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Overview

The course will focus on various aspects of linear parabolic and hyperbolic equa-
tions, with a particular emphasis on the construction and properties of parametrices
and solution operators to such equations. Towards the end of the quarter, I’ll plan on
giving an introduction to microlocal analysis, with a particular focus on applications
to parabolic and hyperbolic problems.

Schedule

(may be subject to change depending on student interest)

• Weeks 1,2: Review of distribution theory and Fourier transform
• Weeks 3-5: Study of parabolic equations, with particular focus on parabolic

regularity and the structure of the heat kernel
• Weeks 6,7: Study of hyperbolic equations: linear wave equation and the geo-

metric optics ansatz
• Week 8: Introduction to microlocal analysis and parametrices for differential

operators
• Week 9: Construction of parametrices for parabolic operators
• Week 10: Construction of parametrices for hyperbolic operators



MATH 218 LECTURE NOTES (SPRING 2022) 5

1. Lecture 1 (03/29): Distribution Theory: Preliminaries

Distributions are generalizations of functions that work particularly well with differ-
entiation, convolution, Fourier transforms, etc.. We review the theory of distributions
in this lecture.

The reference for this section is Hörmander’s The Analysis of Partial Differential
Operators I [Hör90].

1.0. Conventions. We consider functions (either R-valued or C-valued; usually the
difference is not significant) defined on an open subset U of Rn. A multi-index is an
n-tuple α = (α1, . . . , αn) of nonnegative integers, with the corresponding differential
operator ∂α := ∂α1

∂x
α1
1
. . . ∂αn

∂xαnn
on U . The sum |α| = α1 + · · · + αn is the order of the

multi-index α/the differential operator ∂α. We denote Ck(U) the space of functions
f on U which has partial derivatives of order up to k, with ∂αf continuous on U for
all α with |α| ≤ k. We denote C∞(U) = ∩kCk(U). When needed, we’ll define Ck(U)
and C∞(U) analogously, with the additional requirement that the partial derivatives
be continuous up to the boundary.

For U ⊂ Rn open, we denote

C∞c (U) := {u ∈ C∞(Rn) : supp u is a compact subset of U}.

1.1. Definitions and properties.

Definition 1.1. Let U ⊂ Rn be open. A distribution on U is a linear functional
u : C∞c (U)→ C which is continuous with respect to the topology on C∞c (U) (defined
below). The space of all distributions on U is denoted1 by D′(U).

For u ∈ D′(U) and φ ∈ C∞c (U), we’ll write the application of u against φ as u(φ)
or (u, φ) or (u, φ)U (when emphasizing the domains on which the distributions live).

The topology on C∞c (U) is a bit involved to describe2, but the practical interpreta-
tion of the topology is as follows: a sequence {φn} in C∞c (U) converges to φ ∈ C∞c (U)
if:

• There exists a compact set K ⊂ U such that3 supp φn ⊂ K for all n, and
• All derivatives of φn converge uniformly to the corresponding derivative of φ

on U , i.e. for all multi-indices α we have

sup
x∈U
|∂αφn − ∂αφ|

n→∞−−−→ 0.

1The notation comes from Laurent Schwartz’s work where the space of “test functions”, i.e.
C∞c (U), was denoted by D(U).

2For the curious: it can be described as an inductive limit topology on C∞c (K) (for all K ⊂ U
compact), with the topology on C∞c (K) given by the seminorms φ 7→ ‖∂αφ‖L∞(K) for all multi-

indices α. This is apparently called the “LF topology” (for l imit of F réchet spaces).
3From the convergence requirement below, we see a posteriori that supp φ ⊂ K as well.
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Thus, we say that a linear functional u : C∞c (U) → C is4 continuous if, whenever
φn → φ with respect to the convergence defined above in C∞c (U), we also have
u(φn)→ u(φ) in C as well.

Lemma 1.2. A linear functional u : C∞c (U) → C is continuous if and only if, for
every compact subset K ⊂ U , there exists k ∈ N≥0 and C > 0 such that

|u(φ)| ≤ C
∑
|α|≤k

sup
K
|∂αφ| for all φ ∈ C∞c (U) with supp φ ⊂ K.

Proof. The “if” part is straightforward to verify. For the “only if” part, suppose
for some compact K ⊂ U that no such C and k were to exist to satisfy the above
inequality. Then, for every k ∈ N≥0, we could find φ ∈ C∞c (U) supported in K such
that u(φ) is arbitrarily large compared to

∑
|α|≤k supK |∂αφ|. In particular, for each

k we can find φk supported in K such that u(φk) = 1, but
∑
|α|≤k supK |∂αφk| ≤ 1/k.

Note that this implies that supK |∂αφk| ≤ 1/k whenever k ≥ |α|. In particular, we

see that for each fixed α we would have supU |∂αφk − 0| k→∞−−−→ 0, and hence φk → 0
in the topology of C∞c (U). But then we should have u(φk)→ u(0) = 0 as well due to
the continuity of u, which contradicts the assumption that u(φk) = 1 for each k. �

Thus, we could have alternatively defined a distribution u as a linear functional
satisfying

|u(φ)| ≤ C
∑
|α|≤k

sup
K
|∂αφ| for all φ ∈ C∞c (U) with supp φ ⊂ K

for some constants C and k for each compact K ⊂ U (note that C and k in general
depend on K).

Example 1.3. The following are distributions (the continuity part is left as an exer-
cise; the important aspect is viewing these as linear functionals):

• Any f ∈ L1
loc(U) can be identified with a distribution

Tf (φ) :=

∫
U

f(x)φ(x) dx.

(Note that the RHS makes sense for any φ ∈ C∞c (U), since f ∈ L1(K) for
any compact subset K ⊂ U ; in particular this is the case for K = supp φ.)
In such cases, we’ll refer to the distribution as f as well, and we’ll say that a
distribution u is in L1

loc(U) (or Lp, continuous, C∞, etc.) if it can be identified
with a function in L1

loc(U) via the above identification.

Remark 1. This is slightly different than the complex inner product 〈f, φ〉 =∫
U
f(x)φ(x) dx–note that 〈·, ·〉 is C-anti-linear in the second variable, i.e.

〈f, αφ〉 = α〈f, φ〉 for α ∈ C, whereas distributions are C-linear.

4Strictly speaking, this should be called sequentially continuous, as the topology on C∞c (U) is not
metrizable.
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• For any x0 ∈ U and multi-index α, the functional

φ 7→ ∂αφ(x0)

is a distribution. The case α = 0 is called the Dirac delta at x0, denoted δx0
(the Dirac delta at the origin 0 is often just denoted δ).
• In R, the distributions (x± i0)−1 are defined by

φ 7→ lim
ε→0+

∫
R

φ(x)

x± iε
dx.

The limit on the RHS does indeed exist for any φ ∈ C∞c (R), and the limits
may be different depending on the sign ±. In fact, we have

(x− i0)−1 − (x+ i0)−1 = 2πiδ0.

The space of distributions D′(U) also has a topology, given by the weak-* topology
viewing it as the dual space to C∞c (U).

Definition 1.4. We say that a sequence un in D′(U) converges to u ∈ D′(U) as
distributions if, for every φ ∈ C∞c (U), we have

un(φ)→ u(φ) (in C).

In practice, convergence in D′(U) is weaker than most kinds5 of convergence that
can be considered. For example, if un has more structure, e.g. belongs to C∞c (U),
C∞(U), even L1

loc(U), and it converges, e.g. uniformly or even in L1
loc (i.e. in L1 on

every compact set), then it also converges as distributions.
If V ⊂ U is open, then there is a continuous inclusion ι : C∞c (V ) ↪→ C∞c (U).

Definition 1.5. If V ⊂ U is open, and u ∈ D′(U), the restriction of u to V is the
distribution on V defined by

u|V (φ) := u(ιφ).

Definition 1.6. The support of a distribution u ∈ D′(U) is the set

supp u := {x ∈ U : u|V is not identically zero for any neighborhood V 3 x}.

Example 1.7. If f is a continuous function on U , then the support of f , viewing f
as a distribution, is the same as the support of f , viewed as a function. That is,

supp f = {x ∈ U : f(x) 6= 0}

(here the closure is taken with respect to U).

5The only kind of convergence I can think of that is not stronger than convergence in D′(U) is
pointwise convergence. But even then, even a very weak bound on the sequence un, combined with
pointwise convergence of un, is usually enough to give convergence in D′(U), due to the extremely
nice properties of C∞c (U).
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1.2. Operations on distributions: differentiation, multiplication. One essen-
tial operation that can be applied to distributions is differentiation. The idea is
motivated by the integration by parts identity∫

U

∂αf(x)φ(x) dx = (−1)|α|
∫
U

f(x)∂αφ(x) dx

which holds for all f ∈ C∞(U) and φ ∈ C∞c (U) (the compact support of φ guarantees
the lack of “boundary terms” that would normally arise from integration by parts).
We thus define differentiation via this feature:

Definition 1.8. For 1 ≤ j ≤ n and u ∈ D′(U), the partial derivative ∂ju is the
distribution on U defined by

∂ju(φ) := −u(∂jφ) for all φ ∈ C∞c (U).

For a multi-index α, the derivative ∂αu is defined by iterating partial derivatives, in
the same manner as iterating partial derivatives for smooth functions.

Note that φ ∈ C∞c (U) =⇒ ∂jφ ∈ C∞c (U), so the right-hand side in the above
definition does indeed make sense.

Example 1.9. For a > −1, define

χa+(x) =

{
xa

Γ(a+1)
x > 0

0 x ≤ 0
.

Then χa+ ∈ L1
loc(R), and d

dx
χa+ = χa−1

+ for a > 0. Moreover, χ0
+(x) is the so-called

“Heaviside function” H(x), and d
dx
χ0

+ = δ0.

Similarly, if ρ ∈ C∞(U), then we have the identity∫
U

(ρ(x)u(x))φ(x) dx =

∫
U

u(x)(ρ(x)φ(x)) dx

for any function u just by rearranging terms; moreover note that ρφ ∈ C∞c (U) if
φ ∈ C∞c (U). Thus, we can define:

Definition 1.10. For ρ ∈ C∞(U) and u ∈ D′(U), the product ρu is the distribution
on U defined by

(ρu)(φ) := u(ρφ).

Remark 2. Differentiation and multiplication by ρ ∈ C∞(U), as defined above, are
in fact continuous linear operators D′(U) → D′(U), such that the restriction of
these operators to C∞c (U) ⊂ D′(U) give the same results as the usual differentia-
tion and multiplication on C∞c (U). The reason why we insist on only6 multiplying
by functions in C∞(U) is that it turns out there does not exist a continuous opera-
tor D′(Rn)×D′(Rn)→ D′(Rn) which extends the notion of pointwise multiplication
defined initially on C∞c (Rn)× C∞c (Rn).

6At least a priori it is not clear that multiplication by other functions will work. It turns out
that we can multiply by slightly less regular functions under mild assumptions, but that this notion
does not extend to all distributions.



MATH 218 LECTURE NOTES (SPRING 2022) 9

2. Lecture 2 (03/31): Composition, homogeneous distributions, and
convolution

2.1. Composition with smooth maps and homogeneous distributions. In
some cases, it is possible to define composition of distributions. We’ll focus on the
case of composing a distribution in D′(Rm) with a map f : U → Rm, U ⊂ Rn, with
m ≤ n.

We suppose first that there exist auxiliary functions ym+1(x), ym+2(x), . . . , yn(x)
such that the function

g : U → Rn, g(x) = (f1(x), . . . , fm(x), ym+1(x), . . . , yn(x))

has a C∞ inverse h : g(U) → U . For y ∈ Rn, write y = (y′, y′′) ∈ Rm × Rn−m. Note
that

y = g(h(y)) =⇒ y′ = f(h(y))

since the first m components of g(x) are the m components of f(x). Then, if φ ∈
C∞c (U), we see that for u ∈ C0(Rm) we have7∫

U

u(f(x))φ(x) dx =

∫
U

u(f(x))φ(x) dx

=

∫
g(U)

u(f(h(y)))φ(h(y)) | detDh(y)| dy

=

∫
Rn
u(y′)φ(h(y))| detDh(y)| dy

=

∫
Rm

u(y′)φ̃(y′) dy′

where

φ̃(y′) =

∫
Rn−m

φ(h(y′, y′′))| detDh(y′, y′′)| dy′′.

Thus, if we can construct auxiliary functions ym+1, . . . , yn such that (f, ym+1, . . . , yn)
has a C∞ inverse, then we can (uniquely) extend the notion of composition of a
continuous function u : Rm → R with f : U → Rm to distributions on U by defining

(u ◦ f, φ)U := (u, φ̃)Rm

where φ̃ is defined as above.
In general, if the differential Df of f is surjective everywhere on U , then this

construction of auxiliary functions is possible locally, thanks to the Inverse Function
Theorem. We can then take a locally finite partition of unity 1 =

∑
ρk, say with

supp ρk ⊂ Uk, with the property that for any compact subset K ⊂ U , only finitely
many intersections Uk ∩K are nonempty. Then, we can define

(u ◦ f, φ)U :=
∑
k

(u|Uk , ρkφ)Uk ,

7In the second line, we made the substitution x = h(y), dx = |detDh(y)| dy. In the third line,
we can switch the region of integration to Rn, since φ(h(y)) is nonzero only when h(y) ∈ supp φ ⊂
U =⇒ y ∈ g(U).
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where (u|Uk , ρkφ)Uk is defined in the special case discussed in the previous paragraph
(note that the assumption that the partition is locally finite guarantees the above
sum is a finite sum for any φ ∈ C∞c (U)). We summarize this as follows:

Theorem 2.1 (cf. Theorem 6.1.2 in [Hör90]). Suppose f : U → Rm is smooth, and
Df(x) is surjective for all x ∈ U . Then there is a unique continuous linear map
f ∗ : D′(Rm) → D′(U) such that f ∗u = u ◦ f for all u ∈ C0(Rm). Moreover, for any
partial derivative ∂j we have

∂j(f
∗u) =

n∑
k=1

(∂jfk) · f ∗(∂ku) (i.e. ∂j(u ◦ f) =
n∑
k=1

(∂ku ◦ f)∂jfk).

Remark 3. If V ⊂ Rm is an open set containing the image of f : U → Rm, then the
above theorem also holds replacing Rm by V .

Example 2.2. Consider f : R2n → Rn, f(x, x′) = x− x′ for (x, x′) ∈ Rn×Rn. Then
g(x, x′) = (x− x′, x′) admits a C∞ inverse on R2n, namely h(y′, y′′) = (y′+ y′′, y′′) for
(y′, y′′) ∈ Rn × Rn (then | detDh| = 1 everywhere). Then

(u ◦ f, φ)R2n = (u, φ̃)Rn

where

φ̃(y′) =

∫
Rn
φ(y′ + y′′, y′′) dy′′.

In particular, the distribution δ(x− x′) is the distribution satisfying

(δ(x− x′), φ)R2n = (δ, φ̃)Rn = φ̃(0) =

∫
Rn
φ(0 + y′′, y′′) dy′′ =

∫
Rn
φ(x, x) dx

for any φ ∈ C∞c (R2n).

Example 2.3. Suppose U ⊂ Rn is conic, meaning that x ∈ U =⇒ tx ∈ U for all
t > 0 (for example, U = Rn or U = Rn\{0}). For t > 0, the composition u(tx) for
u ∈ D′(U) is well-defined, and it satisfies

(u(tx), φ) = t−n(u, φ(x/t)).

(This is the same result if u is a continuous function and u(tx) is understood as a
composition.)

Definition 2.4. We say that u ∈ D′(U) is homogeneous of degree a ∈ R if u(tx) =
tau(x) for all t > 0, where the composition u(tx) is defined above. Equivalently,

(u, φ(x/t)) = tn+a(u, φ) or (u, φ(tx)) = t−n−a(u, φ).

Example 2.5. Consider the functions χa+ defined in Example 1.9 for a > −1. They
define distributions which are homogeneous of degree a.

Example 2.6. The Dirac delta δ on Rn is homogeneous of degree −n. Indeed,
(δ, φ(tx)) = (δ, φ) for any t > 0 since both sides evaluate to φ(0), so (δ, φ(tx)) =
t−n−a(δ, φ) for −n− a = 0, i.e. a = −n.
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Example 2.7. Consider f : Rn+1
t,x → R be given by f(t, x) = t2 − |x|2 for (t, x) ∈

R×Rn. Note that Df is non-vanishing on Rn+1\{0}, so u(t2−|x|2) is well-defined as a
distribution on Rn+1\{0}. Moreover, if u is homogeneous of degree a, then u(t2−|x|2)
is homogeneous of degree 2a.

Note that given a distribution u on Rn\{0}, it is not always possible to extend it to
a distribution ũ on Rn (i.e. we cannot always find ũ ∈ D′(Rn) such that ũ|Rn\{0} = u).
However, for homogeneous distributions this is possible:

Theorem 2.8 (cf. Theorems 3.2.3 and 3.2.4 in [Hör90]). Suppose u ∈ D′(Rn\{0})
is homogeneous of degree a. Then there exists ũ ∈ D′(Rn) such that ũ|Rn\{0} = u.
Moreover, if either a > −n or a 6∈ Z, then such an extension is unique and also
homogeneous of degree a.

2.2. Convolution. Recall that the convolution of two functions f, g : Rn → R is
defined by

(f ∗ g)(x) =

∫
Rn
f(y)g(x− y) dy = (f, g(x− ·))

where g(x−·) is the function y 7→ g(x−y). This allows us to easily define convolution
when f is a distribution and g is smooth with compact support :

Definition 2.9. Let u ∈ D′(Rn) and φ ∈ C∞c (Rn). The convolution of u and φ is the
function u ∗ φ : Rn → R defined by

(u ∗ φ)(x) := (u, φ(x− ·)).

(Note that φ(x− ·) ∈ C∞c (Rn) for any x ∈ Rn if φ ∈ C∞c (Rn).)
Some properties of convolution as defined above are as follows (proofs are in Section

4.1 of [Hör90]):

Theorem 2.10. Let u ∈ D′(Rn) and φ, ψ ∈ C∞c (Rn). Then:

• u ∗ φ ∈ C∞(Rn), with8 supp (u ∗ φ) ⊂ supp u+ supp φ.
• For any multi-index α we have

∂α(u ∗ φ) = (∂αu) ∗ φ = u ∗ (∂αφ).

• We have9(u ∗ φ) ∗ ψ = u ∗ (φ ∗ ψ).
• φ ∗ ψ = ψ ∗ φ (viewing C∞c (Rn) ⊂ D′(Rn)).

Next time : We’ll define the composition of distributions (in limited contexts) by
having it satisfy the associativity condition

(u1 ∗ u2) ∗ φ = u1 ∗ (u2 ∗ φ).

We’ll also discuss Schwartz kernels.

8For two subsets A,B ⊂ Rn, we define A+B = {a+ b : a ∈ A, b+B}.
9Note in this equation that u ∗ φ ∈ C∞(Rn) ⊂ D′(Rn), so we can again convolve it on the right

with another function in C∞c (Rn), while φ ∗ ψ ∈ C∞c (Rn), so we can again convolve it on the left
with a distribution.
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3. Lecture 3 (04/05): Duality, Convolutions, and Schwartz Kernel

3.1. A comment on defining operations by duality. For all of the operations
on distributions defined in the first two lectures, we can summarize the definitions in
a common way. Suppose we have a continuous linear map L : C∞c (X)→ D′(Y ).

