MATH 218 PROBLEM SET 2

JOEY ZOU

Problem 1: Recall that for $s \in \mathbb{R}$ we have

$$H^{s}(\mathbb{R}^{n}) = \left\{ u \in \mathcal{S}'(\mathbb{R}^{n}) : (1 + |\xi|^{2})^{s/2} \hat{u} \in L^{2}(\mathbb{R}^{n}) \right\}.$$

- (a) Let $u \in \mathcal{E}'(\mathbb{R}^n)$, i.e. u is a compactly supported distribution. Show that there exists $s \in \mathbb{R}$ such that $u \in H^s(\mathbb{R}^n)$.
- (b) Let $u \in H^s(\mathbb{R}^n)$ and $\chi \in C_c^{\infty}(\mathbb{R}^n)$. Show that $\chi u \in H^s(\mathbb{R}^n)$.
- (c) Show that $\mathcal{S}(\mathbb{R}^n) \subsetneq \bigcap_{s \in \mathbb{R}} H^s(\mathbb{R}^n) \subsetneq C^{\infty}(\mathbb{R}^n)$.

Problem 2: For $u \in \mathcal{D}'(\mathbb{R}^n)$, we say that $u \in H^s_{loc}(\mathbb{R}^n)$ (for some $s \in \mathbb{R}$) if $\chi u \in H^s(\mathbb{R}^n)$ for all $\chi \in C^{\infty}_c(\mathbb{R}^n)$.

(a) Suppose $v \in \mathcal{E}'(\mathbb{R}^{n+1}_{t,x})$ satisfies the property that

$$(\partial_t - \Delta)v = v^0 + \sum_{i=1}^n \partial_{x_i} v^i$$

for some distributions $v^0, v^1, \ldots, v^n \in \mathcal{D}'(\mathbb{R}^{n+1}_{t,x})$, such that for some s we have

 $v^0 \in H^{s-1}(\mathbb{R}^{n+1}), \quad v^i \in H^{s-1/2}(\mathbb{R}^{n+1}) \text{ for } 1 \le i \le n.$

Show that $v \in H^s(\mathbb{R}^{n+1})$. (*Hint*: because v is compactly supported, it suffices to make an estimate on $\hat{v}(\tau, \xi)$ when $|(\tau, \xi)|$ is large. You may find it useful to note that $||\xi|^2 + i\tau| \ge \max(|\xi|^2, |\tau|)$.)

(b) Suppose $u \in \mathcal{D}'(\mathbb{R}^{n+1}_{t,x})$ satisfies the property that

$$(\partial_t - \Delta)u \in H^{s_0}_{loc}(\mathbb{R}^{n+1}).$$

Show that $u \in H^{s_0+1}_{loc}(\mathbb{R}^{n+1})$. (*Hint*: For a fixed bounded set $U \subset \mathbb{R}^{n+1}$, first show, without knowing anything about $u \in \mathcal{D}'(\mathbb{R}^{n+1})$, that there exists some fixed s' such that $\chi u \in H^{s'}(\mathbb{R}^{n+1})$ for all $\chi \in C^{\infty}_{c}(U)$. Then, use the assumption on $(\partial_t - \Delta)u$ to show by induction that if

$$\chi u \in H^s(\mathbb{R}^{n+1})$$
 for all $\chi \in C_c^\infty(U)$,

then

$$\chi u \in H^{\min(s+1/2,s_0+1)}(\mathbb{R}^{n+1})$$
 for all $\chi \in C_c^{\infty}(U)$.

Do so by rewriting $(\partial_t - \Delta)(\chi u)$ for $\chi \in C_c^{\infty}(U)$ in terms of sums of derivatives of other functions in $C_c^{\infty}(U)$ times derivatives of u.)

(c) Suppose u is a distributional solution to the heat equation $(\partial_t - \Delta)u = 0$ on all of $\mathbb{R}^{n+1}_{t,x}$. Show that u must be smooth on $\mathbb{R}^{n+1}_{t,x}$.

