MATH 218 PROBLEM SET 2

JOEY ZOU

Problem 1: Recall that for $s \in \mathbb{R}$ we have

$$
H^{s}\left(\mathbb{R}^{n}\right)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right):\left(1+|\xi|^{2}\right)^{s / 2} \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)\right\}
$$

(a) Let $u \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$, i.e. u is a compactly supported distribution. Show that there exists $s \in \mathbb{R}$ such that $u \in H^{s}\left(\mathbb{R}^{n}\right)$.
(b) Let $u \in H^{s}\left(\mathbb{R}^{n}\right)$ and $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. Show that $\chi u \in H^{s}\left(\mathbb{R}^{n}\right)$.
(c) Show that $\mathcal{S}\left(\mathbb{R}^{n}\right) \subsetneq \cap_{s \in \mathbb{R}} H^{s}\left(\mathbb{R}^{n}\right) \subsetneq C^{\infty}\left(\mathbb{R}^{n}\right)$.

Problem 2: For $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$, we say that $u \in H_{\text {loc }}^{s}\left(\mathbb{R}^{n}\right)$ (for some $s \in \mathbb{R}$) if $\chi u \in$ $H^{s}\left(\mathbb{R}^{n}\right)$ for all $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$.
(a) Suppose $v \in \mathcal{E}^{\prime}\left(\mathbb{R}_{t, x}^{n+1}\right)$ satisfies the property that

$$
\left(\partial_{t}-\Delta\right) v=v^{0}+\sum_{i=1}^{n} \partial_{x_{i}} v^{i}
$$

for some distributions $v^{0}, v^{1}, \ldots, v^{n} \in \mathcal{D}^{\prime}\left(\mathbb{R}_{t, x}^{n+1}\right)$, such that for some s we have

$$
v^{0} \in H^{s-1}\left(\mathbb{R}^{n+1}\right), \quad v^{i} \in H^{s-1 / 2}\left(\mathbb{R}^{n+1}\right) \text { for } 1 \leq i \leq n
$$

Show that $v \in H^{s}\left(\mathbb{R}^{n+1}\right)$. (Hint: because v is compactly supported, it suffices to make an estimate on $\hat{v}(\tau, \xi)$ when $|(\tau, \xi)|$ is large. You may find it useful to note that $\left||\xi|^{2}+i \tau\right| \geq \max \left(|\xi|^{2},|\tau|\right)$.)
(b) Suppose $u \in \mathcal{D}^{\prime}\left(\mathbb{R}_{t, x}^{n+1}\right)$ satisfies the property that

$$
\left(\partial_{t}-\Delta\right) u \in H_{l o c}^{s_{0}}\left(\mathbb{R}^{n+1}\right)
$$

Show that $u \in H_{l o c}^{s_{0}+1}\left(\mathbb{R}^{n+1}\right)$. (Hint: For a fixed bounded set $U \subset \mathbb{R}^{n+1}$, first show, without knowing anything about $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n+1}\right)$, that there exists some fixed s^{\prime} such that $\chi u \in H^{s^{\prime}}\left(\mathbb{R}^{n+1}\right)$ for all $\chi \in C_{c}^{\infty}(U)$. Then, use the assumption on $\left(\partial_{t}-\Delta\right) u$ to show by induction that if

$$
\chi u \in H^{s}\left(\mathbb{R}^{n+1}\right) \text { for all } \chi \in C_{c}^{\infty}(U)
$$

then

$$
\chi u \in H^{\min \left(s+1 / 2, s_{0}+1\right)}\left(\mathbb{R}^{n+1}\right) \text { for all } \chi \in C_{c}^{\infty}(U)
$$

Do so by rewriting $\left(\partial_{t}-\Delta\right)(\chi u)$ for $\chi \in C_{c}^{\infty}(U)$ in terms of sums of derivatives of other functions in $C_{c}^{\infty}(U)$ times derivatives of u.)
(c) Suppose u is a distributional solution to the heat equation $\left(\partial_{t}-\Delta\right) u=0$ on all of $\mathbb{R}_{t, x}^{n+1}$. Show that u must be smooth on $\mathbb{R}_{t, x}^{n+1}$.

