MATH 218 PROBLEM SET 2

JOEY ZOU

Problem 1: Recall that for s € R we have
H*(R") = {ue SR : (1+|¢*)*0e L*R")}.

(a) Let u € &' (R™), i.e. u is a compactly supported distribution. Show that there
exists s € R such that v € H*(R™).

(b) Let u € H*(R") and x € C°(R™). Show that xu € H*(R").

(c) Show that S(R") C NgerH*(R™) C C(R").

Problem 2: For u € D'(R"), we say that u € H}
H*(R™) for all x € C(R™).
(a) Suppose v € &'(R}F!) satisfies the property that

(R™) (for some s € R) if yu €

(0 — A)yv =" + Z Oy, V"
i=1

for some distributions %, v, ..., v" € D'(R};"), such that for some s we have

v’ e HYR™Y), ot € HY2(RYY) for 1 <i < n.

Show that v € H*(R"™!). (Hint: because v is compactly supported, it suffices to
make an estimate on v(7, &) when |(7,&)| is large. You may find it useful to note
that [|¢[* + i7| > max(|¢]?, |7]).)
(b) Suppose u € D'(R}}") satisfies the property that
(0 — A)u € H° (R™1).

loc

Show that u € H;°t'(R"). (Hint: For a fixed bounded set U C R™!, first
show, without knowing anything about u € D’(R"™!), that there exists some
fixed s’ such that yu € H* (R"*') for all x € C>°(U). Then, use the assumption

on (0 — A)u to show by induction that if
xu € H*(R"™) for all y € C=(U),
then
xu € HmineH/Zsot )Rty for all y € CX(U).

Do so by rewriting (0; — A)(xu) for x € C°(U) in terms of sums of derivatives
of other functions in C°(U) times derivatives of u.)

(c) Suppose u is a distributional solution to the heat equation (0; — A)u = 0 on all
of RZII. Show that v must be smooth on RZ;I.
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Problem 3: Recall that given a constant coefficient operator P on ]RZ;H, we say that
E € D'(R") is a backward fundamental solution if PE = §(g ) and

supp E C {(t,r) € R"™ : ¢t <0}.

Show that there does not exist a backward fundamental solution for the heat operator
P =0, — A. (Hint: Let E, be the forward fundamental solution derived in class.
Show that any backward fundamental solution F must satisfy £ — E, € C*°(R""!).
Show that this is incompatible with the support condition on E.)

Problem 4: Verify directly that the fundamental solution F derived in class

(dt)~"/2e~ e/ ¢ >
Bt z) = {0 t<0

satisfies (0, — A)E = d(0,0). That is, verify that for any ¢ € C2°(R"*!) we have

[ 00 - 80t 2y = 0,0)

Problem 5: Let (a*)};_, be a positive-definite symmetric real-valued matrix, and

consider the constant-coefficient differential operator on Rzgl

P=0 - i a"9,,0,,.

ij=1

Find a formula for (a) forward fundamental solution of P.

Problem 6: Let g € C*°(R), and consider the power series

xQn
)] (x € R).

u(t, z) = Zg”(t)(

(a) Suppose for each ¢ there exist constants Cy, Cj > 0 such that
lg"(t)] < Cu(Cp) k.

Show then that the power series defines a smooth function u(¢,z) which solves
the heat equation.

—1/t% t
(b) For a > 0, let g(t) = (6) ti?) Show that ¢ satisfies the assumptions of

part (a), so that in particular the power series defines a nonzero smooth solution
u(t, z) of the heat equation which nonetheless satisfies u(0,2) = 0 for all z € R.
(This shows the Cauchy problem for the heat equation does not have a unique
solution among the space of all smooth functions.)
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(c) Bonus: Show that |u(t,z)| < Cel® " for some C, ¢ > 0. (Note that the ex-
ponent of |z| is always larger than 2 and tends towards 2 as a — +00; this shows
that the growth condition |u(t,z)| < Ce*” needed to guarantee uniqueness is
sharp in the exponent of |z| in the exponential.)

Problem T7: Let U be either R or a bounded open set. Let v € H*(U), and if U is
a bounded open set, make the additional assumption that u € H}(U) as well. Let

”DZUHB(U Z HaaUHL2(U)

i,7=1

Show that
|1 D?ul| 12y = [|Aul| 2.

Problem 8: Let U C R™ be a bounded open set. For u,v € H}(U), and a¥, V', c €
L>®(U) (1<i<mn,1<j<n), with a” satisfying

n

> a"(2)&& > 0|¢) for all £ € R”

ij=1

for some 6 > 0 (with the estimate holding uniformly for all z), let

Blu, v] /Z Zb’ Jo(z) + c(x)u(x)v(z) de.

ij=1
Show the upper and lower bounds
| Blu,v]| < O‘HUHH(}(U)HUHH(}(U)
and
Blu,u] > Bl wy — YNulltzw,)
for some «, § > 0 and v > 0. Express a, B, and ~ in terms of relevant estimates on
the coefficients a, b, and c.