Definition 3.1. The adjoint of L : C∞c (X) → D′(Y ) is the operator tL : C∞c (Y ) →
D′(X) defined by

(tLψ, φ)X = (Lφ, ψ)Y for φ ∈ C∞c (X), ψ ∈ C∞c (Y ).

Note then that t(tL) = L.

Example 3.2. Some examples:

• For L = ∂j, we have tL = −∂j.
• For L = ρ (i.e. multiplication by ρ ∈ C∞), we have tL = ρ (i.e. the same

operator).
• If f : X → Y is invertible with smooth inverse and L = f ∗ (i.e. Lφ = φ ◦ f),

we have tL = | det f−1|(f−1)∗ (i.e. tLψ = (ψ ◦ f−1)| det f−1|).

Suppose now that tL now maps C∞c (Y ) not just into D′(X), but rather into C∞c (X).
Then, we can extend L to an operator L̃ : D′(X)→ D′(Y ), defined by

(L̃u, ψ)Y := (u,t Lψ)X .

Then, L̃ is continuous, and moreover it agrees with L on C∞c (X). This is indeed
how all of the operations defined so far (aside from convolution with C∞c ) have been
defined.

If tL does not map C∞c (Y ) into C∞c (X), but rather just into C∞(X), we can still
extend L, albeit to a slightly different space.

Definition 3.3. The space E ′(X) is the space of distributions u ∈ D′(X) such that
supp u is compact.

Theorem 3.4. E ′(X) is isomorphic, as topological vector spaces, to the dual space of
C∞(X), where the topology of C∞(X) is that given by the seminorms

φ 7→
∑
|α|≤k

sup
K
|∂αφ|, k ∈ N≥0, K ⊂ X compact.

Thus, if tL maps C∞c (Y ) into C∞(X), then L can be extended as a map E ′(X)→
D′(Y ). Similarly, if tL maps into E ′(X), then L can be extended as a map C∞(X)→
D′(Y ).

3.2. Convolutions, continued. To define the convolution of two distributions u1

and u2, we could try to have it satisfy the “associativity” property above, i.e. for
φ ∈ C∞c (Rn) we would want u1 ∗ u2 to satisfy

(u1 ∗ u2) ∗ φ = u1 ∗ (u2 ∗ φ).

There are two issues with doing so:
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• First, the above condition gives a condition we’d like to be satisfied involving
the convolution of our mystery distribution u1 ∗ u2 against φ; a priori it’s not
clear how that defines the pairing (u1 ∗ u2, φ).
• For the right-hand side to make sense, we want to somehow arrange for u2 ∗φ

to have compact support.

The second issue can be addressed by taking u2 to have compact support. For the
first issue, it turns out that knowledge of how a distribution convolves (i.e. knowledge
of the operator C∞c (Rn) → C∞(Rn), φ 7→ u ∗ φ) is enough information to determine
the distribution itself. Indeed, just note that for any φ ∈ C∞c (Rn), if φ̌(x) = φ(−x),
then

(u ∗ φ̌)(0) = (u, φ).

However, there is another necessary condition that a convolution operator must sat-
isfy. Namely, if for h ∈ Rn we let τh : C∞(Rn) → C∞(Rn), τhφ(x) = φ(x − h), then
τh(u ∗ φ) = u ∗ τhφ (this follows basically from the definition). It turns out that this
is essentially sufficient as well:

Theorem 3.5 (cf. Theorem 4.2.1 of [Hör90]). If U is a continuous10 linear map from
C∞c (Rn) → C∞(Rn), and U ◦ τh = τh ◦ U for all h ∈ Rn, then there exists a unique
u ∈ D′(Rn) such that Uφ = u ∗ φ for all φ ∈ C∞c (Rn).

Proof. If such a u were to exist, it must satisfy (u, φ) = (u ∗ φ̌)(0) = U(φ̌)(0); hence
define u ∈ D′(Rn) by (u, φ) := U(φ̌)(0). This is a distribution, i.e. is continuous, due
to the continuity assumptions in the hypothesis. It remains to verify that Uφ = u ∗φ
for all φ ∈ C∞c (Rn). This is where the assumption of commuting with translations
comes in: just note that

(Uφ)(−h) = τh(Uφ)(0) = U(τhφ)(0) = (u, ˇτhφ) = (u∗τhφ)(0) = τh(u∗φ)(0) = (u∗φ)(−h)

for each h ∈ Rn. Thus, Uφ = u ∗ φ as functions in C∞(Rn). �

As such, if u1, u2 ∈ D′(Rn) with supp u2 compact, we see that

Uφ := u1 ∗ (u2 ∗ φ)

satisfies the assumptions in the theorem. Hence, we can make a definition:

Definition 3.6. Suppose u1, u2 ∈ D′(Rn) with supp u2 compact. The convolution
u1 ∗ u2 is the unique distribution u ∈ D′(Rn) satisfying

u ∗ φ = u1 ∗ (u2 ∗ φ) for all φ ∈ C∞c (Rn).

Example 3.7. The Dirac delta δ0 satisfies δ0 ∗ φ = φ for all φ ∈ C∞c (Rn). As a
consequence, for all distributions u ∈ D′(Rn) we also have u ∗ δ0 = u.

By leveraging facts about convolution of functions, we can state:

Theorem 3.8. Let u1, u2 ∈ D′(Rn) with supp u2 compact. Then:

10The topology on C∞(Rn) is the seminorm topology induced by the seminorms φ →∑
|α|≤k supK |∂αφ| over all k ∈ N≥0 and K compact, i.e. a sequence of smooth functions converges

if and only if it converges with respect to each of the preceding seminorms.
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• If supp u1 is also compact, then u1 ∗ u2 = u2 ∗ u1.
• We have supp (u1 ∗ u2) ⊂ supp u1 + supp u2.
• If u3 ∈ D′(Rn) has compact support, then u1 ∗ (u2 ∗ u3) = (u1 ∗ u2) ∗ u3.
• We have ∂α(u1 ∗u2) = (∂αu1)∗u2 = u1 ∗ (∂αu2). In particular, if P =

∑
aα∂

α

is a constant-coefficient differential operator, then P (u1∗u2) = (Pu1)∗u2 =
u1 ∗ (Pu2).

An application of the last fact is the following: suppose P is a constant-coefficient
differential operator, and u2 is compactly supported and satisfies Pu2 = δ in the sense
of distributions. Then, for any u1 ∈ D′(Rn), for u = u1 ∗ u2 we have

Pu = P (u1 ∗ u2) = u1 ∗ (Pu2) = u1 ∗ δ = u1.

Thus, for any u1 ∈ D′(Rn), there exists a solution to Pu = u1 in the sense of
distributions, namely u = u1 ∗ u2. This idea will be used more heavily next week.

There are many more situations in which the convolution of two distributions can
be well-defined. One such situation is the following: suppose the map

supp u1 × supp u2 → Rn, (x, y) 7→ x+ y

is proper, meaning that the pre-image of compact sets is compact11, then the con-
volution u1 ∗ u2 can be defined as follows: for a fixed φ ∈ C∞c (Rn), let K =
supp φ, and let K1 and K2 be the projections of the preimage of K under the map
supp u1 × supp u2 → Rn,(x, y) 7→ x + y. (Thus, if (x, y) ∈ supp u1 × supp u2 and
x+ y ∈ K, then x ∈ K1 and y ∈ K2). Note that K, K1, and K2 are all compact, by
the properness assumption. We then define

(u1 ∗ u2, φ) := ((ψ1u1) ∗ (ψ2u2), φ)

where ψ1, ψ2 ∈ C∞c (Rn) are identically 1 in neighborhoods of K1 and K2, respectively.
Note then that ψiui are compactly supported distributions, so their convolution is
well-defined. The idea behind the definition is to cut off the distributions u1 and u2

“only where they matter” when trying to evaluate the pairing of u1 ∗ u2 against φ.
To make this a well-defined definition, we need to check that this result is inde-

pendent of the cutoffs ψi chosen. For example, to check the result is independent of
the choice of ψ2, suppose ψ2 and ψ̃2 are both identically 1 in a neighborhood of K2.
We need to check that ((ψ1u1) ∗ (ψ̃2u2), φ) = ((ψ1u1) ∗ (ψ2u2), φ). Unraveling the
definition of compositions, this amounts to checking that

((ψ1u1) ∗ (((ψ̃2 − ψ2)u2) ∗ φ̌))(0) = 0.

We note that ψ̃2−ψ2 equals zero on a neighborhood of K2, so y ∈ supp (ψ̃2−ψ2) =⇒
y 6∈ K2. In particular, if x ∈ supp u1 and y ∈ supp (ψ̃2 − ψ2), then x + y 6∈ supp φ.

11This can be phrased in other ways; two examples of which are the following: for any compact
set K ⊂ Rn:

• The set (K − supp u1) ∩ supp u2 is compact.
• There exists C > 0 such that if x ∈ supp u1 and y ∈ supp u2, then x + y ∈ K =⇒ |x| ≤
C, |y| ≤ C.
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But we also know that

supp ((ψ1u1) ∗ (((ψ̃2 − ψ2)u2) ∗ φ̌)) ⊂ supp (ψ1u1) + supp ((ψ̃2 − ψ2)u2) + supp φ̌

⊂ supp u1 + supp (ψ̃2 − ψ2)− supp φ,

and the latter set does not contain 0 by the discussion above. This shows that
((ψ1u1) ∗ (ψ2u2), φ) does not depend on the choice of ψ2, so long as ψ2 is identically
1 in a neighborhood of K2. Similar methods show this is independent of the choice
of ψ1 as well.

Example 3.9. For R+ = [0,∞), we have that R+ × R+ → R, (x, y) → x + y is
proper. Hence, if supp u1, u2 ⊂ R+, then the convolution u1 ∗ u2 is well-defined.

3.3. Products and Schwartz Kernel. One reason to study distributions, even if
one is only interested in smooth solutions to a differential equation, is that they are
intimately related to operators. First we consider products. In this subsection, let X
and Y be open subsets of some Euclidean spaces.

Definition 3.10. For φ ∈ C∞c (X) and ψ ∈ C∞c (Y ), the tensor product is the function
φ⊗ ψ ∈ C∞c (X × Y ) defined by

(φ⊗ ψ)(x, y) = φ(x)ψ(y).

From this, we can define the tensor product of distributions:

Theorem 3.11. Let u1 ∈ D′(X) and u2 ∈ D′(Y ). Then there exists a unique distri-
bution u ∈ D′(X × Y ) satisfying

u(φ⊗ ψ) = u1(φ)u2(ψ).

This is called the tensor product of the distributions u1 and u2 and is denoted u1⊗u2.

We now consider the following situation: suppose we’re given a distribution K on
the product space X × Y . Then the map

ψ 7→ (φ 7→ (K,φ⊗ ψ)X×Y )

defines a linear operator T : C∞c (Y ) → D′(X). That is, given ψ ∈ C∞c (Y ), Tψ is a
distribution on X satisfying (Tψ, φ)X = (K,φ⊗ ψ)X×Y . (In more informal terms, if
we were to view K as a function K(x, y), then the operator in question is

Tψ(x) =

∫
X×Y

K(x, y)ψ(y) dy.)

Moreover, this operator T is continuous with respect to the respective topologies.

Definition 3.12. Let T : C∞c (Y ) → D′(X) be linear, and suppose K ∈ D′(X × Y )
satisfies (Tψ, φ)X = (K,φ⊗ψ)X×Y for all φ ∈ C∞c (X) and ψ ∈ C∞c (Y ). Then we say
that K is a Schwartz kernel of T .

A remarkable fact is:

Theorem 3.13 (Schwartz Kernel Theorem). Every continuous linear operator C∞c (Y )→
D′(X) has a unique Schwartz kernel associated to it.
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Example 3.14. Some examples of Schwartz kernels (here the coordinates on X and
Y are denoted x and y):

• The identity operator Id : C∞c (X) → C∞c (X) ⊂ D′(X) has Schwartz kernel
δ(x− y).
• The differential operator P =

∑
aα(x)∂α has Schwartz kernel

∑
aα(x)∂αδ(x− y).

• If u ∈ D′(Rn), the convolution operator C∞c (Rn) → C∞(Rn), φ 7→ u ∗ φ has
Schwartz kernel u(x− y).
• If T : C∞c (Y ) → D′(X) has Schwartz kernel K ∈ D′(X × Y ), then tT :
C∞c (X) → D′(Y ) has Schwartz kernel tK ∈ D′(Y × X), where “tK(y, x) =
K(x, y)”. Formally, if tψ(x, y) = ψ(y, x) for φ ∈ C∞c (Y × X), then tφ ∈
C∞c (X × Y ), and

(tK,ψ)Y = (K,t ψ)X .

• Suppose the Schwartz kernel, which a priori is a distribution on X × Y , is
actually in L2(X × Y ). Then the corresponding operator is a Hilbert-Schmidt
operator. Such operators have some nice properties (e.g. they are compact
operators).

The following was not covered during lecture but may be of interest
for some students:

One application of studying the Schwartz kernel is the following: we can often give
an upper bound on the set of singularities of Tu, if we know the singularities of the
Schwartz kernel of T and of u. We formalize the notions as follows:

Definition 3.15. Let u ∈ D′(X). The singular support of u, denoted sing supp u,
is the set of x ∈ X such that, for any neighborhood V 3 x, the restriction u|V does
not agree with the restriction of any smooth function on V . (Equivalently, x ∈ X
is not in the singular support if there exists a neighborhood V of x such that u|V is
smooth, i.e. agrees with the restriction of some smooth function).

Definition 3.16. Suppose A ⊂ X × Y and B ⊂ Y . The composition A ◦ B of sets
is the set

A ◦B = {x ∈ X : there exists y ∈ B such that (x, y) ∈ A}.
Equivalently,

A ◦B = πX(A ∩ π−1
Y (B))

where πX : X × Y → X and πY : X × Y → Y are the projections onto X and Y .

Theorem 3.17. Suppose T : C∞c (Y ) → D′(X) satisfies that T maps into C∞(X),
and tT maps continuously from C∞c (X) to C∞(Y ), so that T can be extended to a
map T : E ′(Y )→ D′(X). Let K ∈ D′(X × Y ) be the Schwartz kernel of T . Then,

sing supp Tu ⊂ sing supp K ◦ sing supp u for all u ∈ E ′(Y ).

Proof Sketch. The proof boils down to the following statement, which will not be
proven in this sketch:

if T : E ′(Y )→ D′(X) has Schwartz kernel K ∈ C∞(Y×X), then Tu ∈ C∞(X) for all u ∈ E ′(Y ).
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Assuming the statement, we can prove as follows. Suppose (x, y) 6∈ sing supp K ◦
sing supp u; we’d then like to show that x 6∈ sing supp Tu. Note that the assump-
tions then give that {x}× sing supp u is disjoint from sing supp K. Since the former
set is compact and the latter set is closed, it follows that there exists open neighbor-
hoods U and V of x and sing supp u, respectively, such that U × V is still disjoint
from sing supp u. Let U ′ and V ′ be neighborhoods of x and sing supp u compactly
contained in U and V , respectively, and let φ ∈ C∞c (U) and ψ ∈ C∞c (V ) be identically
1 on U ′ and V ′. Then the operator φTψ has Schwartz kernel (φ ⊗ ψ) · K (or more
colloquially φ(x)K(x, y)ψ(y)), which is in C∞(X × Y ) since the support of φ⊗ ψ is
disjoint from the singular support of K, and hence φTψu ∈ C∞(X). On the other
hand, u − ψu ∈ C∞c (Y ) since 1 − ψ is supported away from sing supp u, and hence
φT (1− ψ)u ∈ C∞(X) as well. Thus we have

φTu = φTψu+ φT (1− ψ)u ∈ C∞(X).

Since φ is identically 1 on U ′, it follows that the restriction of Tu to U ′ is equal to
that of a C∞ function on U ′, and hence x 6∈ sing supp Tu, as desired. �

Next Lecture: Tempered distributions and Fourier transform.
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4. Lecture 4 (04/07): Fourier Transform

4.1. Fourier Transform on functions and Schwartz space. Recall the Fourier
transform on functions:

Definition 4.1. Let f ∈ L1(Rn). The Fourier transform of f is the function f̂ :
Rn → C defined by12

f̂(ξ) =

∫
Rn
e−iξ·xf(x) dx.

Some properties:

Theorem 4.2. Let f ∈ L1(Rn). Then:

(1) We have f̂ ∈ C0(Rn) ∩ L∞(Rn).

(2) If in addition f ∈ C1(Rn) and ∂jf ∈ L1(Rn), then ∂̂jf(ξ) = iξj f̂(ξ).

(3) If in addition xjf ∈ L1(Rn), then f̂ ∈ C1(Rn) with ∂j f̂(ξ) = −̂ixjf(ξ).

It follows that the Fourier transform intertwines differentiation and multiplication
by monomials. Hence, we are interested in a space of functions which behaves well
under both operations:

Definition 4.3. The Schwartz space, denoted S or S(Rn), is the set of all smooth
functions φ ∈ C∞(Rn) satisfying the property that

sup
x∈Rn
|xβ∂αφ(x)| <∞

for all multi-indices α, β. It is a topological vector space, when equipped with the
topology induced by the seminorms appearing in the left-hand side of the above
inequality.

That is, the Schwartz space consists of functions that are not only infinitely dif-
ferentiable, but in addition decay faster than any inverse polynomial rate, with their
derivatives decaying that fast as well. Note that φ ∈ S(Rn) =⇒ xβ∂αφ ∈ S(Rn) for
any multi-indices α and β, i.e. S(Rn) is closed under differentiation and multiplication
by polynomials.

Example 4.4. We have the inclusion13 C∞c (Rn) ⊂ S(Rn), i.e. any compactly sup-
ported smooth function will satisfy the above estimates.

12There are multiple commonly used conventions regarding the definition/normalization of the
Fourier transform. This is the convention we’ll use, since it works well with differentiation.

13More accurately, we should write that there is an inclusion C∞c (Rn) ↪→ S(Rn) which is continu-
ous with respect to the respective topologies on C∞c (Rn) and S(Rn). Note that this inclusion, while
continuous, is not an embedding of topological vector spaces, i.e. the topology on C∞c (Rn) is not the
subspace topology obtained by the inclusion into S(Rn). In particular, a sequence {φk} in C∞c (Rn)
may converge in S(Rn) without converging in C∞c (Rn). To see this, fix a nonzero φ ∈ C∞c (Rn),
let {ak} and {bk} be decreasing sequences of positive numbers, and let φk(x) = akφ(bkx). One can
check that a sufficient condition for φk to converge to 0 in S(Rn) is for limk→∞ akb

m
k = 0 for all

m ∈ Z; this can e.g. be arranged by taking ak = e−k and bk = 1/k. However, φk does not converge
to 0 in C∞c (Rn) since supp φk = b−1k supp φ, so that in particular the supports of φk are not all
contained in some fixed compact set, thus violating a necessary condition for sequences to converge
in C∞c (Rn).
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Example 4.5. If A is a symmetric positive definite n × n matrix, then φ(x) =
e−〈Ax,x〉/2 is in S(Rn).

The decay requirement on Schwartz functions gives that any Schwartz function is
integrable, and hence we can consider the Fourier transform of Schwartz functions.
We then have:

Lemma 4.6. For any φ ∈ S(Rn), we have φ̂ ∈ S(Rn) as well.