Problem 3: Recall that given a constant coefficient operator P on $\mathbb{R}_{t, x}^{n+1}$, we say that $E \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is a backward fundamental solution if $P E=\delta_{(0,0)}$ and

$$
\operatorname{supp} E \subseteq\left\{(t, x) \in \mathbb{R}^{n+1}: t \leq 0\right\}
$$

Show that there does not exist a backward fundamental solution for the heat operator $P=\partial_{t}-\Delta$. (Hint: Let E_{+}be the forward fundamental solution derived in class. Show that any backward fundamental solution E must satisfy $E-E_{+} \in C^{\infty}\left(\mathbb{R}^{n+1}\right)$. Show that this is incompatible with the support condition on E.)

Problem 4: Verify directly that the fundamental solution E derived in class

$$
E(t, x)= \begin{cases}(4 \pi t)^{-n / 2} e^{-|x|^{2} /(4 t)} & t>0 \\ 0 & t \leq 0\end{cases}
$$

satisfies $\left(\partial_{t}-\Delta\right) E=\delta_{(0,0)}$. That is, verify that for any $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n+1}\right)$ we have

$$
\int_{\mathbb{R}^{n+1}} E(t, x)\left(-\partial_{t} \phi-\Delta \phi\right)(t, x) d x d t=\phi(0,0)
$$

Problem 5: Let $\left(a^{i j}\right)_{i, j=1}^{n}$ be a positive-definite symmetric real-valued matrix, and consider the constant-coefficient differential operator on $\mathbb{R}_{t, x}^{n+1}$

$$
P=\partial_{t}-\sum_{i, j=1}^{n} a^{i j} \partial_{x_{i}} \partial_{x_{j}}
$$

Find a formula for (a) forward fundamental solution of P.
Problem 6: Let $g \in C^{\infty}(\mathbb{R})$, and consider the power series

$$
u(t, x)=\sum_{n=0}^{\infty} g^{n}(t) \frac{x^{2 n}}{(2 n)!} \quad(x \in \mathbb{R})
$$

(a) Suppose for each t there exist constants $C_{t}, C_{t}^{\prime}>0$ such that

$$
\left|g^{n}(t)\right| \leq C_{t}\left(C_{t}^{\prime}\right)^{k} k!
$$

Show then that the power series defines a smooth function $u(t, x)$ which solves the heat equation.
(b) For $a>0$, let $g(t)=\left\{\begin{array}{ll}e^{-1 / t^{a}} & t>0 \\ 0 & t \leq 0\end{array}\right.$. Show that g satisfies the assumptions of part (a), so that in particular the power series defines a nonzero smooth solution $u(t, x)$ of the heat equation which nonetheless satisfies $u(0, x)=0$ for all $x \in \mathbb{R}$. (This shows the Cauchy problem for the heat equation does not have a unique solution among the space of all smooth functions.)
(c) Bonus: Show that $|u(t, x)| \leq C e^{c|x|^{2 a /(a-1)}}$ for some $C, c>0$. (Note that the exponent of $|x|$ is always larger than 2 and tends towards 2 as $a \rightarrow+\infty$; this shows that the growth condition $|u(t, x)| \leq C e^{c|x|^{2}}$ needed to guarantee uniqueness is sharp in the exponent of $|x|$ in the exponential.)

Problem 7: Let U be either \mathbb{R}^{n} or a bounded open set. Let $u \in H^{2}(U)$, and if U is a bounded open set, make the additional assumption that $u \in H_{0}^{1}(U)$ as well. Let

$$
\left\|D^{2} u\right\|_{L^{2}(U)}^{2}:=\sum_{i, j=1}^{n}\left\|\partial_{i} \partial_{j} u\right\|_{L^{2}(U)}^{2}
$$

Show that

$$
\left\|D^{2} u\right\|_{L^{2}(U)}=\|\Delta u\|_{L^{2}(U)}
$$

Problem 8: Let $U \subset \mathbb{R}^{n}$ be a bounded open set. For $u, v \in H_{0}^{1}(U)$, and $a^{i j}, b^{i}, c \in$ $L^{\infty}(U)(1 \leq i \leq n, 1 \leq j \leq n)$, with $a^{i j}$ satisfying

$$
\sum_{i, j=1}^{n} a^{i j}(x) \xi_{i} \xi_{j} \geq \theta|\xi|^{2} \text { for all } \xi \in \mathbb{R}^{n}
$$

for some $\theta>0$ (with the estimate holding uniformly for all x), let

$$
B[u, v]=\int_{U} \sum_{i, j=1}^{n} a^{i j}(x) \partial_{x_{i}} u(x) \partial_{x_{i}} v(x)+\sum_{i=1}^{n} b^{i}(x) \partial_{x_{i}} u(x) v(x)+c(x) u(x) v(x) d x
$$

Show the upper and lower bounds

$$
|B[u, v]| \leq \alpha\|u\|_{H_{0}^{1}(U)}\|v\|_{H_{0}^{1}(U)}
$$

and

$$
B[u, u] \geq \beta\|u\|_{H_{0}^{1}(U)}^{2}-\gamma\|u\|_{L^{2}(U)}^{2}
$$

for some $\alpha, \beta>0$ and $\gamma \geq 0$. Express α, β, and γ in terms of relevant estimates on the coefficients $a^{i j}, b^{i}$, and c.