JOEY ZOU

Problem 3: Recall that given a constant coefficient operator P on $\mathbb{R}^{n+1}_{t,x}$, we say that $E \in \mathcal{D}'(\mathbb{R}^n)$ is a *backward fundamental solution* if $PE = \delta_{(0,0)}$ and

$$\operatorname{supp} E \subseteq \{(t, x) \in \mathbb{R}^{n+1} : t \le 0\}.$$

Show that there does not exist a backward fundamental solution for the heat operator $P = \partial_t - \Delta$. (*Hint*: Let E_+ be the *forward* fundamental solution derived in class. Show that any backward fundamental solution E must satisfy $E - E_+ \in C^{\infty}(\mathbb{R}^{n+1})$. Show that this is incompatible with the support condition on E.)

Problem 4: Verify directly that the fundamental solution E derived in class

$$E(t,x) = \begin{cases} (4\pi t)^{-n/2} e^{-|x|^2/(4t)} & t > 0\\ 0 & t \le 0 \end{cases}$$

satisfies $(\partial_t - \Delta)E = \delta_{(0,0)}$. That is, verify that for any $\phi \in C_c^{\infty}(\mathbb{R}^{n+1})$ we have

$$\int_{\mathbb{R}^{n+1}} E(t,x)(-\partial_t \phi - \Delta \phi)(t,x) \, dx \, dt = \phi(0,0).$$

Problem 5: Let $(a^{ij})_{i,j=1}^n$ be a positive-definite symmetric real-valued matrix, and consider the constant-coefficient differential operator on $\mathbb{R}_{t,x}^{n+1}$

$$P = \partial_t - \sum_{i,j=1}^n a^{ij} \partial_{x_i} \partial_{x_j}.$$

Find a formula for (a) forward fundamental solution of P.

Problem 6: Let $g \in C^{\infty}(\mathbb{R})$, and consider the power series

$$u(t,x) = \sum_{n=0}^{\infty} g^n(t) \frac{x^{2n}}{(2n)!} \quad (x \in \mathbb{R}).$$

(a) Suppose for each t there exist constants $C_t, C'_t > 0$ such that

$$|g^n(t)| \le C_t (C'_t)^k k!$$

Show then that the power series defines a smooth function u(t, x) which solves the heat equation.

(b) For a > 0, let $g(t) = \begin{cases} e^{-1/t^a} & t > 0\\ 0 & t \le 0 \end{cases}$. Show that g satisfies the assumptions of part (a), so that in particular the power series defines a nonzero smooth solution

u(t, x) of the heat equation which nonetheless satisfies u(0, x) = 0 for all $x \in \mathbb{R}$. (This shows the Cauchy problem for the heat equation does not have a unique solution among the space of *all* smooth functions.) (c) **Bonus**: Show that $|u(t,x)| \leq Ce^{c|x|^{2a/(a-1)}}$ for some C, c > 0. (Note that the exponent of |x| is always larger than 2 and tends towards 2 as $a \to +\infty$; this shows that the growth condition $|u(t,x)| \leq Ce^{c|x|^2}$ needed to guarantee uniqueness is sharp in the exponent of |x| in the exponential.)

Problem 7: Let U be either \mathbb{R}^n or a bounded open set. Let $u \in H^2(U)$, and if U is a bounded open set, make the additional assumption that $u \in H^1_0(U)$ as well. Let

$$||D^{2}u||_{L^{2}(U)}^{2} := \sum_{i,j=1}^{n} ||\partial_{i}\partial_{j}u||_{L^{2}(U)}^{2}.$$

Show that

$$||D^2u||_{L^2(U)} = ||\Delta u||_{L^2(U)}.$$

Problem 8: Let $U \subset \mathbb{R}^n$ be a bounded open set. For $u, v \in H^1_0(U)$, and $a^{ij}, b^i, c \in L^{\infty}(U)$ $(1 \leq i \leq n, 1 \leq j \leq n)$, with a^{ij} satisfying

$$\sum_{i,j=1}^{n} a^{ij}(x)\xi_i\xi_j \ge \theta |\xi|^2 \text{ for all } \xi \in \mathbb{R}^n$$

for some $\theta > 0$ (with the estimate holding uniformly for all x), let

$$B[u,v] = \int_U \sum_{i,j=1}^n a^{ij}(x) \partial_{x_i} u(x) \partial_{x_i} v(x) + \sum_{i=1}^n b^i(x) \partial_{x_i} u(x) v(x) + c(x) u(x) v(x) \, dx.$$