Proof. It suffices to note that the intertwining of multiplication and differentiation
allows us to conclude that

ξβ∂αξ φ̂(ξ) = ψ̂(ξ), where ψ = (−i∂)βx ((−ix)αφ) .

Then ψ is also a Schwartz function, and hence the Fourier transform is bounded. �

4.2. Tempered distributions and extending the Fourier transform. From
Lemma 4.6, we see that the Schwartz space is a nice space of “test functions” which
behaves well with respect to the Fourier transform. This motivates considering a class
of distributions dual to this nice test space:

Definition 4.7. The space of tempered distributions, denoted S ′(Rn), is the dual
space (i.e. space of continuous linear functionals into C) of S(Rn), where S(Rn) is
equipped with the seminorm topology. The space of tempered distributions is also a
topological vector space, equipped with the weak-* topology.

Remark 4. Since C∞c (Rn) ⊂ S(Rn) ⊂ C∞(Rn), with all inclusions continuous with
respect to the respective topologies, it follows that we have inclusions E ′(Rn) ⊂
S ′(Rn) ⊂ D′(Rn), since D′(Rn) and E ′(Rn) are the dual spaces of C∞c (Rn) and
C∞(Rn), respectively.

Remark 5. Note as well that S ′(Rn) is closed under differentiation, as well as multi-
plication by either functions in S(Rn) or by polynomials, though not necessarily by
arbitrary smooth functions.

Remark 6. It can be shown that S(Rn) is in fact dense in S ′(Rn) (with respect to the
weak-* topology on S ′(Rn)). Thus, if we want to extend operators initially defined
on S to continuous operators defined on S ′, such an extension would necessarily be
unique due to the density of S in S ′.

We now ask how to define the Fourier transform for tempered distributions. We
thus aim to find the adjoint of the Fourier transform, i.e. for φ, ψ ∈ S(Rn), see if we

can rewrite the pairing (φ̂, ψ) in terms of φ applied to an operator of ψ. Indeed, we
see that

(φ̂, ψ) =

∫
Rn
φ̂(ξ)ψ(ξ) dξ =

∫
Rn

(∫
Rn
e−iξ·xφ(x) dx

)
ψ(ξ) dξ

=

∫
Rn
φ(x)

(∫
Rn
e−iξ·xψ(ξ) dξ

)
dx

=

∫
Rn
φ(x)ψ̂(x) dx = (φ, ψ̂)
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by Fubini’s Theorem. Note as well that ψ̂ ∈ S(Rn) if ψ ∈ S(Rn). Thus, we define:

Definition 4.8. Given u ∈ S ′(Rn), the Fourier transform of u is the distribution
û ∈ S ′(Rn) defined by

(û, φ) := (u, φ̂).

We will sometimes denote the Fourier transform as an operator F : S ′ → S ′ (i.e.
F(u) = û). Note that F is continuous both as a map S → S and S ′ → S ′.

Some important properties (often proven by proving the analogous properties for
Schwartz functions):

Theorem 4.9. Let u, v ∈ S ′(Rn). Then:

• If u ∈ L1(Rn), then the distribution û defined in Definition 4.8 agrees with the
continuous bounded function û defined in Definition 4.1.
• If u ∈ L2(Rn), then the distribution û is in fact in L2(Rn). Moreover, for
v ∈ L2(Rn), we have the Plancherel formula

(û, v̂) = (2π)n(u, v) (in particular ‖û‖L2 = (2π)n/2‖u‖L2).

• If u is compactly supported, then û is in fact a C∞ function, and moreover it
satisfies

û(ξ) = (u, e−iξ·x)

(the RHS means (u, χ(x)e−iξ·x) for any χ ∈ C∞c (Rn) which is identically 1 on
supp u.)
• If v ∈ E ′(Rn), then

û ∗ v = ûv̂.

(The formula continues to hold in many other situations as well.)
• If u and v are sufficiently nice (e.g. in S), then

ûv = (2π)−nû ∗ v̂.

• In the sense of distributions, we have

∂̂xju = iξjû, x̂ju = i∂ξj û.

• We have

ˆ̂u(−x) = (2π)nu,

and hence

F−1u(x) = (2π)−nFu(−x),

or more colloquially the inverse Fourier transform is given by

u(x) = (2π)−n
∫
Rn
eix·ξû(ξ) dξ.
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4.3. Examples.

Example 4.10. Let φ(x) = e−ax
2/2 on R, with a > 0. To calculate φ̂, we first

calculate φ̂(0) =
∫
R e
−ax2/2 dx. We recall that∫

R
e−x

2

dx =
√
π =⇒ φ̂(0) =

∫
R
e−ax

2/2 dx =

√
2π

a
.

Moreover, noting that xφ(x) = xe−ax
2/2 = − 1

a
φ′(x), we have

(φ̂)′(ξ) = −ix̂φ(ξ) =
i

a
φ̂′(ξ) =

i

a
(iξφ̂)(ξ) = −ξ

a
φ̂(ξ).

Recalling that y′(t) = −cty(t) =⇒ y(t) = y(0)e−ct
2/2, it follows that

φ̂(ξ) = φ̂(0)e−ξ
2/(2a) =

√
2π

a
e−ξ

2/(2a).

In particular, for a = 1 we see that e−x
2/2 is an eigenfunction of the Fourier trans-

form14. This computes the Fourier transform of Gaussians in one dimension.
Suppose now that φ : Rn → R is a multivariable Gaussian given by φ(x) =

e−〈Ax,x〉/2, where A is a symmetric positive definite n × n matrix. We now want
to compute

φ̂(ξ) =

∫
Rn
e−iξ·xe−〈Ax,x〉/2 dx, ξ ∈ Rn.

We diagonalize A = Q−1DQ, where D is diagonal and Q is orthogonal; note then that
〈Ax, x〉 = 〈DQx,Qx〉. If we now let y = Qx (then dy = dx since Q has determinant
±1), the above integral becomes∫

Rn
e−iξ·Q

−1Qxe−〈DQx,Qx〉/2 dx =

∫
Rn
e−iξ·Q

−1ye−〈Dy,y〉/2 dy.

Note that we can write ξ · Q−1y = Qξ · y. If we let η = Qξ, with η = (η1, . . . , ηn),
and let the diagonal values of D be a1, . . . , an (note these are all positive), then the
above integral becomes∫

Rn
e−iη·ye−(

∑n
j=1 ajy

2
j )/2 dy =

n∏
j=1

(∫
R
e−iηjyje−ajy

2
j /2 dyj

)

=
n∏
j=1

(√
2π

aj
e−η

2
j /(2aj)

)

=
(2π)n/2(∏n
j=1 aj

)1/2
e
−
(∑n

j=1

η2j
aj

)
/2

.

14Under different conventions, the exact choice of Gaussian that ends up being an eigenfunction
may differ, but it will always be the case that some Gaussian is an eigenfunction.
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Note that
∏n

j=1 aj = detA, and
∑n

j=1

η2j
aj

= 〈D−1η, η〉 = 〈D−1Qξ,Qξ〉 = 〈A−1ξ, ξ〉. It

follows that we can write

φ̂(ξ) =

∫
Rn
e−iξ·xe−〈Ax,x〉/2 dx =

(2π)n/2

(detA)1/2
e−〈A

−1ξ,ξ〉/2.

Example 4.11. Consider the distribution given by the constant function 1 ∈ C∞(Rn).
This does not belong to L1 or L2, so we need to compute its Fourier transform in the
sense of distributions. Thus, we consider the distribution

(1̂, φ) = (1, φ̂) =

∫
Rn
φ̂(ξ) dξ.

By the Fourier inversion formula, the right-hand side equals (2π)nφ(0) (since 1 =
ei(0·ξ)). It follows that (1̂, φ) = (2π)nφ(0) =⇒ 1̂ = (2π)nδ0. Similar logic yields

êiξ0·x = (2π)nδξ0 for any ξ0 ∈ Rn.
Another way to compute the Fourier transform is by approximating the distribution

by Schwartz functions and then take the limit (in the sense of distributions): this
works because the Fourier transform is continuous as a map S ′ → S ′. As such, note
that for ε > 0, the Gaussians e−ε|x

2|/2 converge to 1 in the space of distributions,
meaning that limε→0+ (e−ε|x|

2/2, φ) = (1, φ) for all φ ∈ S(Rn). Hence, the Fourier

transforms of e−ε|x|
2/2 should also converge to the Fourier transform of 1. From the

previous example, we have

̂e−ε|x|2/2(ξ) =

(
2π

ε

)n/2
e−|ξ|

2/(2ε).

We note the following about the family of functions on the RHS:

• The integral of the RHS equals (2π)n for all ε.
• As ε → 0, the RHS converges, uniformly outside any neighborhood of the

origin, to zero.

These are enough to guarantee that ̂e−ε|x|2/2 → (2π)nδ0 in S ′(Rn) (cf. Problem 4 on
HW 1).

The following was not covered during lecture but may be of interest
for some students:

One technique often used in computing Fourier transforms of distributions is to
consider analytic families of distributions:

Definition 4.12. Let U ⊂ C be open, and let {uz}z∈U be a collection of tempered
distributions in S ′(Rn) indexed by U . We say that {uz}z∈U is an analytic family of
distributions on U if, for any φ ∈ S(Rn), the function

U 3 z 7→ (uz, φ) ∈ C
is a complex analytic function on U .

Most operations we’ve defined so far preserve the property of a family of distri-
butions being analytic; in particular the Fourier transform of an analytic family of
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distributions is also an analytic family of distributions, since for any φ ∈ S(Rn) the

function z 7→ (ûz, φ) is, by definition, the function z 7→ (uz, φ̂), which is analytic since

φ̂ ∈ S(Rn).

Example 4.13. Consider the function u(x) = eiax
2/2 on R, with a ∈ R\{0}. This

defines a tempered distribution since |u| = 1 on R. How do we compute its Fourier
transform?

The trick is to use our computations for Gaussians e−ax
2/2, a > 0 from before, and

use analyticity to extend our results when “a is complex”. Concretely, we note that
for U = {Re z > 0}, the family {e−zx2/2}z∈U is analytic (note that requiring Re z > 0

guarantees that e−zx
2/2 is bounded and thus defines a tempered distribution). Thus,

its Fourier transform is also analytic in U . Moreover, the family of distributions{(
2π

z

)1/2

e−ξ
2/(2z)

}
z∈U

is also an analytic family of distributions (here the square root is well-defined on U
and sends R+ to R+; concretely (reiθ) = r1/2eiθ/2 for r > 0, −π/2 < θ < π/2), and(

2π
z

)1/2
e−ξ

2/(2z) = F(e−zx
2/2) when z ∈ R+. Thus by analytic continuation the two

families must agree for all z ∈ U , i.e.

F(e−zx
2/2) =

(
2π

z

)1/2

e−ξ
2/(2z) for all z with Re z > 0.

This does not quite give us our result, since we’d like to plug in z = −ia, which is not
in this open set. Nonetheless, we note that −ia+ε ∈ U for ε > 0, with −ia+ε→ −ia
as ε → 0+. Hence the Fourier transform of e−(−ia+ε)x2/2 approaches that of eiax

2/2,
and hence

F(eiax
2/2) = lim

ε→0+

((
2π

−ia+ ε

)1/2

e−ξ
2/(2(−ia+ε))

)
.

The only subtlety in evaluating the limit on the RHS is the square root:

• If a > 0, then 2π
−ia+ε

→ 2π
|a| i = 2π

|a|e
iπ/2. Hence

lim
ε→0+

(
2π

−ia+ ε

)1/2

=

(
2π

|a|

)1/2

eiπ/4.

• If a < 0, then 2π
−ia+ε

→ −2π
|a| i = 2π

|a|e
−iπ/2. Hence

lim
ε→0+

(
2π

−ia+ ε

)1/2

=

(
2π

|a|

)1/2

e−iπ/4.

Putting it altogether, we obtain

F(eiax
2/2) =

(
2π

|a|

)1/2

ei
π
4

sgn ae−iξ
2/(2a).
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Similarly, if A is a real symmetric non-singular n× n matrix, then similar arguments
in Example 4.10 gives

F(ei〈Ax,x〉/2) =
(2π)n/2

| detA|1/2
ei
π
4

sgn Ae−i〈A
−1ξ,ξ〉/2,

where sgn A is the sum of the sign of its eigenvalues, i.e the number of positive
eigenvalues minus the number of negative eigenvalues.

Next Lecture: Introduction to parabolic equations.
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5. Lecture 05 (04/12): Heat equation

The material in the next few weeks will be based on the textbook Partial Differen-
tial Equations by Evans [Eva10]. The material in the first half of this lecture is based
on Section 2.3 of [Eva10].

5.1. Introduction and Motivation. The heat equation is the differential equation

∂tu−∆u = 0.

In most problems regarding the heat equation, the differential equation is supple-
mented with additional conditions. The most common is the Cauchy problem, where
u|t=0 is specified:

∂tu−∆u = 0 in (0,∞)t × Rn
x, u(0, x) = f(x) with f(x) specified.

The heat equation models diffusion (e.g. of temperature). The idea is that the rate
of change of a diffusive quantity should be given by ∂tu = div F , where F is the
“flux” vector field. In some cases, we can model F as being proportional to the
gradient of u, i.e. F = A∇u (where A could be a constant or even a matrix). Then
∂tu = div (A∇u); in the special case that A = 1, we get ∂tu = ∆u, i.e. the heat
equation.

The heat equation is also related to Brownian motion. Let W t
x denote a Brownian

motion in Rn at t starting at x; this is a random process. Suppose, for f : Rn → R,
that we wanted to know the expected value of f(W t

x). It turns out that

u(t, x) := E[f(W t
x)] =⇒ ∂tu−

1

2
∆u = 0 in (0,∞)t × Rn

x, u(0, x) = f(x),

i.e. u solves the Cauchy problem for the (rescaled) heat equation. See [Law10] for
more details about Brownian motion.

5.2. Solving the Cauchy Problem. Suppose for convenience that we seek a smooth
solution u(t, x) with initial data f(x) ∈ S(Rn). In fact, we can obtain a solution u
such that u(t, ·) ∈ S ′(Rn). We do so using the Fourier transform in Rn

x. If we let
û(t, ξ) denote the Fourier transform of u(t, ·), then

∂tu(t, x)−∆(t, x) = 0 =⇒ ∂tû(t, ξ) + |ξ|2û(t, ξ) = 0

since ∂̂xju = iξjû. Thus, if we take the above equation, fix a value of ξ ∈ Rn, and try
to solve the resulting ODE in t, we get

∂tû(t, ξ) = −|ξ|2û(t, ξ) =⇒ û(t, ξ) = e−|ξ|
2tû(0, ξ).

Recalling that we have the Cauchy problem where we prescribed u(0, x) = f(x), it

follows that we’d need û(0, ξ) = f̂(ξ). It follows that

û(t, ξ) = e−|ξ|
2tf̂(ξ) =⇒ u(t, x) = F−1

x û(t, ·) = (2π)−n
∫
Rn
eix·ξe−t|ξ|

2

f̂(ξ) dξ.

There is another way to represent this: recalling that û ∗ v = ûv̂, it follows that

û = e−|ξ|
2tf̂ = ̂F−1(e−|ξ|2t)f̂ =⇒ u = F−1(e−|ξ|

2t) ∗ f.
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We now use the calculations from last lecture15 to see that, for t > 0, we have

F−1(e−t|ξ|
2

) =
1

(4πt)n/2
e−|x|

2/(4t).

Thus, for H(t, x) = 1
(4πt)n/2

e−|x|
2/(4t), it follows that for t > 0 we have

(1)

u(t, x) = (H(t, ·) ∗ f)(x) =

∫
Rn
H(t, x− y)f(y) dy =

∫
Rn

1

(4πt)n/2
e−|x−y|

2/(4t)f(y) dy.

The function H(t, x) is called the heat kernel. A priori this gives just a solution u
to the heat equation with initial condition f , though we will show that, given some
mild regularity conditions on u, that this is the unique such solution.

Note that for t > 0 we have the following about H(t, x):

(1) H(t, x) > 0 for all x, and
∫
Rn H(t, x) dx = 1.

(2) H(t, x) is smooth in both t and x (for t > 0).
(3) |H(t, x)| ≤ (4πt)−n/2 for all x.

Theorem 5.1. For u(t, x) = (H(t, ·) ∗ f)(x) with f ∈ S(Rn) (i.e. the solution of the
heat equation obtained in (1)) and t > 0, we have:

(1)
∫
Rn u(t, x) dx =

∫
Rn f(x) dx.

(2) u(t, x) is smooth in t and x.
(3) supx∈Rn |u(t, x)| ≤ (4π)−n/2‖f‖L1(Rn)t

−n/2.

Proof. (1) This follows from Observation 1 above by noting that for any f, g ∈
L1(Rn) we have∫

Rn
(f ∗ g)(x) dx =

∫
Rn

(∫
Rn
f(x− y)g(y) dy

)
dx

=

∫
Rn
g(y)

(∫
Rn
f(x− y) dx

)
dy

=

(∫
Rn
f(x) dx

)(∫
Rn
g(y) dy

)
.

(2) This follows from Observation 2 above, since in a convolution one can differ-
entiate on either factor.

(3) This follows from Observation 3 above and writing out the convolution as an
integral.

�

15In more detail: we note that e−t|ξ|
2

= e−〈A
−1ξ,ξ〉/2 for A−1 = 2tId =⇒ A = (2t)−1Id,detA =

(2t)−n. It follows that

̂e−|x|2/(4t) = ̂e−〈Ax,x〉/2 =
(2π)n/2

(detA)1/2
e−〈A

−1ξ,ξ〉/2 = (4πt)n/2e−t|ξ|
2

,

i.e. F−1(e−t|ξ|
2

) = 1
(4πt)n/2 e

−|x|2/(4t).
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Remark 7. The first observation can also be obtained using the equation for the
Fourier transform of u: indeed, note that û(t, 0) equals the integral of u(t, ·), and from

the formula for the Fourier transform, we see that û(t, 0) = e−|ξ|
2·0û(0, 0) = û(0, 0) is

constant in t.

We can also study how H(t, x) behaves as t → 0+, in hopes of studying how u(t, x)
behaves as t → 0+; ideally we want u(t, x) → f(x) in order to satisfy the initial
condition in the Cauchy problem. We note that if we study the pointwise convergence
behavior of H(t, x) that the behavior depends on whether we fix x at the origin or
away from the origin:

• If x 6= 0, then limt→0+ H(t, x) = 0. Indeed, even though there is a factor of
t−n/2 which could a priori blow up as t → 0, that factor is tempered by the
exponential factor e−|x|

2/(4t) which decays extremely fast, notably faster than
any inverse polynomial as t→ 0+ (since x 6= 0).
• On the other hand, for x = 0 we have H(0, x) = (4πt)−n/2 →∞ as t→ 0+.

This behavior can be described more precisely as follows:

Theorem 5.2. Viewing H(t, ·) ∈ S ′(Rn) for t > 0, we have H(t, ·) → δ as t → 0+.
Moreover, for u(t, ·) = (H(t, ·)) ∗ f , we have u(t, x)→ f(x) as t→ 0+, uniformly in
x if f ∈ S(Rn).