Problem 9: Let

$$
L=-\sum_{i, j=1}^{n} a^{i j}(x) \partial_{x_{i}} \partial_{x_{j}}+\sum_{i=1}^{n} b^{i}(x) \partial_{x_{i}}+c(x)
$$

where $a^{i j}, b^{i}, c \in C^{\infty}\left(\mathbb{R}^{n}\right)$, and $a^{i j}$ satisfies elliptic estimates

$$
\sum_{i, j=1}^{n} a^{i j}(x) \xi_{i} \xi_{j} \geq \theta|\xi|^{2}, \quad \theta>0
$$

uniformly on \mathbb{R}^{n}. Suppose $u \in L^{2}\left(\mathbb{R}^{n+1}\right)$ is compactly supported, say with support in $(0, T) \times U$ for some bounded open set U. Let

$$
f=\partial_{t} u+L u
$$

Suppose f, initially well-defined as a distribution in $\mathcal{D}^{\prime}((0, T) \times U)$, is in fact in $L^{2}((0, T) \times U)$.

Fix $\rho \in C_{c}^{\infty}(\mathbb{R})$ with $\rho \geq 0$ and $\int_{\mathbb{R}} \rho=1$, and let $\rho_{\epsilon}(s)=\epsilon^{-1} \rho(s / \epsilon)$. Viewing u as a function in $L^{2}\left((0, T) ; L^{2}(U)\right)$, let $u_{\epsilon}=u *_{t} \rho_{\epsilon}$ be the time convolution of u with ρ_{ϵ}, i.e.

$$
u_{\epsilon}(t)=\int_{\mathbb{R}} \rho_{\epsilon}(s) u(t-s) d s
$$

Note that u_{ϵ} is also supported in $(0, T) \times U$ if ϵ is sufficiently small; furthermore $u_{\epsilon} \rightarrow u$ as $\epsilon \rightarrow 0^{+}$in $L^{2}((0, T) \times U)$.
(a) Show that u_{ϵ} is a weak solution (as defined in class) to the problem

$$
\partial_{t} u_{\epsilon}-L u_{\epsilon}=f_{\epsilon} \text { in }(0, T) \times U, \quad u_{\epsilon}(0, x)=0 \text { on } U
$$

for all sufficiently small $\epsilon>0$, where $f_{\epsilon}=f *_{t} \rho_{\epsilon}$. (Hint: the main difficulty is showing that $u_{\epsilon} \in L^{2}\left([0, T] ; H_{0}^{1}(U)\right)$, in particular that $u_{\epsilon}(t)$ has H^{1} regularity for (almost) every t. To do so, you may use elliptic estimates, such as those in Eva10 Section 6.3; you may take for granted that all constants in the elliptic estimates are continuous with respect to the C^{∞} topology on the coefficients in question.)
(b) Show that

$$
\left\|u_{\epsilon}\right\|_{H^{1}((0, T) \times U)}
$$

is uniformly bounded as $\epsilon \rightarrow 0^{+}$.
(c) Conclude that u is also in $H^{1}((0, T) \times U)$, and that u is a weak solution to

$$
\partial_{t} u-L u=f \text { in }(0, T) \times U, \quad u(0, x)=0 \text { on } U .
$$

(In particular, u enjoys all of the regularity estimates derived in class.)

