

where δ(k) is the kth distributional derivative of the Dirac delta.
(f) If 0 /∈ supp φ and a is not a negative integer, show that

(χa+, φ) =

∫ ∞
0

1

Γ(a+ 1)
xaφ(x) dx.

Here, we interpret 1
Γ(a+1)

as the entire analytic function which agrees with 1/Γ

away from the poles of Γ (note in particular that this number equals 0 when a is
a negative integer). In particular, if a is not a negative integer, then away from 0
we have that χa+ is given by the same formula as before, while if a is a negative
integer the pairing gives zero, i.e. χa+ is supported only at 0 when a is a negative
integer.

Problem 3: This problem concerns extending homogeneous distributions on Rn\{0}
to distributions on Rn. See Section 3.2, particularly Theorem 3.2.3, of Hörmander’s
The Analysis of Linear Partial Differential Operators Vol. 1 [Hör90].

In this problem, a denotes a real number.

(a) Fix u ∈ D′(Rn\{0}) and φ ∈ C∞c (Rn\{0}). Consider the function f(t) =
(u, φ(tx)) for t ∈ R. Show that

f ′(1) =

(
u,

n∑
i=1

xi∂iφ

)
.

(b) Suppose that u ∈ D′(Rn\{0}) is homogeneous of degree a. Show that(
u,

n∑
i=1

xi∂iφ

)
+ (a+ n)(u, φ) = 0

for any φ ∈ C∞c (Rn\{0}).
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(c) Suppose ψ ∈ C∞c (Rn\{0}) satisfies∫ ∞
0

ra+n−1ψ(rω) dr = 0 for all ω ∈ Sn−1.

Let φ : Rn\{0} → C be defined in polar coordinates by

φ(rω) = r−(a+n)

∫ r

0

sa+n−1ψ(sω) ds.

Show that φ ∈ C∞c (Rn\{0}), and
∑n

i=1 xi∂iφ + (a + n)φ = ψ. Conclude that
(u, ψ) = 0 for all distributions u ∈ D′(Rn\{0}) homogeneous of degree a.

We now assume either a > −n or a 6∈ Z. We now show that distributions on Rn\{0}
which are homogeneous of degree a where can be extended to Rn. Let xa+ = Γ(a+1)χa+,
where χa+ is defined in (2). Note that xa+ restricted to R\{0} equals xa for x > 0 and
0 for x < 0.

(d) For φ ∈ C∞c (Rn), define

(Raφ)(y) = (xa+n−1
+ , φ(xy))R for y ∈ Rn\{0}.

Show that Raφ ∈ C∞(Rn\{0}) and that Raφ is homogeneous of degree −n− a.
(e) Suppose φ1, φ2 ∈ C∞c (Rn\{0}), and Raφ1 = Raφ2 on Rn\{0}. Show that (u, φ1) =

(u, φ2) for all distributions u ∈ D′(Rn\{0}) homogeneous of degree a.
(f) Let ψ ∈ C∞c ((0,∞)) satisfy ∫ ∞

0

ψ(t)
dt

t
= 1.

For φ ∈ C∞c (Rn) (not necessarily supported away from zero), show that ψ(|x|)Raφ(x) ∈
C∞c (Rn\{0}), and Ra(ψ(|x|)Raφ)(x) = (Raφ)(x) for all x ∈ Rn\{0}. Conclude
that if φ is supported away from zero, then

(u, ψ(|x|)Raφ) = (u, φ)

for all distributions u ∈ D′(Rn\{0}) homogeneous of degree a.
(g) Given u ∈ D′(Rn\{0}) homogeneous of degree a, let ũ be the distribution on Rn

defined by
(ũ, φ) := (u, ψ(|x|)Raφ).

Show that ũ is indeed a distribution on Rn whose restriction to Rn\{0} is u.

Problem 4: Let ϕ ∈ C∞c (Rn) satisfy
∫
Rn ϕ(x) dx = 1, and for ε > 0 let ϕε(x) =

ε−nϕ(x/ε).

(a) Show that ϕε converges to δ in the sense of distributions as ε→ 0+.
(b) Show that |ϕε|2 does not converge in the sense of distributions.

Upshot : There does not exist an operator D′(Rn) × D′(Rn) → D′(Rn) which
extends the notion of pointwise multiplication (say defined initially on C∞c (Rn)×
C∞c (Rn)) which is also continuous onD′(Rn)×D′(Rn), since we can find a sequence
ϕn in C∞c (Rn) converging to δ in D′(Rn) such that ϕn · ϕn does not converge.
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Problem 5:

(a) Suppose f : Rn → R is a smooth function such that ∇f(x) 6= 0 when f(x) = 0.
Note then that f−1(0) is a smooth codimension 1 submanifold of Rn, i.e. a
hypersurface. Show that

δ(f) =
dS

|∇f |
,

where dS is the Euclidean surface measure on the f−1(0).
(b) With f as in part (a), let Ω = {f > 0}, and let u = 1Ω be the indicator function

of Ω. Let φj ∈ C∞c (Rn), 1 ≤ j ≤ n, and φ = (φ1, . . . , φn). Show that
n∑
j=1

(∂ju, φj) = (δ(f), φ · ∇f).

Problem 6: Let a : Rn+1
ξ,τ \{0} → C and H : Rn+1

x,t → R be defined by

a(ξ, τ) =
1

|ξ|2 + iτ

and

H(x, t) =

{
(4πt)−n/2e−|x|

2/4t t > 0

0 t ≤ 0
.