Proof. This is easiest to see using the Fourier transform: we note that Ĥ(t, ξ) =

e−|ξ|
2t → 1 in D′(Rn) as t→ 0+, so by the continuity of the (inverse) Fourier transform

we have H(t, x) = F−1Ĥ(t, ·) → F−1(1) = δ in S ′(Rn). For u(t, ·) = (H(t, ·)) ∗ f ,

we have û(t, ξ) = e−|ξ|
2tf̂(ξ), from which we see that û(t, ·) → f̂ in L1(Rn) by the

Dominated Convergence Theorem since f̂ ∈ L1(Rn) if f ∈ S(Rn). It follows that

u(t, x)− f(x) = (2π)−n
∫
Rn
eix·ξ(û(t, ξ)− f̂(ξ)) dξ ≤ (2π)−n‖û(t, ·)− f̂‖L1(Rn)

for any x ∈ Rn, and the latter quantity converges to 0 (independent of x) as t→ 0+,
as desired. �

5.3. Fundamental Solutions. We now take a small diversion to discuss fundamen-
tal solutions to differential operators.

Definition 5.3. Let P be a constant-coefficient differential operator on Rn. We say
that E ∈ D′(Rn) is a fundamental solution of P if PE = δ, where δ is the Dirac delta
on Rn.

Fundamental solutions play an important role for solving PDEs due to properties
of convolution: recall that u ∗ δ = u for any u ∈ D′(Rn), and P (u1 ∗ u2) = Pu1 ∗ u2 =
u1 ∗ (Pu2), assuming the convolution u1 ∗ u2 is defined. As such, suppose we have a
fundamental solution E, and we have f ∈ D′(Rn) such that the convolution u = f ∗E
makes sense (for example if f is compactly supported). Then we have

Pu = P (f ∗ E) = f ∗ (PE) = f ∗ δ = f.
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Thus, we have easily constructed (a) solution to the equation Pu = f by taking
u = f ∗ E.

Example 5.4. Let P = d
dx

on R. Then E(x) = H(x), the Heaviside function, is a
fundamental solution for P . Any other fundamental solution is of the form H(x) + c

for some c ∈ R (a notable example is c = −1, which gives H(x)− 1 =

{
−1 x ≤ 0

0 x > 0
).

Note then that if f is a compactly supported continuous function on R, then the
convolution

u(x) = (f ∗H)(x) =

∫
R
H(x− y)f(y) dy =

∫
R
1x≥yf(y) dy =

∫ x

−∞
f(y) dy

solves d
dx
u = f in the sense of distributions. This just follows from the Fundamental

Theorem of Calculus.

Example 5.5. Let P = ∆ =
∑n

j=1 ∂
2
xj

be the Laplacian on Rn. Then

E(x) =

{
c2 log(|x|) n = 2

cn|x|2−n n 6= 2

gives a fundamental solution to ∆, for some constants cn. (Note that these are all
locally integrable functions, and hence define distributions.)

In the case n = 3, interpreting u as electric potential, we then have ∆u = −ρ/ε0
where ρ is the charge density (which can be interpreted as a distribution, particularly
if the charges are viewed as point charges, i.e. Dirac deltas). Then u can be recovered
from ρ by

u(x) = (−ρ/ε0) ∗ (c3|x|−1).

If ρ is a continuous distribution, then u(x) =
∫
R3

ρ(y)
4πε0|x−y| dy, whereas if ρ is a point

charge with charge Q say at the origin, then u(x) = Q
4πε0|x| . Both of these are variants

of Coulomb’s law.

Definition 5.6. Suppose one of the variables in Rn is denoted t. For a constant-
coefficient differential operator P on Rn, a fundamental solution E of P is called
forward if supp E ⊂ {t ≥ 0}. It is called backward if supp E ⊂ {t ≤ 0}.

Example 5.7. For P = ∂t on R, the Heaviside functionH(t) is a forward fundamental
solution.

What can we do with this forward fundamental solution? Suppose we wanted to
solve the inhomogeneous Cauchy problem for P , which in this case just means solving

u′(t) = f(t) for t > 0, u(0) = u0 ∈ C.

One convoluted way to obtain a solution is to study the distribution u(t)1t≥0. Note
that we are allowed to convolve this distribution with H(t), since both distributions
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are supported in R+. Then, using various properties of convolutions, we have

u(t)1t≥0 = (u(t)1t≥0) ∗ δ = (u(t)1t≥0) ∗ ∂tH(t)

= ∂t [(u(t)1t≥0) ∗H(t)]

= (∂t (u(t)1t≥0)) ∗H(t)

= (∂tu(t)1t≥0) ∗H(t) + (u(t)∂t1t≥0) ∗H(t)

= (f1t≥0) ∗H + (u(t)δ0) ∗H(t)

= (f1t≥0) ∗H + u(0)δ0 ∗H = (f1t≥0) ∗H + u0H.

It follows that for t > 0 we should have

u(t) = ((f1t≥0) ∗H)(t) + u0 =

∫ t

0

f(s) ds+ u0.

This is of course just the Fundamental Theorem of Calculus. However, this gives
some motivation for how to tackle inhomogeneous problems for other operators, as
long as we can obtain a fundamental solution.

Next Lecture: Computing and applying the fundamental solution for the heat oper-
ator.
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6. Lecture 06 (04/14): The inhomogeneous heat equation and
uniqueness

6.1. The inhomogeneous heat equation. We now return to the heat equation
and ask: what is a fundamental solution for the heat operator, i.e. what distribution
E ∈ D′(Rn+1

t,x ) satisfies

∂tE −∆E = δ(0,0)?

For emphasis, we write δ(0,0) to point out that this is the Dirac delta of the origin
in Rn+1

t,x , i.e. of the space-time origin (not just in space).
Putting aside the question for a moment, let’s see how we can use such a hypo-

thetical fundamental solution. In fact, let’s suppose we have a forward fundamental
solution E. Let’s see if we can use it to solve the inhomogeneous heat equation

∂tu−∆u = f in (0,∞)× Rn, u(0, x) = g(x).

Following the same trick we used in the case of P = ∂t on R, we write16

u1t≥0 = (u1t≥0) ∗ δ(0,0) = (u1t≥0) ∗ (∂t −∆)E

= (∂t −∆) [(u1t≥0) ∗ E]

= ((∂t −∆) (u1t≥0)) ∗ E.

Here, the convolution is taken in Rn+1
t,x , i.e. with respect to both the t and x variables.

We split up the last term as follows:

∂t(u1t≥0) = (∂tu)1t≥0 + uδt=0

while

∆(u1t≥0) = (∆u)1t≥0

since the cutoff in t is independent of the spatial variables. It follows that

u1t≥0 = ((∂tu−∆u)1t≥0) ∗ E + (uδt=0) ∗ E = (f1t≥0) ∗ E + (gδt=0) ∗ E.
Note that if E were smooth17, then the convolutions can be evaluated pointwise for
t > 0 to give the integrals

((f1t≥0) ∗ E)(t, x) =

∫ t

0

∫
Rn
E(t− s, x− y)f(s, y) dy ds

and

(gδt=0) ∗ E =

∫
Rn
E(t, x− y)g(y) dy.

16One subtlety is justifying why the convolutions are well-defined. It turns out that the key
property here is the forward part of the fundamental solution: this guarantees that, when taking the
convolution, the integral in t is over a bounded interval. If the fundamental solution has sufficient
decay for large x, which a posteriori we can certainly arrange, then the convolution in the spatial
variables x makes sense against reasonable distributions in space-time; the forward part of the
fundamental solution then guarantees that the convolution in the t variable is over a compact region.

17E is definitely not everywhere smooth, given that a combination of its derivatives gives the
Dirac delta distribution.
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Hence, our solution u(t, x) should be given by

u(t, x) =

∫ t

0

∫
Rn
E(t− s, x− y)f(s, y) dy ds+

∫
Rn
E(t, x− y)g(y) dy.

In particular, if f ≡ 0, then u should be given by u(t, x) =
∫
Rn E(t, x− y)g(y) dy =

(E(t, ·)∗g)(x). But we already know how to solve that problem, namely u = H(t, ·)∗g.
This suggests that our fundamental solution E(t, ·) should be given by H(t, ·), at least
for t > 0. In addition, if E is a forward fundamental solution, then it should equal 0
for t < 0. This suggests considering

E(t, x) =

{
H(t, x) t > 0

0 t < 0
=

{
1

(4πt)n/2
e−|x|

2/(4t) t > 0

0 t < 0
.

Note then that E is locally integrable, and hence defines a distribution.

Theorem 6.1. With E defined above, we have that E is a forward fundamental
solution for P = ∂t −∆ on Rn+1

t,x .

Proof. The support properties are clear, so it suffices to verify that (∂t−∆)E = δ(0,0).
There are at least two ways to do so:

Method 1 : By definition, this involves verifying that (E,−∂tφ−∆φ) = φ(0, 0) for
all φ ∈ C∞c (Rn+1). This can be done by integrating E · (−∂tφ−∆φ) over (ε,∞)×Rn

for ε > 0, integrating by parts and noting that E solves the heat equation as a smooth
function in {t > ε}, and taking ε→ 0+. This will be an exercise on the homework.

Method 2 : Note that E is uniformly bounded outside compact subsets, so it in fact
defines a tempered distribution. We can then calculate (cf. Problem 6 on HW 1) that

Ê(ξ, τ) =
1

|ξ|2 + iτ
.

This implies that ̂(∂t −∆)E(ξ, τ) = (iτ+|ξ|2)Ê(ξ, τ) = 1 =⇒ (∂t−∆)E = F−1(1) =
δ(0,0). �

As such, we have

Theorem 6.2. Suppose f ∈ C∞c (R1+n) and g ∈ S(Rn). Then
(2)

u(t, x) =

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−|x−y|

2/(4(t−s))f(s, y) dy ds+

∫
Rn

1

(4πt)n/2
e−|x−y|

2/(4t)g(y) dy

solves the inhomogeneous heat equation (∂t−∆)u = f in (0,∞)×Rn, u(0, x) = g(x).

Remark 8. This process of using the solution operator to the homogeneous equation
and convolving it (in time, not just in space) to solve the inhomogeneous equation is
part of a general method called Duhamel’s principle.
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6.2. Sobolev spaces and solutions with less regular initial data.

Definition 6.3. For s ∈ R, the (L2-based) Sobolev space of order s on Rn, denoted
Hs(Rn), consists of all tempered distributions u ∈ S ′(Rn) such that (1 + |ξ|2)s/2û, a
priori well-defined as a tempered distribution, is in fact in L2(Rn). More colloquially,
u ∈ Hs(Rn) if ∫

Rn
(1 + |ξ|2)s|û(ξ)|2 dξ <∞.

The square root of the above integral is called the Hs norm.

For example, H0(Rn) = L2(Rn), and for k ∈ N, Hk(Rn) coincides with the space of
u ∈ L2(Rn) whose distributional derivatives ∂αu are also in L2, i.e. can be identified
with an L2 function, for all |α| ≤ k. The Dirac delta δ belongs to Hs(Rn) for any
s < −n/2, as its Fourier transform is identically 1, and (1+|ξ|2)s is integrable precisely
when s < −n/2.

Some important facts:

• Hs(Rn) ⊂ C0(Rn) for s > n/2.
• ∂α : Hs(Rn)→ Hs−|α|(Rn).
• We have S(Rn) ⊂ ∩s∈RnHs(Rn) ⊂ C∞(Rn).

(The third fact in fact follows from the first two.)
We now note that, for g ∈ Hs(Rn) for any s ∈ R, the convolution u(t, x) =

(H(t, ·) ∗ g)(x) gives a smooth solution to the homogeneous heat equation for t > 0,
with limt→0 u(t, ·) = g (say in the Hs(Rn) norm or in S ′(Rn)). To see that u is
smooth in t > 0, we can show that u(t, ·) ∈ Hs′(Rn) for any s′ ∈ R (so that u(t, ·) ∈
∩s′Hs′(Rn) ⊂ C∞(Rn), by noting that for any s′ ∈ R we have

(1+|ξ|2)s
′/2û(t, ξ) = (1+|ξ|2)s

′/2e−|ξ|
2tĝ(ξ) =

(
(1 + |ξ|2)(s′−s)/2e−|ξ|

2t
)

(1+|ξ|2)s/2ĝ(ξ),

with the prefactor (1 + |ξ|2)(s′−s)/2e−|ξ|
2t uniformly bounded for any s, s′ if t > 0 due

to the Gaussian decay of the e−|ξ|
2t factor. Thus (1 + |ξ|2)s

′/2û(t, ξ) is a bounded
factor times (1 + |ξ|2)s/2ĝ which is in L2 by assumption, i.e. u(t, ·) ∈ Hs′(Rn) for any
s′. We thus summarize as follows:

Theorem 6.4. For g ∈ Hs(Rn), there exists a solution u(t, x) to the heat equation
which is smooth in (t, x) for t > 0, such that limt→0 u(t, ·) = g with respect to the Hs

norm, namely given by u(t, x) = (H(t, ·) ∗ g)(x).

Remark 9. The fact that u is immediately smooth for t > 0, even if the initial
condition g is not smooth, is an effect called the instantaneous smoothing effect for
the heat equation.

6.3. Uniqueness. We finally address an issue sidestepped so far, which is whether
the solution to the heat equation we obtained via convolution with the fundamental
solution is the unique solution to the heat equation. Having uniqueness allows us to
conclude that the properties we derive with the explicit formula are meaningful for
the equation as a whole, in the sense that there are no “other” solutions (that we
want to consider) where our approach using the explicit formula doesn’t work.
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In general, a mild a priori assumption on the functions being considered will be
necessary (see the end of this section for a counterexample without such restrictions).
We present two situations, as follows.

If F is a topological vector space space, we can consider functions f : I → F where
I is an interval in R. For t0 in the interior of I, we can say that f is differentiable at

t0 if the limit f(t0+h)−f(t0)
h

exists in F as h→ 0 (the derivative can then be defined as

this limit). We then let Ck(I;F ) denote the space of functions f : I → F which are
k times differentiable which are all continuous (w.r.t. the topology on F ).

Theorem 6.5. Let f ∈ C∞c (R1+n) and g ∈ L1(Rn). Then the function defined in (2)
is the unique solution of the inhomogeneous heat equation

(∂t −∆)u = f in (0,∞)× Rn, u(0, x) = g(x)

among functions u in C1([0,∞);L1(Rn)).

Proof. It suffices to assume that f = 0 and g = 0, since for general f and g we see
that if u1 and u2 both solve the same equation, then v = u1−u2 solves (∂t−∆)v = 0,
v(0, x) = 0. Now, since u(t, ·) belongs in L1(Rn) for all t ≥ 0 and varies continuously
differentiably in t, it follows that û(t, ξ) is continuous in ξ for each t, and it is C1

in t for each ξ (essentially since the assumptions allow us to differentiate under the
integral). Thus, we see that for each ξ ∈ Rn the Fourier transform must satisfy

∂tû(t, ξ) = −|ξ|2û(t, ξ), û(0, ξ) = 0.

By uniqueness of 1st-order ODE, it follows that we must have û(t, ξ) = 0 for all (t, ξ),
i.e. u(t, ·) ≡ 0 for each t ≥ 0, as desired. �
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7. Lecture 07 (04/19): Maximum Principle and Regularity

7.1. Maximum Principle. Recall : Last lecture we derived a uniqueness result for
the heat equation, using the Fourier transform.

A different approach of obtaining uniqueness involves the maximum principle. We
consider a bounded set U and a bounded time interval [0, T ], and ask: if u solves the
heat equation, where does u attain its maximum value on U × [0, T ]?

Theorem 7.1 (Maximum Principle for Bounded Domains). Let u ∈ C2((0, T ]×U)∩
C0([0, T ]× U), and suppose ∂tu−∆u = 0 in (0, T )× U . Then

max
(t,x)∈[0,T ]×U

u(t, x) = max

(
max

(t,x)∈[0,T ]×∂U
u(t, x),max

x∈U
u(0, x)

)
,

i.e. ([0, T ]×∂U)∩({0}×U) contains a point which maximizes u over all of [0, T ]×U .

As a consequence, we have

Corollary 7.2. If ∂tu−∆u = 0 in (0, T )×U , u(t, x) = 0 for all (t, x) ∈ [0, T ]× ∂U ,
and u(0, x) = 0 for all x ∈ U , then u ≡ 0 on U × [0, T ].

This follows by applying the maximum principle to both u and −u to conclude
that max[0,T ]×U(±u) = 0.

Proof of Maximum Principle. For ε > 0, let uε(t, x) = u(t, x) + ε|x|2. Then

∂tuε −∆uε = ∂tu−∆u− 2nε = −2nε < 0

in (0, T )× U . I now claim that the maximum principle holds for uε, i.e. that

max
(t,x)∈[0,T ]×U

uε(t, x) = max

(
max

(t,x)∈[0,T ]×∂U
uε(t, x),max

x∈U
uε(0, x)

)
.

To see this, suppose (t0, x0) maximized uε in [0, T ]×U . If (t0, x0) ∈ (0, T )×U (i.e. in
the interior in both space and time), then necessarily we must have ∂tuε(t0, x0) = 0
(interior critical point), and ∆uε(t0, x0) ≤ 0 (since the Hessian D2uε cannot have any
positive eigenvalues due to being an interior local minimum, and ∆uε = tr D2uε). In
particular this would give (∂tuε−∆uε)(t0, x0) ≥ 0, contradicting the calculation that
∂tuε−∆uε < 0 in (0, T )×U . Similarly, if t0 = T and x0 ∈ U , then we necessarily must
have ∂tu(t0, x0) ≥ 0 (otherwise there is a larger value for smaller t), and ∆uε(t0, x0) ≤
0 (for the same reasons as above), so we’d still have (∂tuε − ∆uε)(t0, x0) ≥ 0, a
contradiction. It follows that either x0 ∈ ∂U or t0 = 0, thus showing the maximum
principle holds for uε.

Since U is bounded, we have that C = maxU |x|2 is finite. In particular, note that

u(t, x) ≤ uε(t, x) ≤ u(t, x) + εC

for all (t, x) ∈ [0, T ]× U . Thus, we have

max
(t,x)∈[0,T ]×U

u(t, x) ≤ max
(t,x)∈[0,T ]×U

uε(t, x),
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while
max

(t,x)∈∂U×[0,T ]
(uε(t, x)) ≤ max

(t,x)∈∂U×[0,T ]
(u(t, x)) + εC,

and similarly
max
x∈U

uε(0, x) ≤ max
x∈U

u(0, x) + εC.

It follows that

max
(t,x)∈[0,T ]×U

u(t, x) ≤ max

(
max

(t,x)∈[0,T ]×∂U ]
u(t, x),max

x∈U
u(0, x)

)
+ εC.

Taking ε→ 0+ gives the desired statement. �

Remark 10. This formulation is sometimes called the weak maximum principle. A
strong maximum principle also holds, which gives that the maximum cannot be at-
tained in the interior unless the function is constant. For instance, the proof above
shows that a function satisfying ∂tu−∆u < 0 satisfies the strong maximum principle,
but it is a priori not clear that the same holds passing to the limit (in this case it is
true).

When the spatial domain U is unbounded, the maximum principle still holds with
mild assumptions:

Theorem 7.3 (cf. [Eva10] Section 2.3, Theorem 6). Suppose u ∈ C2((0, T ]× Rn)×
C0([0, T ] × Rn) solves ∂tu − ∆u = 0 in (0, T ) × Rn, with u(0, x) = g(x) ∈ L∞(Rn).
Suppose as well that u satisfies the growth estimate

u(t, x) ≤ Aea|x|
2

for all x ∈ Rn, t ∈ [0, T ]

for some constants A, a > 0. Then

sup
[0,T ]×Rn

u = sup
Rn

g.

