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Problem 1: Recall that for s ∈ R we have

Hs(Rn) =
{
u ∈ S ′(Rn) : (1 + |ξ|2)s/2û ∈ L2(Rn)

}
.

(a) Let u ∈ E ′(Rn), i.e. u is a compactly supported distribution. Show that there
exists s ∈ R such that u ∈ Hs(Rn).

(b) Let u ∈ Hs(Rn) and χ ∈ C∞c (Rn). Show that χu ∈ Hs(Rn).
(c) Show that S(Rn) ( ∩s∈RHs(Rn) ( C∞(Rn).

Problem 2: For u ∈ D′(Rn), we say that u ∈ Hs
loc(Rn) (for some s ∈ R) if χu ∈

Hs(Rn) for all χ ∈ C∞c (Rn).

(a) Suppose v ∈ E ′(Rn+1
t,x ) satisfies the property that

(∂t −∆)v = v0 +
n∑
i=1

∂xiv
i

for some distributions v0, v1, . . . , vn ∈ D′(Rn+1
t,x ), such that for some s we have

v0 ∈ Hs−1(Rn+1), vi ∈ Hs−1/2(Rn+1) for 1 ≤ i ≤ n.

Show that v ∈ Hs(Rn+1). (Hint : because v is compactly supported, it suffices to
make an estimate on v̂(τ, ξ) when |(τ, ξ)| is large. You may find it useful to note
that ||ξ|2 + iτ | ≥ max(|ξ|2, |τ |).)

(b) Suppose u ∈ D′(Rn+1
t,x ) satisfies the property that

(∂t −∆)u ∈ Hs0
loc(R

n+1).

Show that u ∈ Hs0+1
loc (Rn+1). (Hint : For a fixed bounded set U ⊂ Rn+1, first

show, without knowing anything about u ∈ D′(Rn+1), that there exists some
fixed s′ such that χu ∈ Hs′(Rn+1) for all χ ∈ C∞c (U). Then, use the assumption
on (∂t −∆)u to show by induction that if

χu ∈ Hs(Rn+1) for all χ ∈ C∞c (U),

then

χu ∈ Hmin(s+1/2,s0+1)(Rn+1) for all χ ∈ C∞c (U).

Do so by rewriting (∂t −∆)(χu) for χ ∈ C∞c (U) in terms of sums of derivatives
of other functions in C∞c (U) times derivatives of u.)

(c) Suppose u is a distributional solution to the heat equation (∂t −∆)u = 0 on all
of Rn+1

t,x . Show that u must be smooth on Rn+1
t,x .
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Problem 3: Recall that given a constant coefficient operator P on Rn+1
t,x , we say that

E ∈ D′(Rn) is a backward fundamental solution if PE = δ(0,0) and

supp E ⊆ {(t, x) ∈ Rn+1 : t ≤ 0}.

Show that there does not exist a backward fundamental solution for the heat operator
P = ∂t − ∆. (Hint : Let E+ be the forward fundamental solution derived in class.
Show that any backward fundamental solution E must satisfy E − E+ ∈ C∞(Rn+1).
Show that this is incompatible with the support condition on E.)

Problem 4: Verify directly that the fundamental solution E derived in class

E(t, x) =

{
(4πt)−n/2e−|x|

2/(4t) t > 0

0 t ≤ 0

satisfies (∂t −∆)E = δ(0,0). That is, verify that for any φ ∈ C∞c (Rn+1) we have∫
Rn+1

E(t, x)(−∂tφ−∆φ)(t, x) dx dt = φ(0, 0).

Problem 5: Let (aij)ni,j=1 be a positive-definite symmetric real-valued matrix, and

consider the constant-coefficient differential operator on Rn+1
t,x

P = ∂t −
n∑

i,j=1

aij∂xi∂xj .

Find a formula for (a) forward fundamental solution of P .

Problem 6: Let g ∈ C∞(R), and consider the power series

u(t, x) =
∞∑
n=0

gn(t)
x2n

(2n)!
(x ∈ R).

