MATH 218 PROBLEM SET 3

JOEY ZOU

Problem 1:

(a) Suppose $u \in C\left(\mathbb{R}_{t} ; \mathcal{D}^{\prime}\left(\mathbb{R}_{x}^{n}\right)\right)$, i.e. for each $t \in \mathbb{R}$ we associate $u(t) \in \mathcal{D}^{\prime}\left(\mathbb{R}_{x}^{n}\right)$ such that $t \mapsto u(t)$ is continuous (w.r.t the topology on $\left.\mathcal{D}^{\prime}\left(\mathbb{R}_{x}^{n}\right)\right)$. Show that u defines a distribution on $\mathbb{R}_{t, x}^{n+1}$, via

$$
\phi \mapsto \int_{\mathbb{R}}(u(t), \phi(t, \cdot))_{\mathbb{R}^{n}} d t \text { for } \phi \in C_{c}^{\infty}\left(\mathbb{R}^{n+1}\right)
$$

(b) For $t \in \mathbb{R}$, define $E_{+}(t) \in \mathcal{D}^{\prime}\left(\mathbb{R}_{x}^{n}\right)$ by

$$
E_{+}(t)= \begin{cases}\mathcal{F}^{-1}\left(\frac{\sin (t|\xi|)}{|\xi|}\right) & t>0 \\ 0 & t \leq 0\end{cases}
$$

Show that $E_{+} \in C\left(\mathbb{R}_{t} ; \mathcal{D}^{\prime}\left(\mathbb{R}_{x}^{n}\right)\right)$, and that the corresponding distribution on \mathbb{R}^{n+1} is a fundamental solution to the wave operator $\partial_{t}^{2}-\Delta$.

Problem 2: Let $\left(a^{i j}\right)_{i, j=1}^{n}$ be a symmetric complex-valued matrix, and suppose $u \in$ $\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ satisfies the property that

$$
\sum_{i, j=1}^{n} a^{i j} \partial_{x_{i}} u \partial_{x_{j}} u \in C^{\infty}\left(\mathbb{R}^{n}\right)
$$

in the sense of distributions. Let $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}$ be a vector such that

$$
\sum_{i, j=1}^{n} a^{i j} \xi_{i} \xi_{j} \neq 0
$$

Let U be a bounded open set in \mathbb{R}^{n}. Show that, for every $\chi \in C_{c}^{\infty}(U)$ and $N>0$, there exists a constant $C_{\chi, N}$ such that

$$
|\widehat{\chi u}(\lambda \xi)| \leq C_{N} \lambda^{-N} \text { as } \lambda \rightarrow+\infty .
$$

In particular, if $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n+1}\right)$ solves the wave equation $\left(\partial_{t}^{2}-c^{2} \Delta\right) u=0$ in the sense of distributions on \mathbb{R}^{n+1}, show that

$$
|\widehat{\chi u}(\lambda \tau, \lambda \xi)| \leq C_{N} \lambda^{-N}
$$

whenever (τ, ξ) lies outside the light cone $\left\{(\tau, \xi) \in \mathbb{R}^{n+1}: \tau^{2}=c^{2}|\xi|^{2}\right\}$.
Hint: First, show that there exists $m \in \mathbb{R}$ such that for any $\chi \in C_{c}^{\infty}(U)$ and any multi-index α there exists some $C_{\chi, \alpha}>0$ such that

$$
\left|\widehat{\chi \partial^{\alpha} u}(\xi)\right| \leq C_{\chi, \alpha}(1+|\xi|)^{m+|\alpha|}
$$

for all $\xi \in \mathbb{R}^{n}$. Next, show by induction that for any $\chi \in C_{c}^{\infty}(U)$ and any $N>0$, there exist $\chi_{\alpha ; N} \in C_{c}^{\infty}(U)$ (ranging over multi-indices α with $|\alpha| \leq N$) and $v_{N} \in C_{c}^{\infty}(U)$ such that

$$
L^{N}(\chi u)=\sum_{|\alpha| \leq N} \chi_{\alpha ; N} \partial^{\alpha} u+v_{N}, \quad L=\sum_{i, j=1}^{n} a^{i j} \partial_{x_{i}} \partial_{x_{j}}
$$

(note that L^{N} is a differential operator of order $2 N$, whereas the right-hand side involves terms taking at most N derivatives of u). Take the Fourier transform of both sides to conclude.