Proof sketch. Suppose first that T is small enough to satisfy 4aT < 1. Then, for any
µ > 0 and any sufficiently small ε > 0, the function

vµ(t, x) = u(t, x)− µ

(T + ε− t)n/2
e|x−y|

2/(4(T+ε−t))

also solves the heat equation by direct computation and is sufficiently negative (no-
tably less than supRn g) for sufficiently large values of |x| independent of t due to the
growth estimate on u (the required lower bound depends on a, A, T , ε, and µ). We
can then show that sup[0,T ]×Rn vµ ≤ supRn g, by combining the maximum principle
on a sufficiently large ball in Rn and the fact that vµ was constructed to be less than
supRn g outside large enough balls. Letting µ → 0 then gives the desired result. If
4aT ≥ 1, split up [0, T ] into subintervals whose lengths are less than 1/(4a), and
iterate the argument on each subinterval. �

Corollary 7.4. For g ∈ C(Rn) and f ∈ C([0, T ]×Rn), there is at most one solution
u ∈ C2((0, T ]× Rn) ∩ C([0, T ]× Rn) to the inhomogeneous heat equation

ut −∆u = f in (0, T )× Rn, u(0, x) = g(x) on Rn.
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Remark 11. Without the growth condition u(t, x) ≤ Aea|x|
2
, one can obtain examples

of non-uniqueness. In particular, there exists a non-zero smooth function u(t, x)
solving the heat equation with zero initial data. Indeed, the power series

u(t, x) =
∞∑
n=0

g(n)(t)
x2n

(2n)!

for g : R→ R smooth formally solves the heat equation; by choosing g appropriately
(e.g. g(t) = e−1/tH(t)) one can arrange for the above series to converge and vanish
only for t ≤ 0.

7.2. Regularity. We now consider parabolic regularity estimates. These amount to
asking: if we know the “right-hand sides” of the inhomogeneous heat equation (i.e.
given a solution u we know f = ∂tu − ∆u and g(x) = u(0, x)), can we estimate
derivatives of u by corresponding derivatives of the right-hand sides?

Theorem 7.5. Suppose u is a smooth solution to

∂tu−∆u = f in (0, T ]× Rn, u|t=0 = g,

with f(t, ·), g ∈ L2(Rn) for all 0 < t ≤ T , and u(t, ·) decays sufficiently quickly for all
t. Then, there exist constants CT , C

′
T , C

′′
T such that:

(1) max0≤t≤T ‖u(t)‖L2(Rn) ≤ CT
(
‖f‖L2([0,T ]×Rn) + ‖g‖L2(Rn)

)
.

(2) ‖u‖L2([0,T ];H1(Rn)) ≤ C ′T
(
‖f‖L2([0,T ]×Rn) + ‖g‖L2(Rn)

)
.

(3) ‖∂tu‖L2([0,T ];H−1(Rn)) ≤ C ′′T
(
‖f‖L2([0,T ]×Rn) + ‖g‖L2(Rn)

)
.

Remark 12. In [Eva10] (e.g. Theorem 2 in Section 7.1.2), this is stated as a single
estimate on the sum of the three items above, i.e.(

max
0≤t≤T

‖u(t)‖L2(Rn)

)
+ ‖u(t)‖L2([0,T ];H1(Rn)) + ‖∂tu(t)‖L2([0,T ];H−1(Rn))

≤ C
(
‖f‖L2([0,T ]×Rn) + ‖g‖L2(Rn)

)
for some C. This is equivalent to obtaining each of the three estimates above sepa-
rately. The single estimate is certainly a more concise way to state the result, but it
may be more useful to think about each estimate separately.

Proof. (1) Multiplying the differential equation by u and integrating in x gives∫
Rn
u(t, x)ut(t, x)− u(t, x)∆u(t, x) dx =

∫
Rn
f(t, x)u(t, x) dx.

We now note that uut = 1
2
∂t(|u|2), so∫

Rn
u(t, x)ut(t, x) dx =

∫
Rn

1

2
∂t(|u(t, x)|2) dx = ∂t

(
1

2
‖u(t, ·)‖2

L2(Rn)

)
.
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On the other hand, we have Green’s first identity : for any u, v smooth and
any bounded open subset U we have∫

U

u∆v dx =

∫
U

udiv (∇v) dx =

∫
U

div (u∇v)−∇u · ∇v dx

=

∫
∂U

u(∇v · ν) dS −
∫
U

∇u · ∇v dx.

In particular, if u and v decay sufficiently quickly at infinity, so that the
boundary integral can be made arbitrarily small by taking U to be a sufficiently
large ball, we have∫

Rn
u∆v dx = −

∫
Rn
∇u · ∇v dx.

Thus, we have

(3)
1

2
∂t

(
‖u(t, ·)‖2

L2(Rn)

)
+

∫
Rn
|∇u(t, x)|2 dx =

∫
Rn
f(t, x)u(t, x) dx.

In particular,

1

2
∂t

(
‖u(t, ·)‖2

L2(Rn)

)
≤
∫
Rn
f(t, x)u(t, x) dx

≤ ‖u(t)‖L2(Rn)‖f(t)‖L2(Rn)

≤ 1

2
‖u(t)‖2

L2(Rn) +
1

2
‖f(t)‖2

L2(Rn).

Recall:

Lemma 7.6 (Gronwall’s inequality). Suppose y(t) satisfies the differential
inequality

y′(t) ≤ a(t)y(t) + b(t)

for some functions a(t), b(t). Then

y(t) ≤ e
∫ t
0 a(s) ds

(
y(0) +

∫ t

0

e−
∫ s
0 a(r) drb(s) ds

)
.

Applying Gronwall’s inequality to y(t) = ‖u(t)‖2
L2(Rn) thus yields

‖u(t)‖2
L2(Rn) ≤ et

(
‖u(0)‖2

L2(Rn) +

∫ t

0

e−s‖f(s)‖2
L2(Rn) ds

)
≤ eT

(
‖g‖2

L2(Rn) +

∫ T

0

‖f(s)‖2
L2(Rn)2 ds

)
= eT

(
‖f‖L2([0,T ]×Rn) + ‖g‖L2(Rn)

)
.

From the inequality (a2 + b2)1/2 ≤ (a+ b)/
√

2, we see that

max
0≤t≤T

‖u(t)‖L2(Rn) ≤ CT
(
‖f‖L2([0,T ]×Rn) + ‖g‖L2(Rn)

)
holds with CT = eT/2/

√
2.
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(2) From (3), integrating from 0 to T yields

1

2

(
‖u(T )‖2

L2(Rn) − ‖u(0)‖2
L2(Rn)

)
+

∫ T

0

∫
Rn
|∇u(t, x)|2 dx dt =

∫ T

0

∫
Rn
f(t, x)u(t, x) dx dt.

Thus

‖u‖2
L2([0,T ];H1(Rn)) =

∫ T

0

‖u(t)‖2
L2(Rn) + ‖∇u(t)‖2

L2(Rn) dt

=

∫ T

0

‖u(t)‖2
L2(Rn) dt+

1

2
(‖u(0)‖2

L2(Rn) − ‖u(T )‖2
L2(Rn)) +

∫ T

0

∫
Rn
f(t, x)u(t, x) dx dt

≤ ‖u‖2
L2([0,T ]×Rn) +

1

2
‖g‖2

L2(Rn) + ‖f‖L2([0,T ]×Rn)‖u‖L2([0,T ]×Rn)

≤ 3

2
‖u‖2

L2([0,T ]×Rn) +
1

2
‖g‖2

L2(Rn) +
1

2
‖f‖2

L2([0,T ]×Rn).

We now note that

‖u‖2
L2([0,T ]×Rn) =

∫ T

0

‖u(t)‖2
L2(Rn) dt

≤ T max
0≤t≤T

‖u(t)‖2
L2(Rn)

≤ TeT
(
‖f‖L2([0,T ]×Rn) + ‖g‖L2(Rn)

)
.

It follows that

‖u‖2
L2([0,T ];H1(Rn)) ≤

(
1

2
+ TeT

)(
‖f‖L2([0,T ]×Rn) + ‖g‖L2(Rn)

)
,

i.e. ‖u‖L2([0,T ];H1(Rn)) ≤ C ′T
(
‖f‖L2([0,T ]×Rn) + ‖g‖L2(Rn)

)
holds for C ′T =

(
TeT+1/2

2

)1/2

.

(3) This follows upon noting, for each t, that

‖∂tu(t)‖H−1(Rn) = ‖∆u(t) + f(t)‖H−1(Rn)

≤ ‖∆u(t)‖H−1(Rn) + ‖f(t)‖H−1(Rn)

≤ ‖u(t)‖H1(Rn) + ‖f(t)‖L2(Rn).

Squaring and integrating in t between 0 and T yields the desired result.
�

In short, we obtain estimates on u and some derivatives on u, by multiplying the
PDE that u satisfies by itself and integrating in space.

We can obtain another kind of estimate by doing similar manipulations, but starting
with the PDE and squaring it instead: again assuming that u decays sufficiently
quickly, we have∫

Rn
|f(t, x)|2 dx =

∫
Rn

(∂tu(t, x)−∆u(t, x))2 dx

= ‖∂tu(t)‖2
L2(Rn) − 2

∫
Rn
∂tu(t, x)∆u(t, x) dx+ ‖∆u(t)‖2

L2(Rn).
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We now note that∫
Rn
∂tu(t, x)∆u(t, x) dx = −

∫
Rn
∇(∂tu)(t, x) · ∇u(t, x) dx

= −1

2
∂t

(
‖∇u(t)‖2

L2(Rn)

)
.

We also have

Lemma 7.7. Suppose u ∈ H2(Rn). Then

‖∆u‖2
L2(Rn) =

n∑
i,j=1

‖∂i∂ju‖2
L2(Rn).

(Note that if we define |D2u|2 :=
∑n

i,j=1 |∂i∂ju|2, then the latter quantity can be

written as ‖D2u‖2
L2(Rn).)

It follows that

‖f(t)‖2
L2(Rn) = ‖∂tu(t)‖2

L2(Rn) + ∂t

(
‖∇u(t)‖2

L2(Rn)

)
+ ‖D2u‖2

L2(Rn).

Following similar logic to the above regularity result, we have:

Theorem 7.8. Suppose u is a smooth solution to

∂tu−∆u = f in (0, T ]× Rn, u|t=0 = g,

with f(t, ·) ∈ L2(Rn) for all 0 < t ≤ T , g ∈ H1(Rn), and u(t, ·) decays sufficiently
quickly for all t. Then, there exist constants CT , C

′
T , C

′′
T such that:

(1) max0≤t≤T ‖∇u(t)‖L2(Rn) ≤ CT
(
‖f‖L2([0,T ]×Rn) + ‖g‖H1(Rn)

)
.

(2) ‖∂tu‖L2([0,T ]×Rn) ≤ C ′T
(
‖f‖L2([0,T ]×Rn) + ‖g‖H1(Rn)

)
.

(3) ‖D2u‖L2([0,T ]×Rn) ≤ C ′′T
(
‖f‖L2([0,T ]×Rn) + ‖g‖H1(Rn)

)
.
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8. Lecture 08 (04/21): Parabolic regularity on bounded domains

8.1. Heat equation on bounded domains. We now turn our attention to the heat
equation, and more general parabolic equations, on bounded domains U ⊂ Rn. We
assume the following:

Assumption 8.1. There exists a collection of functions {wk}∞k=1 such that:

• Each wk ∈ C∞(U).
• The collection {wk}∞k=1 forms an orthonormal basis18 for L2(U).
• Each wk is an eigenfunction of −∆, say of eigenvalue λk. Furthermore, we

assume there exist positive constants c, α, and N such that

λk ≥ ckα for all k ≥ N.

As we’ll see shortly, these assumptions are always satisfied, but the choice of func-
tions {wk} is far from unique.

Given these assumptions, we note the following: a solution to the problem

∂tu−∆u = 0 in (0,∞)× U, u(0, x) = g(x) on U

is given by

u(t, x) =
∞∑
k=1

e−λkt(g, wk)L2(u)wk(x).

Note that the assumptions of wk ∈ C∞(U) and the growth rate of λk guarantee that u
is in fact smooth on (0,∞)×U (i.e. smooth in (0,∞)×U with derivatives continuous
up to (0,∞)× ∂U).

Example 8.2. Let U = (0, 1) ⊂ R. Examples of collections of {wk} which satisfy
our assumptions include:

(1) wk(x) =
√

2 sin(kπx), in which case λk = π2k2 (corresponding to “Dirichlet
boundary conditions”).

(2) wk(x) =

{
1 k = 0√

2 cos(kπx) k ≥ 1
, in which case λk = π2k2 (corresponding to

the “Neumann boundary conditions”)19.
(3) wk(x) = e2πikx for k ∈ Z, in which case λk = 4π2k2 (corresponding to “periodic

boundary conditions”)20.

18Recall this means that the collection {wk} is orthonormal, and for every f ∈ L2(U) can be
written as a convergent series f =

∑∞
k=1 fkwk for some sequence of numbers {fk}, where the series

converges in L2(U). The last condition can be rephrased as saying that the algebraic span of these
functions (i.e. collections of finite linear combinations of wk) is dense in L2(U).

19For purposes of ordering, we can consider k 7→ wk+1.

20For purposes of ordering, we can consider k 7→

{
wk/2 k even

w−(k+1)/2 k odd
, or instead consider peri-

odic sines and cosines.
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We’ll focus on the Dirichlet condition. This roughly means we want to only consider
functions where “u(t, x) = 0 when x ∈ ∂U .” To do so, we need to consider some
Sobolev spaces associated to U :

Definition 8.3. The H1 norm on U (definable e.g. on C∞(U)) is given by

‖u‖H1(U) :=
(
‖u‖2

L2(u) + ‖∇u‖2
L2(U)

)1/2

.

The space H1
0 (U) is defined as the closure of C∞c (U) with respect to the H1(U) norm;

this is a Banach space with respect to the H1 norm (sometimes called the H1
0 norm

in this context).

Remark 13. We can also define H1(U), either via an extrinsic characterization (u ∈
H1(U) ⇐⇒ u ∈ L2(U), ∂ju ∈ L2(U) for all j), or define it as a completion anal-
ogously to the above definition, in which case H1(U) is the completion of C∞(U)
with respect to the H1 norm. For bounded open sets U , an important fact is that
H1

0 (U) ( H1(U); the subscript 0 heuristically corresponds to the property of “u = 0
on ∂U” (i.e. the Dirichlet boundary condition).

Note that H1
0 (U) has the structure of a Hilbert space under the inner product

〈u, v〉H1
0 (U) = 〈u, v〉L2(U) + 〈∇u,∇v〉L2(U).

Moreover, for u, v ∈ C∞c (U), integration by parts gives

〈∇u,∇v〉L2(U) = 〈u, (−∆)v〉L2(U),

so for u ∈ C∞c (U) we have

‖u‖2
H1

0 (U) = ‖u‖2
L2(U) + 〈u,−∆u〉L2(U).

By density, the above result still holds for u ∈ C2(U)∩H1
0 (U). In particular, functions

in C2(U)∩H1
0 (U) have the property that their H1 norm is controlled by the L2 norms

of u and ∆u (this is not true for functions in H1(U) in general.)
An important fact is:

Theorem 8.4. Let U be bounded open (with smooth boundary?). Then −∆ admits
a sequence of eigenfunctions {wk} which all lie in H1

0 (U), with the corresponding
eigenvalues λk → +∞. Moreover, each wk ∈ C∞(U).

Corollary 8.5. For any g ∈ L2(U), there exists a solution u(t, x) to the heat equation
∂tu − ∆u = 0 in U which is smooth on (0,∞)t × U such that u(t, x) = 0 on
(0,∞)t × ∂U and u(t, ·)→ g in L2(U) as t→ 0+.

Definition 8.6. The space H−1(U) is defined as the dual space of H1
0 (U). This is a

Hilbert space, with respect to the norm

‖u‖H−1(U) := sup
v∈H1

0 (U),‖v‖
H1
0(U)

=1

|(u, v)|.
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Since C∞c (U) is contained in, and in fact is a dense subspace of, H1
0 (U), it follows

that there is a continuous inclusion H−1(U) ↪→ D′(U) by identifying u ∈ H−1(U) with
its restriction on C∞c (U). (Note that there abstractly exists an isometric isomorphism
between H−1(U) and H1

0 (U), but we will choose not to use that isomorphism to
identify H−1(U) and H1

0 (U); instead we identify H−1(U) with a subspace of D′(U).)

8.2. General parabolic operators: the Galerkin method. We consider a gen-
eral initial-value/Dirichlet boundary parabolic problem

(4)

∂tu+ Lu = f in (0, T ]× U,
u = 0 on [0, T ]× ∂U,
u = g on {0} × U.

Here, L is a elliptic differential operator, written in divergence form

Lu = −
n∑

i,j=1

∂xj
(
aij(t, x)∂xiu

)
+

n∑
i=1

bi(t, x)∂xiu+ c(t, x)u

with21 aij, bi, c ∈ L∞([0, T ]× U) and

n∑
i,j=1

aij(t, x)ξiξj ≥ θ|ξ|2

for all (t, x) ∈ (0, T ) × U for some θ > 0 (i.e. the second order spatial derivative
component of L is uniformly elliptic).

Let L(t) denote the operator L, viewed as an operator on U , where the coefficients
are frozen at some t. For u, v ∈ H1

0 (U), let

B[u, v; t] := (L(t)u, v)L2(U).

Then, an integration by parts arguments gives

B[u, v; t] =

∫
U

n∑
i,j=1

aij(t, x)∂xiu(x)∂xjv(x) +
n∑
i=1

bi(t, x)∂xiu(x)v(x) + c(t, x)u(x)v(x) dx

(the condition of u, v ∈ H1
0 (U) means we do not need to consider a boundary term

in integration by parts). Note that if u solves our problem (4), say in the sense of
distributions, and is sufficiently regular, say with u(t) ∈ H1(U) for each t (in which
case it would be in H1

0 (U) due to the Dirichlet boundary condition), and v ∈ H1
0 (U),

the integration by parts would give

(∂tu(t), v)L2(U) +B[u(t), v; t] = (f(t), v)L2(U)

for all t.
One can check:

21This convention has changed from the original convention introduced in class. See Remark 15
for more details.
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Lemma 8.7 (cf. [Eva10] Section 6.2.2 Theorem 2). We have the upper bound

|B[u, v; t]| ≤ α‖u‖H1
0 (U)‖v‖H1

0 (U)

and the lower bound
B[u, u; t] ≥ β‖u‖2

H1
0 (U) − γ‖u‖

2
L2(U)

for some α, β > 0 and γ ≥ 0, uniform in t.

(The first estimate is standard; the second estimate uses the uniform ellipticity of
the coefficients aij.)