(a) Suppose for each t there exist constants Ct, C
′
t > 0 such that

|gn(t)| ≤ Ct(C
′
t)
kk!.

Show then that the power series defines a smooth function u(t, x) which solves
the heat equation.

(b) For a > 0, let g(t) =

{
e−1/t

a
t > 0

0 t ≤ 0
. Show that g satisfies the assumptions of

part (a), so that in particular the power series defines a nonzero smooth solution
u(t, x) of the heat equation which nonetheless satisfies u(0, x) = 0 for all x ∈ R.
(This shows the Cauchy problem for the heat equation does not have a unique
solution among the space of all smooth functions.)
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(c) Bonus: Show that |u(t, x)| ≤ Cec|x|
2a/(a−1)

for some C, c > 0. (Note that the ex-
ponent of |x| is always larger than 2 and tends towards 2 as a→ +∞; this shows

that the growth condition |u(t, x)| ≤ Cec|x|
2

needed to guarantee uniqueness is
sharp in the exponent of |x| in the exponential.)

Problem 7: Let U be either Rn or a bounded open set. Let u ∈ H2(U), and if U is
a bounded open set, make the additional assumption that u ∈ H1

0 (U) as well. Let

‖D2u‖2L2(U) :=
n∑

i,j=1

‖∂i∂ju‖2L2(U).

Show that
‖D2u‖L2(U) = ‖∆u‖L2(U).

Problem 8: Let U ⊂ Rn be a bounded open set. For u, v ∈ H1
0 (U), and aij, bi, c ∈

L∞(U) (1 ≤ i ≤ n, 1 ≤ j ≤ n), with aij satisfying
n∑

i,j=1

aij(x)ξiξj ≥ θ|ξ|2 for all ξ ∈ Rn

for some θ > 0 (with the estimate holding uniformly for all x), let

B[u, v] =

∫
U

n∑
i,j=1

aij(x)∂xiu(x)∂xiv(x) +
n∑
i=1

bi(x)∂xiu(x)v(x) + c(x)u(x)v(x) dx.

Show the upper and lower bounds

|B[u, v]| ≤ α‖u‖H1
0 (U)‖v‖H1

0 (U)

and
B[u, u] ≥ β‖u‖2H1

0 (U) − γ‖u‖
2
L2(U)

for some α, β > 0 and γ ≥ 0. Express α, β, and γ in terms of relevant estimates on
the coefficients aij, bi, and c.

Problem 9: Let

L = −
n∑

i,j=1

aij(x)∂xi∂xj +
n∑
i=1

bi(x)∂xi + c(x)

where aij, bi, c ∈ C∞(Rn), and aij satisfies elliptic estimates
n∑

i,j=1

aij(x)ξiξj ≥ θ|ξ|2, θ > 0

uniformly on Rn. Suppose u ∈ L2(Rn+1) is compactly supported, say with support
in (0, T )× U for some bounded open set U . Let

f = ∂tu+ Lu.
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Suppose f , initially well-defined as a distribution in D′((0, T ) × U), is in fact in
L2((0, T )× U).

Fix ρ ∈ C∞c (R) with ρ ≥ 0 and
∫
R ρ = 1, and let ρε(s) = ε−1ρ(s/ε). Viewing u as

a function in L2((0, T );L2(U)), let uε = u ∗t ρε be the time convolution of u with ρε,
i.e.

uε(t) =

∫
R
ρε(s)u(t− s) ds.

Note that uε is also supported in (0, T ) × U if ε is sufficiently small; furthermore
uε → u as ε→ 0+ in L2((0, T )× U).