Problem 9: Let

n

L=-) a" axlaxﬁZb% )0y, + ()

2,7=1

where a¥”,b',c € C*(R"™), and a” satisfies elliptic estimates

n

> a¥(@)&& = 0, >0

ij=1
uniformly on R™. Suppose u € L?(R""!) is compactly supported, say with support
in (0,7) x U for some bounded open set U. Let
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Suppose f, initially well-defined as a distribution in D'((0,7") x U), is in fact in
£2((0,T7) x U).

Fix p € CZ(R) with p > 0 and [, p =1, and let pc(s) = € 'p(s/e). Viewing u as
a function in L2((0,7); L*(U)), let u. = u *; p. be the time convolution of u with p,,
ie.

ue(t) = /Rpe(s)u(t — 5)ds.

Note that wu, is also supported in (0,7) x U if € is sufficiently small; furthermore
ue —~wase— 07 in L2((0,T) x U).

(a) Show that u, is a weak solution (as defined in class) to the problem
Owue — Lue = fein (0,7) x U, u(0,2) =0on U

for all sufficiently small € > 0, where f. = f *; p.. (Hint: the main difficulty is
showing that u. € L*([0,T); Hi(U)), in particular that u.(t) has H' regularity
for (almost) every t. To do so, you may use elliptic estimates, such as those in
[EvalO] Section 6.3; you may take for granted that all constants in the elliptic
estimates are continuous with respect to the C* topology on the coefficients in
question.)

(b) Show that

HueHHl((O,T)xU)

is uniformly bounded as e — 0.
(c) Conclude that u is also in H'((0,7) x U), and that u is a weak solution to

Owu—Lu= fin (0,7) x U, u(0,z) =0 on U.

(In particular, u enjoys all of the regularity estimates derived in class.)

Problem 10: This problem regards deriving the expansion for heat kernels on com-
pact manifolds M by finding a sequence u; € C*°(M x M) such that

k

(0 — (Ay)2) (po(t,x,y) thuj(x,y)> € pot"C>(]0,00) x M x M).

j=0

You may take for granted that there exists € > 0 (known as the “injectivity radius”)
such that, for every y € M, the map

(0,¢) xS"' = M, (r,w)— exp,(rw)

is a diffeomorphism between (0,¢) x S"~! and a punctured neighborhood of y in M;
in particular (r,w) provide “geodesic polar coordinates” on M near y. Furthermore,
we have d,(exp,(rw),y) = r, and under these geodesic polar coordinates we have

det g(r,0) = r2(”’1)D(eXpy(r, w),y)
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for all 0 < r < ¢, where D(z,y) € C®°(M x M) and D(y,y) = 1 for all y € M,
with (Ay).D(y,y) = —35(y) where S is the scalar curvature at y, and the Laplace-
Beltrami operator takes the form

o-(VD) mn-—1
— 92 r
By =00+ ( D * r O + Ags{}’lm’

where Agsn_l( : is the Laplace-Beltrami operator corresponding to the metric induced
y s

on the geodesic sphere of radius r centered at y (in particular it annihilates any
function depending on r only). (If you have some background in differential geometry,
you are welcome to verify these facts as well.)

Let

—dy(ay)?/(4)

1
po(t,z,y) = W

Note that under geodesic polar coordinates we have py = (47t)~"/ 2¢—r/(41)
(a) Show that if v € C°°(M x M), then for any j > 0 we havd]

(0 — (D)) (pot?v(z, y)) = [tﬂ‘—l ((] + ga;)D > v+ r@rv) i (Ag)zv] Po.

Conclude that if u; € C°°(M x M) satisfy the recursive equations

0.D
<] + ! ) Uj + Taruj' = AU]',1

2 D

for j > 0 (where by convention we set u_; = 0), then

(@~ (A,).) (pou,x,y)a(dg(x,y» thuj<x,y>> € pot*C([0,00) x M x M),

where a € C2°(R) is supported in r < € and is identically 1 on r < ¢/2.
(b) By solving the recursive equation above for j = 0, show that

uo(z,y) = CD 1 (z,y)

for some constant C' for all (x,y) with dy(x,y) < e. Show that if we insist on the
property

k
po(t, Z, y)Oé(dg(I, y)) Z tjUj<J], y) — 5y($)

=0
as t — 07, then (regardless of the choice of the other u;) we must have C' = 1.
(c) By solving the recursive equation above for j = 1, show that

ur(y) = = 5(8,)eDly ) = (1),

n this expression, the 9, derivatives are interpreted as acting on the left factor z;, where the left
factor is given geodesic polar coordinates centered at y.
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