It thus follows that we would have

|(∂tu(t), v)L2(U)| ≤ α‖u(t)‖H1
0 (U)‖v‖H1

0 (U) + ‖f(t)‖L2(U)‖v‖L2(U)

≤ Cu,f‖v‖H1
0 (U),

so that in particular ∂tu(t) defines a continuous linear map on H1
0 (U) via the L2-

pairing, i.e. ∂tu(t) ∈ H−1(U). This motivates the notion of weak solution that we’ll
work with in this problem:

Definition 8.8. Let u ∈ L2([0, T ];H1
0 (U)) with ∂tu ∈ L2([0, T ];H−1(U)). We say

that u is a weak solution to the problem (4), i.e. the problem

∂tu+ Lu = f in (0, T ]× U,
u = 0 on [0, T ]× ∂U,
u = g on {0} × U,

if (∂tu(t), v)L2(U) +B[u(t), v; t] = (f(t), v)L2(U) for almost every22 0 ≤ t ≤ T and every
v ∈ H1

0 (U), and u(0) = g as well.

Remark 14. The assumptions on u in the definition actually give that u ∈ C0([0, T ];L2(U))
(possibly after redefining u on a measure zero set of times), so the condition u(0) = g
does make sense.

The goal now is to prove well-posedness results for weak solutions of the problem
(4), i.e.:

• Existence of a weak solution for any f ∈ L2([0, T ]× U) and g ∈ L2(U).
• Uniqueness of weak solutions.
• Energy/regularity estimates on weak solutions.

These will be done via Galerkin approximations, which reduce the problem to
studying problems on a finite-dimensional space of functions, and taking the limit.

Recall Assumption 8.1; in particular the existence of a smooth orthonormal basis
{wk} for L2(U). Let Vm = span {w1, . . . , wm}.

Theorem 8.9 (cf. [Eva10] Section 7.1.2, Theorem 1). Let f ∈ L2([0, T ] × U), g ∈
L2(U), and m ∈ N. Then there exists a unique um ∈ C1([0, T ];Vm) which satisfies

(∂tum(t), v)L2(U) +B[um(t), v; t] = (f(t), v)L2(U), (um(0), v)L2(U) = (g, v)L2(U)

22This convention has changed from the original convention introduced in class. See Remark 15
for more details.
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for all v ∈ Vm.

Proof. Writing um(t) =
∑m

k=1 d
k(t)wk, we then get

m∑
k=1

(dk)′(t)(wk, v) + dk(t)B[wk, v; t] = (f(t), v)L2(U).

Writing f l(t) = (f(t), wl), it follows by plugging in v = wl for 1 ≤ l ≤ m that

(dl)′(t) +
m∑
k=1

B(wk, wl; t)d
k(t) = f l(t).

This gives a system of m first-order ODEs, so by ODE theory there exists a unique
C1 solution (d1, . . . , dm), upon providing the initial data dl(0) = (g, wl). �

Next lecture : Regularity estimates on the Galerkin approximations, applied to
obtain well-posedness results for weak solutions of problem (4).
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9. Lecture 09 (04/26): Well-posedness of weak solutions via the
Galerkin method

9.1. Clarification on conventions. First, a clarification regarding definitions:

Remark 15. In class, during Lecture 08, I originally defined a weak solution as satis-
fying the pairing equation

(∂tu(t), v)L2(U) +B[u(t), v; t] = (f(t), v)L2(U)

for every 0 ≤ t ≤ T . This differed from the convention in [Eva10], Section 7.2, where
he required the condition hold only for almost every 0 ≤ t ≤ T . I had originally
justified this by assuming that the coefficients aij, bi, c involved the in the operator
L were continuous up to the boundary.

It turns out that the “almost every” t condition shows up in many different places,
and that it is much easier to incorporate that as part of the definition rather than
trying to avoid it. As such, I will revert to the conventions of [Eva10]. Thus, the
pairing condition should hold for almost every 0 ≤ t ≤ T , and the coefficients aij,
bi, c only need to be uniformly bounded on [0, T ]×U . (The change has been reflected
in the lecture notes in the previous section.)

We continue to work with Assumption 8.1. Thus, let {wk}∞k=1 be an orthonormal
basis for L2(U), such that each wk ∈ C∞(U), and each wk is an eigenfunction of −∆.
For the Dirichlet problem, we’ll make a further assumption:

each wk ∈ H1
0 (U) as well.

This is possible due to Theorem 8.4. Note in that case that {wk} also forms an
orthogonal basis of H1

0 (U), since

(u, v)H1
0 (U) = (u, v)L2(U) + (u, (−∆)v)L2(U)

for u, v ∈ H1
0 (U).

9.2. Galerkin approximation regularity and existence of weak solution.
From last time: given f ∈ L2([0, T ] × U), g ∈ L2(U), and m ∈ N. Then there
exists a unique “Galerkin approximation” um ∈ C1([0, T ];Vm) which satisfies

(∂tum(t), v)L2(U) +B[um(t), v; t] = (f(t), v)L2(U), (um(0), v)L2(U) = (g, v)L2(U)

for all v ∈ Vm, where Vm = span {w1, . . . , wm}.
We also have a regularity estimate for these Galerkin approximations:

Theorem 9.1 (cf. [Eva10] Section 7.1.2, Theorem 2). Let um(t) ∈ Vm be the unique
solution obtained above. Then we have estimates

max
t∈[0,T ]

‖um(t)‖L2(U) + ‖um‖L2([0,T ];H1
0 (U)) + ‖∂tum‖L2([0,T ];H−1(U))

≤ C(‖f‖L2([0,T ]×U) + ‖g‖L2(U)),

where the constant C is independent of m.
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Proof. The proof is similar to the proof of Theorem 7.5. Applying the weak formula-
tion to um(t), we see that

(5)
1

2
∂t

(
‖um(t)‖2

L2(U)

)
+B[um(t), um(t); t] = (f(t), um(t))L2(U).

Recall from Lemma 8.7 that we have a lower bound

B[u, u; t] ≥ β‖u‖2
H1

0 (U) − γ‖u‖
2
L2(U)

for some β > 0 and γ ≥ 0. It follows that

1

2
∂t

(
‖um(t)‖2

L2(U)

)
≤ (f(t), um(t))L2(U) −B[um(t), um(t); t]

≤ (f(t), um(t))L2(U) − β‖um(t)‖2
H1

0 (U) + γ‖um(t)‖2
L2(U)

≤ 1

2
‖f(t)‖2

L2(U) +

(
1

2
+ γ

)
‖um(t)‖2

L2(U).

By Gronwall’s Lemma, we thus have

‖um(t)‖2
L2(U) ≤ e(1+γ)t

(
‖um(0)‖2

L2(U) +

∫ t

0

e−(1+γ)s‖f(s)‖2
L2(U) ds

)
.

It follows that

max
t∈[0,T ]

‖um(t)‖2
L2(U) ≤ e(1+γ)T

(
‖f‖2

L2([0,T ]×U) + ‖g‖2
L2(U)

)
,

which gives the first part of the estimate. Moreover, from (5), we also have

1

2
∂t

(
‖um(t)‖2

L2(U)

)
+ β‖um(t)‖2

H1
0 (U) − γ‖um(t)‖2

L2(U)

≤ 1

2
∂t

(
‖um(t)‖2

L2(U)

)
+B[um(t), um(t); t] = (f(t), um(t))L2(U)

and hence

1

2
∂t

(
‖um(t)‖2

L2(U)

)
+ β‖um(t)‖2

H1
0 (U) ≤ γ‖um(t)‖2

L2(U) + (f(t), um(t))L2(U)

≤ 1

2
‖f(t)‖L2(U) +

(
γ +

1

2

)
‖um(t)‖2

L2(U).

Integrating from t = 0 to t = T thus yields

1

2

(
‖um(T )‖2

L2(U) − ‖um(0)‖2
L2(U)

)
+ β‖um‖2

L2([0,T ];H1
0 (U))

≤ 1

2
‖f‖2

L2([0,T ]×U) +

∫ T

0

(
γ +

1

2

)
‖um(t)‖2

L2(U) dt,

which yields an estimate on ‖um‖L2([0,T ];H1
0 (U)) since β > 0 (cf. the proof in Theorem

7.5). Finally, from the estimate (cf. Lemma 8.7)

|B[u, v; t]| ≤ α‖u‖H1
0 (U)‖v‖H1

0 (U)
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we have

|(∂tum(t), v)L2(U)| = |−B[um(t), v; t]+(f(t), v)L2(U)| ≤
(
α‖um(t)‖H1

0 (U) + ‖f(t)‖L2(U)

)
‖v‖H1

0 (U)

for any v ∈ Vm. In general, for any v ∈ H1
0 (U) we can write v = v′ + v′′ with v′ ∈ Vm

and v′′ ∈ V ⊥m , in which case ‖v′‖H1
0 (U) ≤ ‖v‖H1

0 (U), and

|(∂tum(t), v)L2(U)| = |(∂tum(t), v′)L2(U)|

≤
(
α‖um(t)‖H1

0 (U) + ‖f(t)‖L2(U)

)
‖v′‖H1

0 (U)

≤
(
α‖um(t)‖H1

0 (U) + ‖f(t)‖L2(U)

)
‖v‖H1

0 (U).

Thus we obtain

‖∂tum(t)‖H−1(U) ≤ α‖um(t)‖H1
0 (U) + ‖f(t)‖L2(U).

The estimate on ‖∂tum‖L2([0,T ];H−1(U)) then follows by squaring and integrating. �

Thus, in considering our Galerkin approximations um, we see that they are uni-
formly bounded, with respect to all three norms appearing in the LHS of Theorem
9.1. This helps prove existence via taking a subsequence. We recall:

Theorem 9.2 (Banach-Alaoglu). Let X be a normed linear space, and X∗ its con-
tinuous dual space. Then, the unit ball in X∗

{` ∈ X∗ : ‖`‖X∗ ≤ 1}
is compact in the weak-* topology. In particular, if X is reflexive (e.g. X is a Hilbert
space), so that the weak topology on X coincides with the weak-* topology on X
viewing X as the dual of X∗, then the unit ball in X is compact with respect to the
weak topology on X.

We can use this to prove:

Theorem 9.3 (Existence of weak solution). Let f ∈ L2([0, T ] × U) and g ∈ L2(U).
Then there exists a weak solution to the problem (4).

Proof. From the regularity bounds on the Galerkin approximations um and the Banach-
Alaoglu theorem, we see that {um} is sequentially compact with respect to the weak
topology on L2([0, T ];H1

0 (U)), and {∂tum} is sequentially compact with respect to
the weak topology on L2([0, T ];H−1(U)). It follows that there exists a subsequence
{uml}∞l=1 such that {uml} converges in L2([0, T ];H1

0 (U)), say to u, with {∂tuml} also
converges in L2([0, T ];H−1(U)), say to ũ. Then necessarily we must have ũ = ∂tu in
the sense of distributions.

It now suffices to show that u is indeed a weak solution. We first note that if

v(t) =
N∑
k=1

dk(t)wk

for d1, . . . , dN ∈ C1([0, T ]), then for m ≥ m0 we have

(∂tum(t), v(t))L2(U) +B[um(t), v(t); t] = (f(t), v(t))L2(U).
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Integrating thus gives∫ T

0

(∂tum(t), v(t))L2(U) +B[um(t), v(t); t] dt =

∫ T

0

(f(t), v(t))L2(U) dt.

Letting m = ml and passing to the limit, we see, due to the weak convergences, that∫ T

0

(∂tu(t), v(t))L2(U) +B[u(t), v(t); t] dt =

∫ T

0

(f(t), v(t))L2(U) dt.

This holds for all functions of the form v(t) =
∑N

k=1 d
k(t)wk, and hence by density

for all v ∈ L2([0, T ];H1
0 (U)). In particular, if we now fix v0 ∈ H1

0 (U) and consider
v(t) = φ(t)v0 for φ ∈ L2([0, T ]), we then see that∫ T

0

(
(∂tu(t), v0)L2(U) +B[u(t), v0; t]

)
φ(t) dt =

∫ T

0

(
(f(t), v0)L2(U)

)
φ(t) dt,

for all φ ∈ L2([0, T ]), from which we conclude that

(∂tu(t), v0)L2(U) +B[u(t), v0; t] = (f(t), v0)L2(U)

for almost every23 0 ≤ t ≤ T . This shows that u satisfies the distributional formula-
tion of a weak solution.

It remains to show that u(0) = g. To do so, note that from integration by parts in
t we have∫ T

0

−(u(t), v′(t))L2(U) +B[u(t), v(t); t] dt =

∫ T

0

(f(t), v(t))L2(U) dt+ (u(0), v(0))L2(U)

if v ∈ C1([0, T ];H1
0 (U)) with v(T ) = 0. Similarly, for the Galerkin approximations

we have correspondingly∫ T

0

−(um(t), v′(t))L2(U) +B[um(t), v(t); t] dt =

∫ T

0

(f(t), v(t))L2(U) dt+(um(0), v(0))L2(U),

again for v ∈ C1([0, T ];H1
0 (U)) with v(T ) = 0. Taking m = ml and passing the limit,

noting that um(0) → g in L2(U) since um(0) is the projection of g onto Vm, we thus
obtain by weak convergence∫ T

0

−(u(t), v′(t))L2(U) +B[u(t), v(t); t] dt =

∫ T

0

(f(t), v(t))L2(U) dt+ (g, v(0))L2(U).

Thus (u(0), v(0))L2(U) = (g, v(0))L2(U) for any v ∈ C1([0, T ];H1
0 (U)) with v(T ) = 0,

and since v(0) can take any value in H1
0 (U) given those restrictions, it follows that

u(0) = g, as desired. �

23This upgrades to an equality for all times if we assume in addition that f ∈ C([0, T ];L2(U)).
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9.3. Uniqueness and improved regularity of weak solutions. Thus, we see
that the Galerkin method produces the existence of a weak solution. Moreover, any
weak solution can be obtained as a limit of Galerkin approximations, if we are able
to show uniqueness:

Theorem 9.4 (Uniqueness). A weak solution of problem (4) is unique.

Proof. It suffices to show that if f = 0 and g = 0, then the only weak solution to (4)
is identically zero. Plugging in v = u(t) in the weak formulation gives

1

2
∂t(‖u(t)‖2

L2(U))+B[u(t), u(t); t] = (∂tu(t), u(t))L2(U)+B[u(t), u(t); t] = (f(t), u(t))L2(U) = 0.

From Lemma 8.7, we have

1

2
∂t(‖u(t)‖2

L2(U)) = −B[u(t), u(t); t] ≤ −β‖u(t)‖2
H1

0 (U) + γ‖u(t)‖2
L2(U) ≤ γ‖u(t)‖2

L2(U),

so by Gronwall’s inequality we have

‖u(t)‖2
L2(U) ≤ e2γt‖u(0)‖2

L2(U).

If u(0) = g = 0, then this gives u(t) = 0 for all t. �

If the initial data g has a bit more regularity, then we can obtain more regularity
on u. For convenience, we now assume:

aij, bi, c ∈ C∞(U) (i.e. independent of t).

Theorem 9.5. Suppose u is a weak solution to Problem (4), and g ∈ H1
0 (U). Then

u ∈ L2([0, T ];H2(U)) ∩ L∞([0, T ];H1
0 (U)), ∂tu ∈ L2([0, T ];L2(U)), and

ess sup
0≤t≤T

‖u(t)‖H1
0 (U)+‖u‖L2([0,T ];H2(U))+‖∂tu‖L2([0,t];L2(U)) ≤ C(‖f‖L2([0,T ]×U)+‖g‖H1

0 (U)).

Proof sketch. We prove the corresponding estimates on the Galerkin approximations
and pass to the limit. To do so, we plug in v = ∂tum in the weak formulation of the
Galerkin solutions, and rewrite B[um, ∂tum; t] as the t derivative of a quadratic form
of ∇um plus some remainders.

To be continued next lecture. . . �
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10. Lecture 10 (04/28): Improved Regularity and Heat Kernels on
Compact Manifolds

10.1. Improved Regularity of Weak Solutions. We start by finishing the proof
from the end of last class:

Proof of Theorem 9.5. The Galerkin approximations satisfy

(∂tum(t), ∂tum(t))L2(U) +B[um(t), ∂tum(t)] = (f(t), ∂tum(t))L2(U).

(Recall that we assume the coefficients are now independent of t, so the bilinear form
B is independent of t as well.)

Note that if L = −∆, thenB[v(t), ∂tv(t)] =
∫
U
∇v(t) · ∂t∇v(t) dt = 1

2
∂t(‖∇v(t)‖2

L2(U)),

so morally we have an estimate on ‖∂tum(t)‖2
L2(U) + 1

2
∂t(‖∇um(t)‖2

L2(U)). In fact, if

we let

A[u, v] =

∫
U

n∑
i,j=1

aij(x)∂xiu(x)∂xiv(x) dx

then

1

2

d

dt
(A[v(t), v(t)]) = B[v(t), ∂tv(t)]−

∫
U

n∑
i=1

bi(x)∂xiv(t, x)∂tv(t, x) + c(x)v(t, x)∂tv(t, x) dx.

Thus
(6)

‖∂tum(t)‖2
L2(U) +

d

dt

(
1

2
A[um(t), um(t)]

)
=

(
f(t) +

n∑
i=1

bi∂xium(t) + cum, ∂tum

)
L2(U)

≤

∥∥∥∥∥f(t) +
n∑
i=1

bi∂xium(t) + cum

∥∥∥∥∥
L2(U)

‖∂tum(t)‖L2(U)

≤ 1

2

‖f(t)‖L2(U) +

∥∥∥∥∥
n∑
i=1

bi∂xium(t)

∥∥∥∥∥
L2(U)

+ ‖cum(t)‖L2(U)

2

+
1

2
‖∂tum(t)‖2

L2(U).

We now note that∥∥∥∥∥
n∑
i=1

bi∂xium(t)

∥∥∥∥∥
L2(U)

≤

(
n∑
i=1

‖bi‖2
L∞

)1/2

‖um(t)‖H1
0 (U)

and
‖cum(t)‖L2(U) ≤ ‖c‖L∞‖um(t)‖L2(U).

Thus, subtracting 1
2
‖∂tum(t)‖L2(U) from both sides of (6), multiplying by 2, and plug-

ging in the above estimates yields

‖∂tum(t)‖2
L2(U) +

d

dt
(A[um(t), um(t)]) ≤ C

(
‖f(t)‖2

L2(U) + ‖um(t)‖2
H1

0 (U)

)
,
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the constant depending on ‖bi‖L∞ and ‖c‖L∞ . Applying the same arguments in the
other regularity theorems (i.e. applying Gronwall’s inequality and then integrating)
yields

‖∂tum‖L2([0,T ]×U) + sup
0≤t≤T

A[um(t), um(t)] ≤ C
(
A[um(0), um(0)] + ‖f‖2

L2([0,T ]×U) + ‖um‖2
L2([0,T ];H1

0 (U))

)
≤ C ′

(
A[um(0), um(0)] + ‖f‖2

L2([0,T ]×U) + ‖g‖2
L2(U)

)
.

We now note that the ellipticity assumptions on aij guarantee that

c1‖∇v‖2
L2(U) ≤ A[v, v] ≤ c2‖∇v‖2

L2(U) ≤ c2‖v‖2
H1

0 (U)

so

‖∂tum‖L2([0,T ]×U) + sup
0≤t≤T

‖∇um(t)‖L2(U) ≤ C ′′
(
‖f‖2

L2([0,T ]×U) + ‖g‖2
H1

0 (U)

)
.