(a) Show that uε is a weak solution (as defined in class) to the problem

∂tuε − Luε = fε in (0, T )× U, uε(0, x) = 0 on U

for all sufficiently small ε > 0, where fε = f ∗t ρε. (Hint : the main difficulty is
showing that uε ∈ L2([0, T ];H1

0 (U)), in particular that uε(t) has H1 regularity
for (almost) every t. To do so, you may use elliptic estimates, such as those in
[Eva10] Section 6.3; you may take for granted that all constants in the elliptic
estimates are continuous with respect to the C∞ topology on the coefficients in
question.)

(b) Show that

‖uε‖H1((0,T )×U)

is uniformly bounded as ε→ 0+.
(c) Conclude that u is also in H1((0, T )× U), and that u is a weak solution to

∂tu− Lu = f in (0, T )× U, u(0, x) = 0 on U.

(In particular, u enjoys all of the regularity estimates derived in class.)

Problem 10: This problem regards deriving the expansion for heat kernels on com-
pact manifolds M by finding a sequence uj ∈ C∞(M ×M) such that

(∂t − (∆g)x)

(
p0(t, x, y)

k∑
j=0

tjuj(x, y)

)
∈ p0tkC∞([0,∞)×M ×M).

You may take for granted that there exists ε > 0 (known as the “injectivity radius”)
such that, for every y ∈M , the map

(0, ε)× Sn−1 →M, (r, ω) 7→ expy(rω)

is a diffeomorphism between (0, ε)× Sn−1 and a punctured neighborhood of y in M ;
in particular (r, ω) provide “geodesic polar coordinates” on M near y. Furthermore,
we have dg(expy(rω), y) = r, and under these geodesic polar coordinates we have

det g(r, θ) = r2(n−1)D(expy(r, ω), y)
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for all 0 < r < ε, where D(x, y) ∈ C∞(M × M) and D(y, y) = 1 for all y ∈ M ,
with (∆g)xD(y, y) = −1

3
S(y) where S is the scalar curvature at y, and the Laplace-

Beltrami operator takes the form

∆g = ∂2r +

(
∂r(
√
D)

D
+
n− 1

r

)
∂r + ∆g

Sn−1
y (r)

,

where ∆g
Sn−1
y (r)

is the Laplace-Beltrami operator corresponding to the metric induced

on the geodesic sphere of radius r centered at y (in particular it annihilates any
function depending on r only). (If you have some background in differential geometry,
you are welcome to verify these facts as well.)

Let

p0(t, x, y) =
1

(4πt)n/2
e−dg(x,y)

2/(4t).

Note that under geodesic polar coordinates we have p0 = (4πt)−n/2e−r
2/(4t).

(a) Show that if v ∈ C∞(M ×M), then for any j ≥ 0 we have1

(∂t − (∆g)x)
(
p0t

jv(x, y)
)

=

[
tj−1

((
j +

r

2

∂rD

D

)
v + r∂rv

)
− tj(∆g)xv

]
p0.

Conclude that if uj ∈ C∞(M ×M) satisfy the recursive equations(
j +

r

2

∂rD

D

)
uj + r∂ruj = ∆uj−1

for j ≥ 0 (where by convention we set u−1 ≡ 0), then

(∂t − (∆g)x)

(
p0(t, x, y)α(dg(x, y))

k∑
j=0

tjuj(x, y)

)
∈ p0tkC∞([0,∞)×M ×M),

where α ∈ C∞c (R) is supported in r < ε and is identically 1 on r ≤ ε/2.
(b) By solving the recursive equation above for j = 0, show that

u0(x, y) = CD−1/2(x, y)

for some constant C for all (x, y) with dg(x, y) < ε. Show that if we insist on the
property

p0(t, x, y)α(dg(x, y))
k∑
j=0

tjuj(x, y)→ δy(x)

as t→ 0+, then (regardless of the choice of the other uj) we must have C = 1.
(c) By solving the recursive equation above for j = 1, show that

u1(y, y) = −1

2
(∆g)xD(y, y) =

1

6
S(y).

1In this expression, the ∂r derivatives are interpreted as acting on the left factor x, where the left
factor is given geodesic polar coordinates centered at y.
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