Show the upper and lower bounds

$$|B[u,v]| \le \alpha ||u||_{H^1_0(U)} ||v||_{H^1_0(U)}$$

and

$$B[u, u] \ge \beta \|u\|_{H^1_0(U)}^2 - \gamma \|u\|_{L^2(U)}^2$$

for some $\alpha, \beta > 0$ and $\gamma \ge 0$. Express α, β , and γ in terms of relevant estimates on the coefficients a^{ij}, b^i , and c.

Problem 9: Let

$$L = -\sum_{i,j=1}^{n} a^{ij}(x)\partial_{x_i}\partial_{x_j} + \sum_{i=1}^{n} b^i(x)\partial_{x_i} + c(x)$$

where $a^{ij}, b^i, c \in C^{\infty}(\mathbb{R}^n)$, and a^{ij} satisfies elliptic estimates

$$\sum_{i,j=1}^{n} a^{ij}(x)\xi_i\xi_j \ge \theta |\xi|^2, \quad \theta > 0$$

uniformly on \mathbb{R}^n . Suppose $u \in L^2(\mathbb{R}^{n+1})$ is compactly supported, say with support in $(0,T) \times U$ for some bounded open set U. Let

$$f = \partial_t u + Lu.$$

JOEY ZOU

Suppose f, initially well-defined as a distribution in $\mathcal{D}'((0,T) \times U)$, is in fact in $L^2((0,T) \times U)$.

Fix $\rho \in C_c^{\infty}(\mathbb{R})$ with $\rho \geq 0$ and $\int_{\mathbb{R}} \rho = 1$, and let $\rho_{\epsilon}(s) = \epsilon^{-1}\rho(s/\epsilon)$. Viewing u as a function in $L^2((0,T); L^2(U))$, let $u_{\epsilon} = u *_t \rho_{\epsilon}$ be the time convolution of u with ρ_{ϵ} , i.e.

$$u_{\epsilon}(t) = \int_{\mathbb{R}} \rho_{\epsilon}(s) u(t-s) \, ds.$$

Note that u_{ϵ} is also supported in $(0,T) \times U$ if ϵ is sufficiently small; furthermore $u_{\epsilon} \to u$ as $\epsilon \to 0^+$ in $L^2((0,T) \times U)$.

(a) Show that u_{ϵ} is a weak solution (as defined in class) to the problem

$$\partial_t u_{\epsilon} - L u_{\epsilon} = f_{\epsilon} \text{ in } (0,T) \times U, \quad u_{\epsilon}(0,x) = 0 \text{ on } U$$

for all sufficiently small $\epsilon > 0$, where $f_{\epsilon} = f *_t \rho_{\epsilon}$. (*Hint*: the main difficulty is showing that $u_{\epsilon} \in L^2([0, T]; H_0^1(U))$, in particular that $u_{\epsilon}(t)$ has H^1 regularity for (almost) every t. To do so, you may use elliptic estimates, such as those in [Eva10] Section 6.3; you may take for granted that all constants in the elliptic estimates are continuous with respect to the C^{∞} topology on the coefficients in question.)

(b) Show that

 $\|u_{\epsilon}\|_{H^1((0,T)\times U)}$

is uniformly bounded as $\epsilon \to 0^+$.

(c) Conclude that u is also in $H^1((0,T) \times U)$, and that u is a weak solution to

 $\partial_t u - Lu = f$ in $(0, T) \times U$, u(0, x) = 0 on U.

(In particular, u enjoys all of the regularity estimates derived in class.)