Since sup0≤t≤T ‖um(t)‖L2(U) also satisfies the above estimate, we can replace the term
sup0≤t≤T ‖∇um(t)‖L2(U) in the above estimate by sup0≤t≤T ‖um(t)‖H1

0 (U) (up to chang-

ing the constant on the RHS), thus yielding two of the three desired estimates at least
for the Galerkin approximations um. Applying the estimates to the subsequence uml
converging weakly to u, and letting l → ∞ (taking advantage of the weak conver-
gences of uml and ∂tuml) yields u ∈ L∞([0, T ];H1

0 (U)) and ∂tu ∈ L2([0, T ]×U), with
the desired bounds.

Finally, note that

Lu(t) = f(t)− ∂tu(t)

in the sense of distributions, with L an elliptic operator. By elliptic regularity (cf.
[Eva10] Chapter 6.3), we have

‖u(t)‖2
H2(U) ≤ C(‖f(t)‖2

L2(U) + ‖∂tu(t)‖2
L2(U)).

It follows that

‖u‖2
L2([0,T ];H2(U)) ≤ C

(
‖f‖2

L2([0,T ]×U) + ‖∂tu‖2
L2([0,T ]×U)

)
≤ C ′

(
‖f‖2

L2([0,T ]×U) + ‖g‖2
H1

0 (U)

)
,

as desired. �

Some other regularity results to mention from [Eva10] Section 7.2:

• If in addition ∂tf ∈ L2([0, T ]× U) and g ∈ H2(U), then

u ∈ L∞([0, T ];H2(U))

∂tu ∈ L∞([0, T ]× U) ∩ L2([0, T ];H1
0 (U))

∂2
t u ∈ L2([0, T ];H−1(U)).

The proof essentially amounts to finding the PDE that ∂tu satisfies, and ap-
plying the regularity results obtained above to ∂tu.
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• If g ∈ H2m+1(U) and ∂k

∂tk
f ∈ L2([0, T ];H2m−2k(U)) for 0 ≤ k ≤ m, with the

right-hand sides satisfying a “compatibility condition24” at the boundary of
U , then

∂k

∂tk
u ∈ L2([0, T ];H2m+2−2k(U)),

with corresponding estimates.
The argument is an induction argument, essentially again taking a look at

what equation the derivatives of u must satisfy.
• In particular, if the right-hand sides are both C∞ (on the closures, i.e. on

[0, T ] × U and on U , respectively), and the compatibility conditions are sat-
isfied, then the solution u is also smooth up to all boundaries, i.e. u ∈
C∞([0, T ]× U).

10.2. Heat Kernel on Compact Manifolds. We conclude our treatment of par-
abolic equations by considering the “heat kernel” (an analogue of the fundamental
solution studied in Lecture 05) for compact manifolds. It turns out that the structure
of the heat kernel (reflecting the behavior of solving the Cauchy problem for the heat
equation) is related to the geometry and topology of the manifold.

The source for this section is [Cha84], specifically Chapter 6.
Thus, let (M, g) be a Riemannian manifold (i.e. M is a smooth manifold, g a Rie-

mannian metric on M). Associated to the metric is the so-called Laplace-Beltrami
operator ∆g (which can be defined as the composition of the divergence and the gradi-
ent, once those notions are defined). In local coordinates, if g =

∑n
i,j=1 gij(x) dxi dxj

(i.e. (gij(x))ni,j=1 is the matrix associated to this metric, with gij(x) = g(∂xi |x, ∂xj |x)),
then

∆gu =
1√

det g

n∑
i,j=1

∂xi(g
ij
√

det g∂xju)

where (gij(x)) = (gij(x))−1 is the dual metric obtained in coordinates by inverting
the matrix (gij), and det g is the determinant of the metric viewing it as a matrix
(gij).

We can then consider the Cauchy problem for the heat equation on (M, g):

(∂t −∆g)u = 0 in (0,∞)×M, u(0, x) = f(x) on M.

Recall that for Euclidean space Rn we were able to derive an explicit formula for a
fundamental solution of the heat operator, which can subsequently be used to obtain
a formula for the solution of the Cauchy problem via convolution. For a general mani-
fold the notion of a convolution does not quite make sense (some additive structure or
other group action is needed); furthermore in local coordinates the Laplace-Beltrami
operator ∆g need not have “constant coefficients” (and one key feature of convolutions
is the compatibility with constant-coefficient differential operators). Nonetheless, we
can still generalize this notion:

24This holds e.g. if f and g are compactly supported in [0, T ] × U and in U , respectively, i.e.
vanish in a neighborhood of ∂U



MATH 218 LECTURE NOTES (SPRING 2022) 53

Definition 10.1. A fundamental solution of the heat equation, also known as a heat
kernel, is a continuous function p : (0,∞)×M ×M → R, which is C2 in x and C1 in
t, such that

Lxp = 0 in (0,∞)×M ×M and lim
t→0+

p(t, ·, y) = δy.

The last equation means if φ ∈ C∞(M), then

lim
t→0+

∫
M

p(t, x, y)φ(x) dVolg(x) = φ(y)

where dVolg is the volume form induced by the Riemannian metric g.

Note that if such p exists, then for f : M → R sufficiently nice (say continuous) we
have that if

u(t, x) :=

∫
M

p(t, x, y)f(y) dVolg(y),

then u solves the heat equation for t > 0, while for any φ ∈ C∞(M) we have25∫
M

u(t, x)φ(x) dx =

∫
M

(∫
M

p(t, x, y)φ(x) dVolg(x)

)
f(y) dVolg(y)

t→0+−−−→
∫
M

φ(y)f(y) dVolg(y),

i.e. u(t, x)→ f(x) in the sense of distributions as t→ 0+.
An “example” is in the case M = Rn with the Euclidean metric, where p(t, x, y) =

E(t, x − y) = 1
(4πt)n/2

e−|x−y|
2/(4t) for t > 0. (Note that this “example” does not quite

fit our framework since M is non-compact.)
We now want to ask two questions about the heat kernel:

(1) Does such a heat kernel p exist?
(2) What structure does p have, if it exists?

For the first question, we take advantage of the fact that ∆g has an orthonormal basis
of eigenfunctions {φk}∞k=1 in L2(M, dVolg) (hereafter denoted L2(M)) which in fact
belong to C∞(M). In particular, we suppose

−∆gφk = λkφk, ‖φk‖L2(M) = 1.

Then26 λk → +∞. Moreover, for any f ∈ L2(M), we can write

f(x) =
∞∑
k=1

〈f, φk〉L2(M)φk(x),

25To be precise, some uniform control on p as t→ 0+ would be needed in order for the statement
to go through; moreover more precise control allows for a more precise statement of convergence. A
posteriori we see that this will be satisfied.

26In fact, it seems plausible, from first principles, that one can show that λk ≥ ckα for some
c, α > 0 for sufficiently large k, though I do not know how to do it. It turns out a posteriori to be
true.
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where the sum is interpreted as a convergent sum in L2(M). It follows that if we
explicitly defined

u(t, x) =
∞∑
k=1

e−λkt〈f, φk〉L2(M)φk(x),

(i.e. take the “Fourier series solution”), then by construction u is smooth on (0,∞)×
M (note that for t > 0 the factor e−λkt is exponentially decaying and thus guarantees
all series involved converge uniformly on M) and solves the heat equation with initial
condition f . Noting that

〈f, φk〉L2(M) =

∫
M

f(y)φk(y) dVolg(y),

plugging this into the above sum, and interchanging the sum and integral (which is
permissible given the exponential decay of e−λkt), we obtain

u(t, x) =

∫
M

(
∞∑
k=1

e−λktφk(x)φk(y)

)
f(y) dVolg(y).

This suggests we take

p(t, x, y) =
∞∑
k=1

e−λktφk(x)φk(y),

and indeed one can verify afterward that this does satisfy all of the requirements of
the heat kernel. Moreover, from this formula, we see that there is a strong relationship
between the structure of the heat kernel and the eigenvalues of the Laplacian: indeed,
if we plug in y = x and then integrate in x, i.e. take the trace of the heat kernel, we
obtain∫
M

p(t, x, x) dVolg(x) =

∫
M

∞∑
k=1

e−λkt|φk(x)|2 dVolg(x) =
∞∑
k=1

e−λkt‖φk‖2
L2(M) =

∞∑
k=1

e−λkt

since {φk} is orthonormal in L2(M).
There is another way to approach the question of existence which also reveals some

structure on the heat kernel–namely, we attempt to guess a form of the heat kernel.
For example, we can consider the Euclidean heat kernel

pRn(t, x, y) =
1

(4πt)n/2
e−|x−y|

2/(4t)

and attempt to generalize this to manifolds, via

p0(t, x, y) =
1

(4πt)n/2
e−dg(x,y)2/(4t)

where dg is the geodesic distance27 induced by the metric g.

27That is, dg(x, y) is the infimum of lengths of paths connecting x and y, where the length of a
path is measured with respect to the metric g. On a compact manifold, this infimum is attained by
some geodesic.
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Perhaps unsurprisingly this does not quite work. However, we can attempt to
modify p0 to get something closer. More specifically, we multiply p0 by an ansatz of
the form

∑k
j=0 t

juj(x, y) and consider

pk(t, x, y) = p0(t, x, y)
k∑
j=0

tjuj(x, y).

Lemma 10.2. There exist a sequence of uj ∈ C∞(M ×M) such that

(∂t − (∆g)x)

(
p0(t, x, y)

k∑
j=0

tjuj(x, y)

)
∈ p0t

kC∞([0,∞)×M ×M).

Moreover, the uj can be chosen so that p0(t, x, y)
∑k

j=0 t
juj(x, y) → δy(x) as t → 0+

for each y ∈M .

Furthermore, we can say some things about this sequence uj. For example:

• The condition p0

∑k
j=0 t

juj(x, y)→ δy(x) as t→ 0+ for any fixed y turns out

to force u0(x, x) = 1 for all x.
• Under the above normalization, we then have u1(x, x) = 1

6
S(x), where S(x)

is the scalar curvature at x.

Remark 16. The functions uj are derived using the so-called Minakshisundaram-
Pleijel recursion formulas. See HW 2, Problem 10 for more details.

We now note that if k is large enough, then functions in p0t
kC∞([0,∞) ×M ×M)

will in fact vanish near t = 0, and more generally can be made to have small L∞

norm when restricted to sufficiently small times t.
This suggests that, at least formally, for L = ∂t − (∆g)x we should have

p = pk − (Lpk ∗t pk) + (Lpk)
∗t(2) ∗t pk − . . .

satisfies Lp = 0 and p(t, x, y)→ δy(x) as t→ 0+. In fact, this works by making quan-
titative estimates on ‖(Lpk)∗t(l)‖L∞(M×M×[0,T ]) to show that the above series converges
(which we can do for T sufficiently small whenever k is sufficiently large). Thus we
have that

p = pk − pk ∗ Fk, Fk =
∞∑
l=1

(Lpk)
∗t(l)

and hence:

Theorem 10.3. The heat kernel indeed satisfies

p(t, x, y) = p0(t, x, y)

(
k∑
j=0

tjuj(x, y) +O(tk+1)

)
for any k.
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In particular, noting that p0(t, x, x) = (4πt)−n/2 for any x, taking the trace of both
sides yields

∞∑
k=1

e−tλj = (4πt)−n/2

(
N∑
j=0

ajt
j +O(tN+1)

)
for any N , where

aj =

∫
M

uj(x, x) dx.

Note that the

a0 =

∫
M

u0(x, x) dx =

∫
M

1 dx = vol (M),

so

(7)
∞∑
k=1

e−tλj = t−n/2
(

vol (M)

(4π)−n/2
+O(t)

)
.

Moreover, if M is two-dimensional, i.e. a surface, then the scalar curvature is twice
the Gaussian curvature, so by the Gauss-Bonnet theorem we have

a1 =

∫
M

u1(x, x) dx =
1

6

∫
M

S(x) dx =
1

3

∫
M

K(x) dx =
1

3
(2πχ(M)),

where χ(M) is the Euler characteristic of M . It follows that
∞∑
j=0

e−λjt =
vol(M)

4π
t−1 +

1

6
χ(M) +O(t),

so in theory knowledge of the eigenvalues of the Laplacian can help determine the
volume and topology of the surface by analyzing the behavior of

∑∞
j=0 e

−λjt near
t = 0.

Remark 17. One can use the asymptotics in (7), combined with a theorem attributed
variously to Hardy and Littlewood or to Karamata:∫ ∞

0

e−tx dµ(x) = αt−β(1+o(1)) as t→ 0 =⇒ µ([0, b]) =
α

Γ(β + 1)
bβ(1+o(1)) as b→∞

(where µ is a positive measure) to prove the Weyl law regarding the distribution of
eigenvalues of the Laplacian:

Theorem 10.4 (Weyl law). If N(λ) denotes the number of eigenvalues of −∆ which
are at most λ, then

N(λ) =
ωn

(2π)n
vol(M)λn/2(1 + o(1))

where ωn is the volume of the unit ball in Rn.
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11. Lecture 11 (05/03): Introduction to Wave Equation

We now consider the wave equation

(∂2
t −∆)u = 0 in (0,∞)t × Rn

x.

Since this involves two derivatives in t, the Cauchy problem requires two pieces of
initial data:

u(0, x) = f0(x) and ∂tu(0, x) = f1(x) on Rn.

Linear wave equations appear in physics in several contexts, e.g. vibrating strings,
Maxwell’s equations in electromagnetism, etc.. Nonlinear wave equations also ap-
pear in several physical contexts, such as in general relativity (cf. “gravitational
waves”), and methods of studying nonlinear wave equations often involve getting an
understanding of the linear wave equation first.

Some properties to show:

• Existence/Uniqueness of solutions: Standard in PDE theory.
• Finite speed of propagation: initial data should “propagate” outwards with

finite speed. Contrast this with the heat equation, where initial data will
generically spread everywhere for any t > 0 (note that the fundamental solu-
tion is positive for all (t, x) with t > 0).
• Pointwise decay
• Energy conservation/bounds

References: Much of the treatment in the next few lectures will come from the
lecture notes of Jonathan Luk and Sung-Jin Oh: [Luk, Oh]

11.1. Solving the Cauchy Equation. Just like with the heat equation, we will
use the Fourier transform (in the spatial variables, i.e. in x) to solve the Cauchy
problem for the wave equation. Thus, for û(t, ξ) =

∫
Rn e

−iξ·xu(t, x) dx, the equation
(∂2
t −∆)u = 0 turns into

∂2
t û(t, ξ) + |ξ|2û(t, ξ) = 0.

Recalling that solutions of the ODE y′′(t)+k2y(t) = 0 are given by y(t) = A cos(kt)+
B sin(kt), it follows that, viewing the above equation as an ODE in t with parameter
ξ, we have

û(t, ξ) = A(ξ) cos(|ξ|t) +B(ξ) sin(|ξ|t)
for each ξ, where A(ξ) and B(ξ) are some numbers. We can determine A(ξ) and B(ξ)
through the initial conditions: we have

u(0, x) = f0(x) =⇒ û(0, ξ) = f̂0(ξ)

and hence

A(ξ)(1) +B(ξ)(0) = û(0, ξ) = f̂0(ξ) =⇒ A(ξ) = f̂0(ξ).

Similarly, ∂tû(0, ξ) = f̂1(ξ), and since

∂tû(t, ξ) = −A(ξ)|ξ| sin(|ξ|t) +B(ξ)|ξ| cos(|ξ|t)
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it follows that

B(ξ)|ξ| = ∂tû(0, ξ) = f̂1(ξ) =⇒ B(ξ) =
f̂1(ξ)

|ξ|
.

Thus we have28

û(t, ξ) = cos(|ξ|t)f̂0(ξ) +
sin(|ξ|t)
|ξ|

f̂1(ξ).

It follows that

u(t, x) = (f0 ∗ F−1(cos(|ξ|t)))(x) +

(
f1 ∗ F−1

(
sin(|ξ|t)
|ξ|

))
(x).

In particular, we see that if29 f0, f1 ∈ S(Rn), then there exists a solution to the
Cauchy problem for the wave equation

Moreover, writing cos and sin in terms of complex exponentials, we have

û(t, ξ) = ei|ξ|t

(
f̂0(ξ)

2
+
f̂1(ξ)

2i|ξ|

)
+ e−i|ξ|t

(
f̂0(ξ)

2
− f̂1(ξ)

2i|ξ|

)
.

From this, we can use the inverse Fourier transform to show:

Proposition 11.1 (Local decay). For f0, f1 ∈ C∞c (Rn), we have, for any R > 0,

|u(t, x)| ≤ C

tn−1
for all t ≥ 1, |x| ≤ R.

The constant depends on f0, f1, and R, but otherwise not on t or x.

Proof. For convenience, take n ≥ 3 (the cases n = 1 and n = 2 can be handled
similarly). From the Fourier inversion formula, we have

u(t, x) = (2π)−n
∫
Rn
eix·ξû(t, ξ) dξ = (2π)−n

∫
Rn
eix·ξ

(
ei|ξ|t

f̂1(ξ)

2i|ξ|
+ . . .

)
dξ

(there are three other terms in the . . . above). We thus analyze the term∫
Rn
eix·ξei|ξ|t

f̂1(ξ)

|ξ|
dξ

and aim to show it decays as a power of t−(n−1); the analysis of the remaining three
terms is similar. We write the above integral in polar coordinates, with ξ = rω,
r ∈ [0,∞), ω ∈ Sn−1; the integral then becomes∫

Sn−1

∫ ∞
0

eitreirx·ωf̂1(rω)rn−2 dr dω

28Note that the function sin(|ξ|t)
|ξ| is in fact smooth despite the presence of |ξ| in the denominator.

29In fact we can make less restrictive assumptions as well.
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(the factor rn−2 comes from the factor rn−1 from the polar coordinates change of

variables divided by r originally in the integrand). Noting that eitr = d
dr

(
eitr

it

)
, we

can integrate by parts to obtain a factor of t in the denominator; doing so gives∫
Sn−1

[
eitr

it
g1(x, r, ω)rn−2

] ∣∣∣∞
0
−
∫ ∞

0

eitr

it

∂

∂r

(
g1(x, r, ω)rn−2

)
dr dω

where g1(x, r, ω) = eirx·ωf̂1(rω); note g1 is smooth in all variables considered. We now
note:

• If n − 2 > 0 (i.e. n ≥ 3), then the term rn−2 vanishes at r = 0. Moreover,

g1(x, r, ω) = eirx·ωf̂1(rω) decays rapidly as r → +∞ since f1 ∈ C∞c (Rn) =⇒
f̂1 ∈ S(Rn). It follows that the boundary terms in the integration by parts
vanish.
• Furthermore, we have

∂

∂r

(
g1(x, r, ω)rn−2

)
= g2(x, r, ω)rn−3

for some smooth function g2 (explicitly g2 = (n− 2)g1 + r∂rg1), such that g2

also decays rapidly as r → +∞.

Thus, the integral becomes

− 1

it

∫
Sn−1

∫ ∞
0

eitrg2(x, r, ω)rn−3 dr dω.

If n− 3 is still positive, we can apply the exact same integration by parts argument
(in particular that the boundary terms vanish), to get that the integral equals

− 1

t2

∫
Sn−1

∫ ∞
0

eitrg3(x, r, ω)rn−4 dr dω

for g3 = (n− 3)g2 + r∂rg2. Thus, we keep iterating the integration by parts argument
until the exponent in front of r is no longer positive, in which case we get that the
integral equals

1

tn−2

∫
Sn−1

∫ ∞
0

eitrgn−1(x, r, ω) dr dω

for some smooth gn−1, after which a final integration by parts argument yields

1

itn−1

∫
Sn−1

([
eitrgn−1(x, r, ω)

] ∣∣∣∞
0
−
∫ ∞

0

eitr∂rgn−1(x, r, ω) dr

)
dω.