Problem 10: This problem regards deriving the expansion for heat kernels on compact manifolds M by finding a sequence $u_{j} \in C^{\infty}(M \times M)$ such that

$$
\left(\partial_{t}-\left(\Delta_{g}\right)_{x}\right)\left(p_{0}(t, x, y) \sum_{j=0}^{k} t^{j} u_{j}(x, y)\right) \in p_{0} t^{k} C^{\infty}([0, \infty) \times M \times M)
$$

You may take for granted that there exists $\epsilon>0$ (known as the "injectivity radius") such that, for every $y \in M$, the map

$$
(0, \epsilon) \times \mathbb{S}^{n-1} \rightarrow M, \quad(r, \omega) \mapsto \exp _{y}(r \omega)
$$

is a diffeomorphism between $(0, \epsilon) \times \mathbb{S}^{n-1}$ and a punctured neighborhood of y in M; in particular (r, ω) provide "geodesic polar coordinates" on M near y. Furthermore, we have $d_{g}\left(\exp _{y}(r \omega), y\right)=r$, and under these geodesic polar coordinates we have

$$
\operatorname{det} g(r, \theta)=r^{2(n-1)} D\left(\exp _{y}(r, \omega), y\right)
$$

for all $0<r<\epsilon$, where $D(x, y) \in C^{\infty}(M \times M)$ and $D(y, y)=1$ for all $y \in M$, with $\left(\Delta_{g}\right)_{x} D(y, y)=-\frac{1}{3} S(y)$ where S is the scalar curvature at y, and the LaplaceBeltrami operator takes the form

$$
\Delta_{g}=\partial_{r}^{2}+\left(\frac{\partial_{r}(\sqrt{D})}{D}+\frac{n-1}{r}\right) \partial_{r}+\Delta_{g_{S_{y}^{n-1}(r)}}
$$

where $\Delta_{S_{S_{y}^{n-1}(r)}}$ is the Laplace-Beltrami operator corresponding to the metric induced on the geodesic sphere of radius r centered at y (in particular it annihilates any function depending on r only). (If you have some background in differential geometry, you are welcome to verify these facts as well.)

Let

$$
p_{0}(t, x, y)=\frac{1}{(4 \pi t)^{n / 2}} e^{-d_{g}(x, y)^{2} /(4 t)}
$$

Note that under geodesic polar coordinates we have $p_{0}=(4 \pi t)^{-n / 2} e^{-r^{2} /(4 t)}$.
(a) Show that if $v \in C^{\infty}(M \times M)$, then for any $j \geq 0$ we have ${ }^{1}$

$$
\left(\partial_{t}-\left(\Delta_{g}\right)_{x}\right)\left(p_{0} t^{j} v(x, y)\right)=\left[t^{j-1}\left(\left(j+\frac{r}{2} \frac{\partial_{r} D}{D}\right) v+r \partial_{r} v\right)-t^{j}\left(\Delta_{g}\right)_{x} v\right] p_{0}
$$

Conclude that if $u_{j} \in C^{\infty}(M \times M)$ satisfy the recursive equations

$$
\left(j+\frac{r}{2} \frac{\partial_{r} D}{D}\right) u_{j}+r \partial_{r} u_{j}=\Delta u_{j-1}
$$

for $j \geq 0$ (where by convention we set $u_{-1} \equiv 0$), then

$$
\left(\partial_{t}-\left(\Delta_{g}\right)_{x}\right)\left(p_{0}(t, x, y) \alpha\left(d_{g}(x, y)\right) \sum_{j=0}^{k} t^{j} u_{j}(x, y)\right) \in p_{0} t^{k} C^{\infty}([0, \infty) \times M \times M)
$$

where $\alpha \in C_{c}^{\infty}(\mathbb{R})$ is supported in $r<\epsilon$ and is identically 1 on $r \leq \epsilon / 2$.
(b) By solving the recursive equation above for $j=0$, show that

$$
u_{0}(x, y)=C D^{-1 / 2}(x, y)
$$

for some constant C for all (x, y) with $d_{g}(x, y)<\epsilon$. Show that if we insist on the property

$$
p_{0}(t, x, y) \alpha\left(d_{g}(x, y)\right) \sum_{j=0}^{k} t^{j} u_{j}(x, y) \rightarrow \delta_{y}(x)
$$

as $t \rightarrow 0^{+}$, then (regardless of the choice of the other u_{j}) we must have $C=1$.
(c) By solving the recursive equation above for $j=1$, show that

$$
u_{1}(y, y)=-\frac{1}{2}\left(\Delta_{g}\right)_{x} D(y, y)=\frac{1}{6} S(y) .
$$

[^0]
References

[Eva10] Lawrence C. Evans. Partial Differential Equations. American Mathematical Society, 2nd edition, 2010.

[^0]: ${ }^{1}$ In this expression, the ∂_{r} derivatives are interpreted as acting on the left factor x, where the left factor is given geodesic polar coordinates centered at y.