Problem 10: This problem regards deriving the expansion for heat kernels on compact manifolds M by finding a sequence $u_j \in C^{\infty}(M \times M)$ such that

$$\left(\partial_t - (\Delta_g)_x\right) \left(p_0(t, x, y) \sum_{j=0}^k t^j u_j(x, y) \right) \in p_0 t^k C^\infty([0, \infty) \times M \times M).$$

You may take for granted that there exists $\epsilon > 0$ (known as the "injectivity radius") such that, for every $y \in M$, the map

$$(0,\epsilon) \times \mathbb{S}^{n-1} \to M, \quad (r,\omega) \mapsto \exp_v(r\omega)$$

is a diffeomorphism between $(0, \epsilon) \times \mathbb{S}^{n-1}$ and a punctured neighborhood of y in M; in particular (r, ω) provide "geodesic polar coordinates" on M near y. Furthermore, we have $d_g(\exp_y(r\omega), y) = r$, and under these geodesic polar coordinates we have

$$\det g(r,\theta) = r^{2(n-1)} D(\exp_y(r,\omega), y)$$

for all $0 < r < \epsilon$, where $D(x, y) \in C^{\infty}(M \times M)$ and D(y, y) = 1 for all $y \in M$, with $(\Delta_g)_x D(y, y) = -\frac{1}{3}S(y)$ where S is the scalar curvature at y, and the Laplace-Beltrami operator takes the form

$$\Delta_g = \partial_r^2 + \left(\frac{\partial_r(\sqrt{D})}{D} + \frac{n-1}{r}\right)\partial_r + \Delta_{g_{S_y^{n-1}(r)}}$$

where $\Delta_{g_{S_y^{n-1}(r)}}$ is the Laplace-Beltrami operator corresponding to the metric induced on the geodesic sphere of radius r centered at y (in particular it annihilates any function depending on r only). (If you have some background in differential geometry, you are welcome to verify these facts as well.)

Let

$$p_0(t, x, y) = \frac{1}{(4\pi t)^{n/2}} e^{-d_g(x,y)^2/(4t)}.$$

Note that under geodesic polar coordinates we have $p_0 = (4\pi t)^{-n/2} e^{-r^2/(4t)}$. (a) Show that if $v \in C^{\infty}(M \times M)$, then for any $j \ge 0$ we have¹

$$\left(\partial_t - (\Delta_g)_x\right)\left(p_0 t^j v(x,y)\right) = \left[t^{j-1}\left(\left(j + \frac{r}{2}\frac{\partial_r D}{D}\right)v + r\partial_r v\right) - t^j (\Delta_g)_x v\right] p_0.$$

Conclude that if $u_j \in C^{\infty}(M \times M)$ satisfy the recursive equations

$$\left(j + \frac{r}{2}\frac{\partial_r D}{D}\right)u_j + r\partial_r u_j = \Delta u_{j-1}$$

for $j \ge 0$ (where by convention we set $u_{-1} \equiv 0$), then

$$\left(\partial_t - (\Delta_g)_x\right) \left(p_0(t, x, y) \alpha(d_g(x, y)) \sum_{j=0}^k t^j u_j(x, y) \right) \in p_0 t^k C^\infty([0, \infty) \times M \times M),$$

where $\alpha \in C_c^{\infty}(\mathbb{R})$ is supported in $r < \epsilon$ and is identically 1 on $r \le \epsilon/2$.

(b) By solving the recursive equation above for j = 0, show that

$$u_0(x,y) = CD^{-1/2}(x,y)$$

for some constant C for all (x, y) with $d_g(x, y) < \epsilon$. Show that if we insist on the property

$$p_0(t, x, y)\alpha(d_g(x, y)) \sum_{j=0}^k t^j u_j(x, y) \to \delta_y(x)$$

as $t \to 0^+$, then (regardless of the choice of the other u_j) we must have C = 1. (c) By solving the recursive equation above for j = 1, show that

$$u_1(y,y) = -\frac{1}{2}(\Delta_g)_x D(y,y) = \frac{1}{6}S(y).$$

¹In this expression, the ∂_r derivatives are interpreted as acting on the left factor x, where the left factor is given geodesic polar coordinates centered at y.

JOEY ZOU

References

[Eva10] Lawrence C. Evans. *Partial Differential Equations*. American Mathematical Society, 2nd edition, 2010.