Problem 3: Let n be odd, and let $u \in C^{\infty}\left(\mathbb{R}^{1+n}\right)$ solve the linear wave equation $\left(\partial_{t}^{2}-\Delta\right) u=0$, with $f_{0}(x)=u(0, x)$ and $f_{1}(x)=\partial_{t} u(0, x)$ both in $\mathcal{S}\left(\mathbb{R}^{n}\right)$. Show that there exists a constant C such that

$$
\sup _{x \in \mathbb{R}^{n}}|u(t, x)| \leq \frac{C}{t^{(n-1) / 2}} \text { for all } t \geq 1 .
$$

Hint: It suffices (by rotation) to prove such an estimate for x of the form $x=$ $\left(x_{1}, 0, \ldots, 0\right)$. Writing $\xi=\left(\xi_{1}, \xi^{\prime}\right)$ with $\xi^{\prime} \in \mathbb{R}^{n-1}$, we have

$$
u(t, x)=(2 \pi)^{-n} \int_{\mathbb{R}} e^{i x_{1} \xi_{1}} \int_{\mathbb{R}^{n-1}} e^{i t|\xi|} \frac{\hat{f}_{1}(\xi)}{2 i|\xi|} d \xi^{\prime} d \xi_{1}+\ldots
$$

Now introduce polar coordinates for ξ^{\prime}, and integrate by parts in the radial variable.
Problem 4: Let $\phi(r) \in C_{c}^{\infty}(\mathbb{R})$ be nonzero and supported in $\left\{\frac{1}{2}<r<2\right\}$, and let $u \in C^{\infty}\left([0, \infty) \times \mathbb{R}^{3}\right)$ be given by

$$
u(t, x)=\frac{\phi(|x|-t)}{|x|}
$$

Show that u solves the linear wave equation on $(0, \infty) \times \mathbb{R}^{3}$, with C_{c}^{∞} initial data, and that there exists $c>0$ such that

$$
\sup _{x \in \mathbb{R}^{n}}|u(t, x)| \geq \frac{c}{t} \text { for all } t \geq 1
$$

Problem 5: Let U be a bounded open set in \mathbb{R}^{n}, and let $L=\sum_{j, k=1}^{n} g^{j k}(x) \partial_{x_{j}} \partial_{x_{k}}+$ $\sum_{k=1}^{n} b^{k}(x) \partial_{x_{k}}+q(x)$, where $\left(g^{j k}\right)$ is uniformly elliptic on U, and all coefficients have bounded derivatives of all orders. Suppose $x_{0} \in U$, and that there exists a continuous function $d: U \rightarrow \mathbb{R}_{\geq 0}$ which is smooth on $U \backslash\left\{x_{0}\right\}$ such that

$$
\sum_{j, k=1}^{n} g^{i j}(x) \partial_{x_{j}} d(x) \partial_{x_{k}} d(x)=1 \text { on } U \backslash\left\{x_{0}\right\}, \quad d\left(x_{0}\right)=0
$$

(a) Show that $d(x)=\operatorname{dist}_{g}\left(x, x_{0}\right)$, where dist_{g} is the geodesic distance with respect to the Riemannian metric g where in coordinates we have $\left(g_{i j}(x)\right)=\left(g^{i j}(x)\right)^{-1}$.
(b) Suppose T satisfies that $d^{-1}([0, T])$ is a compact subset of U. Let u be a smooth solution to $\left(\partial_{t}^{2}-L\right) u=0$ in $(0, T) \times U$, and for $0 \leq t \leq T$ let
$E(t)=\frac{1}{2} \int_{\{x \in U: d(x)<T-t\}}\left(\left|\partial_{t} u(t, x)\right|^{2}+\sum_{j, k=1}^{n} g^{j k}(x) \partial_{x_{j}} u(t, x) \partial_{x_{k}} u(t, x)+|u(t, x)|^{2}\right) d x$.
Show that there exists a constant C, depending on the coefficients $g^{j k}, b^{k}$ and q (but not on the solution u) such that

$$
\dot{E}(t) \leq C E(t)
$$

Conclude that if $u(0, x)=\partial_{t} u(0, x)=0$ for all x satisfying $d(x)<T$, then $u\left(T, x_{0}\right)=0$.

Problem 6: Show that the limits

$$
\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{-\tau^{2}+|\xi|^{2} \pm i \epsilon}
$$

exist in $\mathcal{D}^{\prime}\left(\mathbb{R}_{\tau, \xi}^{1+n}\right)$, and that the distributions

$$
F_{ \pm}=\mathcal{F}^{-1}\left(\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{-\tau^{2}+|\xi|^{2} \pm i \epsilon}\right)
$$

are fundamental solutions of the wave operator.
Is either $F_{ \pm}$equal to the forward fundamental solution of the wave operator?