Here, |.| is the norm on Rn.

(a) Show that a and H are both locally integrable on Rn+1, and furthermore that
they define tempered distributions, i.e. a ∈ S ′(Rn+1

ξ,τ ) and H ∈ S ′(Rn+1
x,t ).

(b) Show that the Fourier transform of H equals a.

Problem 7:

(a) Let H(x) = 1{x>0} be the Heaviside function. Show that the Fourier transform
of f : R→ R, f(x) = e−εxH(x) (where ε > 0) is given by

f̂(ξ) =
1

iξ + ε
.

(b) Conversely, show by direct computation (i.e. without invoking the Fourier Inver-
sion formula and part (a)) that the inverse Fourier transform of g(ξ) = 1

iξ+ε
is

f(x) defined in part (a). (Hint : First show that if gR(ξ) = 1[−R,R](ξ)g(ξ), then
gR → g in S ′(R). To compute the inverse Fourier transform of gR, you need to
evaluate the integral

1

2π

∫ R

−R

eixξ

iξ + ε
dξ.

This integral, or rather its limit/asymptotics as R→∞, can be evaluated using
contour integration, by taking a semicircular contour with the semicircle lying
either in the upper or lower half plane, chosen appropriately so that the exponen-
tial factor eixξ is exponentially decaying and not growing in that half plane.)
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Problem 8: Recall that the distributions (x± i0)−1 on R are defined by

φ 7→ lim
ε→0+

∫
R

φ(x)

x± iε
dx.

(a) Show that the limit on the RHS does indeed exist for any φ ∈ C∞c (R).
(b) Show that

(x− i0)−1 − (x+ i0)−1 = 2πiδ0.

(c) Compute the Fourier transforms of (x± i0)−1.

Problem 9: For n ≥ 3, consider the distribution

u = δ

(
x2
n −

n−1∑
i=1

x2
i

)
.

This is a distribution of order −2 well-defined on Rn\{0}, so by Problem 3 there is a
unique way to extend this to a homogeneous distribution of order −2 defined on Rn

when n ≥ 3.
Show that u ∈ S ′(Rn), and compute its Fourier transform in the case n = 4.

Problem 10: The purpose of this problem is to derive the stationary phase lemma
for the particular quadratic phase function (x, y) 7→ x · y on R2n using the Fourier
inversion formula. See Theorem 7.7.3 of Hörmander’s The Analysis of Linear Par-
tial Differential Operators Vol. 1 [Hör90] for the most general version of quadratic
stationary phase, as well as generalizations to non-quadratic phase functions.

For n ∈ N, we view R2n = Rn × Rn, with coordinates (x, y) where x, y ∈ Rn.

(a) Let φ, ψ ∈ C∞c (Rn). For λ > 0, consider the integral

I(λ) =

∫
R2n

eiλx·yφ(x)ψ(y) dx dy.

Show that λnI(λ) → (2π)nφ(0)ψ(0) as λ → +∞. Furthermore, show that if
φ ∈ C∞c (Rn) is constant in a neighborhood of the origin, then

λnI(λ)− (2π)nφ(0)ψ(0) = O(λ−N)

as λ→ +∞ for any N > 0. (Hint : show that I(λ) equals

1

λn

∫
Rn

φ(−ξ/λ)ψ̂(ξ) dξ

by making the substitution ξ = −λx.)
(b) Suppose φ, ψ ∈ C∞c (Rn) are constant in a neighborhood of the origin. For multi-

indices α, β, let

Iα,β(λ) =

∫
R2n

eiλxyxαyβφ(x)ψ(y) dx dy.

Show that if α 6= β, then Iα,β(λ) = O(λ−N) for all N > 0. In addition, show that

i−|α|λ|α|+nIα,α(λ)− (2π)nα!φ(0)ψ(0) = O(λ−N)
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for all N > 0, where α! = α1!α2! . . . αn! if α = (α1, α2, . . . , αn).
(c) Suppose that f(x, y) = xαyβg(x, y) for some multi-indices α and β and for some

g ∈ C∞c (R2n). Show that∫
R2n

eiλx·yf(x, y) dx dy = O(λ−n−max(|α|,|β|))

as λ→∞.
(d) Now let f be any function in C∞c (R2n), and let

If (λ) =

∫
R2n

eiλx·yf(x, y) dx dy.

Show that If (λ) admits the asymptotic expansion

If (λ) ∼
(

2π

λ

)n∑
α

i|α|∂αx∂
α
y f(0)

α!
λ−|α|,

in the sense that for any integer N > 0 we have∣∣∣∣∣∣If (λ)−
(

2π

λ

)n ∑
|α|<N

i|α|∂αx∂
α
y f(0)

α!
λ−|α|

∣∣∣∣∣∣ = O(λ−n−N).

Hint : Use Taylor’s theorem, which states that for any f ∈ C∞(Rm) and any
N > 0 we have

f(z) =
∑
|γ|<N

∂γf(0)

γ!
zγ +

∑
|γ|=N

Rγf(z)zγ

for some choice of functions Rγf which are also smooth. Also note that since in
our case we have f ∈ C∞c (R2n), there exist φ, ψ ∈ C∞c (Rn) which are identically
one near the origin such that f(x, y) = f(x, y)φ(x)ψ(y).
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