The boundary term need not vanish, so we cannot iterate the integration by parts
procedure again. In this case, we note that the post-factor after 1

tn−1 is uniformly
bounded in t and in x, as long as x itself is restricted to vary in a compact set. This
gives the desired estimate. �

Remark 18. Without the assumption of looking only at x in a compact region, we
can only get an estimate of the form

|u(t, x)| ≤ C

t(n−1)/2
for t ≥ 1, x ∈ Rn.
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11.2. Fundamental solution of the wave operator. We are interested in a fun-
damental solution of the wave operator, i.e. a distribution E ∈ D′(Rn+1) satisfying

(∂2
t −∆)E = δ(0,0).

In particular, we are interested in a forward fundamental solution, i.e. a fundamental
solution E+ further satisfying

supp E+ ⊂ {(t, x) ∈ Rn+1 : t ≥ 0}.
It turns out we can in fact do better:

Proposition 11.2. There exists a fundamental solution E+ which satisfies

supp E+ ⊂ {(t, x) ∈ Rn+1 : |x| ≤ t}.

(Note that such a fundamental solution is forward, since |x| ≤ t =⇒ t ≥ 0.)
Assuming the existence of such a fundamental solution, we can use it as follows:

Proposition 11.3. Let F ∈ D′(Rn+1), with

supp F ⊂ {(t, x) ∈ Rn+1 : t ≥ −T} for some T > 0

(more colloquially “F ≡ 0 for t < −T”). Then

u = E+ ∗ F
is the unique solution in D′(Rn+1) to the equation

(∂2
t −∆)u = F

which also satisfies supp u ⊂ {(t, x) ∈ Rn+1 : t ≥ −T}.

The main content of the proposition is that the convolution E+ ∗F is well-defined.
Recall from Lecture 03 that the convolution of two distributions u1 and u2 is well-
defined if the map supp u1 × supp u2 → Rn, (x, y) 7→ x+ y is proper, or equivalently
that (K − supp u1) ∩ supp u2 is compact whenever K is compact. In this case, if
K ⊂ Rn+1 is compact, and we let T ′ = max(t,x)∈K t, then

(t, x) ∈ K − supp F =⇒ t ≤ T ′ + T

since supp F ⊂ {t ≥ −T}, and hence

(K − supp F ) ∩ supp E+ ⊂ {(t, x) ∈ Rn+1 : |x| ≤ t ≤ T ′ + T}.
The latter space can be verified to be compact.

Proof. Since E+∗F is well-defined, we can apply the rules of convolution (in particular
relating to constant-coefficient differential operators) to see that

(∂2
t −∆)(E+ ∗ F ) = ((∂2

t −∆)E+) ∗ F = δ(0,0) ∗ F = F.

Moreover, supp (E+ ∗F ) ⊂ supp E+ + supp F ⊂ {(t, x) : t ≥ −T} from the support
properties of E+ and F .

To check uniqueness, it suffices to check that if u ∈ D′(Rn+1) solves

(∂2
t −∆)u = 0, supp u ⊂ {(t, x) ∈ Rn+1 : t ≥ −T},
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then u = 0. To do so, we note that

u = u ∗ δ(0,0) = u ∗ ((∂2
t −∆)E+) = (∂2

t −∆)(u ∗ E+) = ((∂2
t −∆)u) ∗ E+ = 0

using the rules of convolution; again the main thing to check here is that all convolu-
tions are well-defined (which is indeed the case here due to support properties). �

Corollary 11.4. The fundamental solution E+ from Proposition 11.2 is the unique
forward fundamental solution of the wave operator.

That is, even if we only required supp E ⊂ {t ≥ 0}, we get for free that it must be
actually supported in {|x| ≤ t}.

Finally, the forward fundamental solution E+ can be used to solve the inhomoge-
neous wave equation:

Theorem 11.5. Suppose u ∈ C∞(Rn+1), and let

F = (∂2
t −∆)u, f0(x) = u(0, x), f1(x) = ∂tu(0, x).

Then, as distributions, we have

(8) u1t≥0 = (f0δt=0) ∗ ∂tE+ + (f1δt=0) ∗ E+ + (F1t≥0) ∗ E+.

The proof is similar to the calculation for the fundamental solution of the heat
equation.

In particular, since u(t, ·) = f0 ∗F−1(cos(|ξ|t)) + f1 ∗F−1
(

sin(|ξ|t)
|ξ|

)
solves the wave

equation with F = 0, (8) suggests that we should have

E+(t, x) = F−1

(
sin(t|ξ|)
|ξ|

)
(x)

(note then that we’d have ∂tE+(t, x) = F−1(cos(t|ξ|))(t, x), which is consistent with
the solution above.

We can compute this explicitly in some cases:

• For n = 1, note that

sin(t|ξ|)
|ξ|

=

∫ t

0

cos(|ξ|x) dx =
1

2

∫ t

−t
cos(ξx) dx =

1

2

∫ t

−t
e−iξx dx = F

(
1

2
1|x|≤t

)
(ξ).

(The middle equations follow from the even/odd property of cosine and sine.)
This suggests

E(t, x) =
1

2
1t≥01|x|≤t.

Note then that, for t > 0, we have

∂tE(t, x) =
1

2
(δ(x+ t) + δ(x− t)) ,

in which case (8) becomes

u(t, x) =
1

2
(f0(x− t) + f0(x+ t)) +

1

2

∫ x+t

x−t
f1(y) dy.
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This recovers d’Alembert’s formula for the solution of the wave equation in 1
dimension.
• For n = 3, we can explicitly compute E to obtain Kirchoff’s formula:

Lemma 11.6. A solution to (∂2
t −∆)u = 0 in (0,∞) × R3, u(0, x) = f0(x),

∂tu(0, x) = f1(x) is given by

(9) u(t, x) =
1

4πt

∫
S2t (x)

f1(y) dS2
t (x) +

∂

∂t

(
1

4πt

∫
S2t (x)

f0(y) dS2
t (x)

)
where S2

t (x) is the ball of radius t centered at x.

This will be discussed in more detail next lecture.

In general, it turns out we have

E(t, x) = cn1t≥0χ
−(n−1)/2
+ (t2 − |x|2),

where χa+ is defined, for Re a > −1, as in Example 1.9, and extended for all a ∈ C
via the property

χa+ =
d

dx
χa+1

+

(cf. Homework 1). Note that for k ∈ N>0 we have

χ−k+ = δ(k−1),

so that in particular

supp χa+ =

{
{0} if a ∈ −N>0

[0,∞) otherwise
.

Hence, we always have supp E ⊂ {(t, x) : t2−|x|2 ≥ 0} = {|x| ≤ t}, while if n > 1 is
odd (i.e. (n− 1)/2 ∈ N>0), then we in fact have supp E ⊂ {|x| = t}. This is known
as the strong Huygens principle.
Next time: Finite speed of propagation and energy conservation
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12. Lecture 12 (05/05): More on the wave equation, finite speed of
propagation, energy methods

12.1. More details on topics from last lecture. Recall from last lecture that we
solved the homogeneous wave equation by using the Fourier transform to convert the
PDE into an ODE for each Fourier mode ξ. In particular, we obtained

û(t, ξ) = cos(t|ξ|)f̂0(ξ) +
sin(t|ξ|)
|ξ|

f̂1(ξ).

Note that cos(t|ξ|) is uniformly bounded in ξ for any t, while sin(t|ξ|)
|ξ| is uniformly

bounded in ξ and decays as 1/|ξ| as ξ → +∞ for any t. It follows that if f0 ∈ H1(Rn)
and f1 ∈ L2(Rn), then

‖u(t, ·)‖H1(Rn) ≤ ‖f0‖H1(Rn) + Ct‖f1‖L2(Rn)

for some constant Ct depending30 on t. In particular, u(t, ·) ∈ H1(Rn) for each t > 0,
and t 7→ u(t, ·) is continuous as a map [0,∞)→ H1(Rn). Moreover,

∂tû(t, ξ) = − sin(t|ξ|)|ξ|f̂0(ξ) + cos(t|ξ|)f̂1(ξ),

from which we see similarly that t 7→ ∂tu(t, ·) is continuous from [0,∞) to L2(Rn).
Finally, we obtained the above solution by solving a second-order ODE, for which
we specified an initial data of initial value and initial first derivative, so we obtain
uniqueness. Thus, to summarize:

Theorem 12.1. For f0 ∈ H1(Rn) and f1 ∈ L2(Rn), the unique solution

u ∈ C([0,∞);H1(Rn)) ∩ C1([0,∞);L2(Rn))

to the equation (∂2
t −∆)u = 0, u(0, x) = f0, ∂tu(0, x) = f1 is given by

u(t, x) = (F−1(cos(t|ξ|)) ∗ f0)(x) +

(
F−1

(
sin(t|ξ|)
|ξ|

)
∗ f1

)
(x),

where the inverse Fourier transform and convolutions are taken in x.

We also mentioned that if E+ is a forward fundamental solution for the wave
operator satisfying

supp E+ ⊂ {(t, x) : |x| ≤ t},
then for any u ∈ C∞(Rn+1) we have

u1t≥0 = (f0δt=0) ∗ ∂tE+ + (f1δt=0) ∗ E+ + (F1t≥0) ∗ E+

30Explicitly, we have

C2
t = sup

x∈R
(1 + x2)

sin2(tx)

x2
.

By estimating sin2(tx) ≤ 1 for |x| ≥ 1 and sin2(tx) ≤ t2x2 for |x| ≤ 1, we can obtain the crude
estimate

C2
t ≤ max(2, 2t2).

As far as I can tell, the estimate cannot be made uniform in t as t→ +∞.
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where F = (∂2
t −∆)u, f0(x) = u(0, x), f1(x) = ∂tu(0, x). This follows by noting that

(∂2
t −∆)(u1t≥0) = ∂t(∂t(u1t≥0))− (∆u)1t≥0

= ∂t((∂tu)1t≥0) + ∂t(uδt=0)− (∆u)1t≥0

= ((∂2
t u−∆u)1t≥0) + (∂tu)δt=0 + ∂t(uδt=0)

= F1t≥0 + f1δt=0 + ∂t(f0δt=0).

Thus, applying Proposition 11.3 gives

u1t≥0 = (F1t≥0) ∗ E+ + (f1δt=0) ∗ E+ + ∂t(f0δt=0) ∗ E+,

which gives the desired result upon rewriting

∂t(f0δt=0) ∗ E+ = ∂t ((f0δt=0) ∗ E+) = (f0δt=0) ∗ ∂tE+.

For n = 3, we can obtain an explicit formula for E+. We note by inspection that the
Fourier transform of the surface measure31 on a sphere of radius r at the origin is

F(dS2
r)(ξ) = 4πr

sin(r|ξ|)
|ξ|

.

This is a straightforward computation using polar coordinates in R3. From this, we
see that

F−1

(
sin(t|ξ|)
|ξ|

)
(x) =

1

4πt
dS2

t .

From this, using (8) we recover Kirchoff’s formula (cf. (9); note that the first term
in the RHS of (8) can also be written as ∂t ((f01t≥0) ∗ E+) ):

u(t, x) =
1

4πt

∫
S2t (x)

f1(y) dS2
t (x) +

∂

∂t

(
1

4πt

∫
S2t (x)

f0(y) dS2
t (x)

)

12.2. Finite Speed of Propagation. Recall we have:

supp E+ ⊂ {(t, x) ∈ Rn+1 : |x| ≤ t}.

As such, we have:

Theorem 12.2 (Finite Speed of Propagation). Let (t0, x0) ∈ (0,∞) × Rn. Suppose
f0 and f1 are identically 0 on the set

{y ∈ Rn : |y − x0| ≤ t0}.

Then, for u solving the homogeneous wave equation with initial data (f0, f1), we have
u(t0, x0) = 0.

[Proof by picture]

31That is, the distribution which takes φ ∈ C∞c (R3) and integrates it on the sphere of radius r
centered at the origin.
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Corollary 12.3. Suppose u1 and u2 both solve the homogeneous wave equation, and
for some t1 < t2 and x0 ∈ Rn, we have

u1(t1, y) = u2(t1, y) and ∂tu1(t1, y) = ∂tu2(t1, y) for all y s.t. |y − x0| ≤ t2 − t1.
Then u1(t2, x0) = u2(t2, x0).

Remark 19. The wave equation presented is in some sense a rescaled wave equation
(essentially “setting c = 1” where c is the speed of the wave). For a more general
wave operator ∂2

t − c2∆, the fundamental solution turns out to be supported in

{(t, x) ∈ Rn+1 : |x| ≤ ct}.
Then all remarks hold above after replacing t by ct. This then says that “information
cannot travel faster than c”: i.e. the behavior of the solution at some (t0, x0) depends
only on the behavior inside the “light cone”; the solution could have drastically
different behavior outside the light cone without affecting its behavior inside.

Since for n ≥ 3 odd we have

supp E+ ⊂ {(t, x) ∈ Rn+1 : |x| = t}
it follows that in such situations we have:

Theorem 12.4 (Strong Huygens Principle). Let n ≥ 3 be odd, and let (t0, x0) ∈
(0,∞)× Rn. Suppose f0 and f1 are identically 0 on the set

{y ∈ Rn : |y − x0| = t0}.
Then, for u solving the homogeneous wave equation with initial data (f0, f1), we have
u(t0, x0) = 0.

In particular, if f0 and f1 are compactly supported, then for any fixed x0 ∈ Rn we
have that u(t, x0) = 0 for all sufficiently large t.

12.3. Energy Methods. Suppose u is a solution to the homogeneous wave equation
∂2
t u−∆u = 0 such that u decays sufficiently quickly as |x| → ∞, and u has some level

of differential regularity, say C1 in both t and x. (For example, in light of the finite
speed of propagation proven above, it would suffice to consider solutions u where the
initial data f0 and f1 are both in C∞c (Rn).) We define the energy associated to the
solution as

E(t) :=
1

2

∫
Rn
|∂tu(t, x)|2 + |∇u(t, x)|2 dx, t ≥ 0.

(In physical terms, the first term in the integral above corresponds to “kinetic energy”,
while the second term corresponds to “potential energy”.)

It turns out we have “conservation of energy” (which is a theme that pops up in
physics):

Theorem 12.5. E is constant in t.
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Proof. Two methods:

(1) Note that by Parseval’s theorem we have

E(t) =
1

2

(
‖∂tu(t)‖2

L2 + ‖∇u‖2
L2

)
= C

(
‖∂tû(t)‖2

L2 + ‖∇̂u(t)‖2
L2

)
,

so it suffices to show the last quantity is constant in t. Noting that |∇̂u(t, ξ)| =
|ξ||û(t, ξ)|, the last term can be written as∫

Rn
|∂tû(t, ξ)|2 + |ξû(t, ξ)|2 dξ.

From

û(t, ξ) = cos(|ξ|t)f̂0(ξ) +
sin(|ξ|t)
|ξ|

f̂1(ξ)

we have

|ξ|û(t, ξ) = cos(|ξ|t)|ξ|f̂0(ξ) + sin(|ξ|t)f̂1(ξ)

∂tû(t, ξ) = − sin(|ξ|t)|ξ|f̂0(ξ) + cos(|ξ|t)f̂1(ξ).

Thus (
|ξ|û(t, ξ)
∂tû(t, ξ)

)
=

(
cos(|ξ|t) sin(|ξ|t)
− sin(|ξ|t) cos(|ξ|t)

)(
|ξ|f̂0(ξ)

f̂1(ξ)

)
.

Note that the matrix is unitary. Thus the norm (z1, z2) 7→
√
|z1|2 + |z2|2 on

C2 is preserved, so

|ξû(t, ξ)|2 + |∂tû(t, ξ)|2 = |ξf̂0(ξ)|2 + |f̂1(ξ)|2.
Thus, the LHS is constant in t, so E (which can be written in terms of an
integral of the LHS above) is also constant in t.

(2) Alternatively, we multiply the equation ∂2
t u−∆u = 0 by ∂tu and integrate in

space. We obtain

0 =

∫
Rn
∂tu(t, x)∂2

t u(t, x) dx−
∫
Rn
∂tu(t, x)∆u(t, x) dx.

The first term can be written as a time derivative of an integral in x:∫
Rn
∂tu(t, x)∂2

t u(t, x) dx =
d

dt

(
1

2

∫
Rn
|∂tu(t, x)|2 dx

)
.

The second term can be rewritten via integration by parts using Green’s first
identity:

−
∫
Rn
∂tu(t, x)∆u(t, x) dx =

∫
Rn
∇∂tu(t, x) · ∇u(t, x) dx =

d

dt

(
1

2

∫
Rn
|∇u(t, x)|2 dx

)
(note that there is no “boundary term” in the integration by parts by assuming
u decays at infinity). It follows that we have

0 =
d

dt

(
1

2

∫
Rn
|∂tu(t, x)|2 + |∇u(t, x)|2 dx

)
=

d

dt
(E(t)),
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i.e. E is constant in t.

�

Note that this method does not require us to know the form of the solution ahead
of time, only that it satisfies some decay at infinity.

We also have a local energy estimate: for x0 ∈ Rn, R > 0, and 0 ≤ t ≤ R, define

E(t;x0, R) =
1

2

∫
|x−x0|≤R−t

|∂tu(t, x)|2 + |∇u(t, x)|2 dx.

In other words, if we draw the “backwards light cone” from (R, x0), then for 0 ≤ t ≤ R
we have that E(t;x0, R) integrates the energy of the solution at time t only over the
region which slices this cone.

We then have:

Theorem 12.6 (Local energy decay). For fixed x0 ∈ Rn and R > 0, we have that
E(t;x0, R) is non-increasing in t.

One may expect E to be decreasing “most of the time” given that the region of
integration |x−x0| ≤ R−t is decreasing in t and in fact should approach 0 as t→ R−;
the striking conclusion here is that this decreasing (or more accurately non-increasing)
holds at all times.

Proof. We proceed similarly as above, noting that in calculating dE
dt

, we note that we
get both a derivative under the integral, and a boundary term from the fact that the
domain is changing:

d

dt
(E(t;x0, R)) =

∫
|x−x0|≤R−t

∂tu∂
2
t u+∇u · ∇∂tu dx−

1

2

∫
|x−x0|=R−t

|∂tu|2 + |∇u|2 dSn−1
R−t(x).

We multiply (∂2
t − ∆)u by ∂tu and integrate on {x ∈ Rn : |x − x0| ≤ R − t}. We

note that in integrating the Laplacian by parts, we get

−
∫
|x−x0|≤R−t

∂tu∆u dx = −
∫
|x−x0|=R−t

∂tu∇u · ν dS +

∫
|x−x0|≤R−t

∇∂tu · ∇u dx.

It follows that

0 =

∫
|x−x0|≤R−t

∂tu∂
2
t u− ∂tu∆u dx

=

∫
|x−x0|≤R−t

∂tu∂
2
t u+∇∂tu · ∇u dx−

∫
|x−x0|=R−t

∂tu∇u · ν dS

=
d

dt
(E(t;x0, R)) +

∫
|x−x0|=R−t

1

2
|∂tu|2 − ∂tu∇u · ν +

1

2
|∇u|2 dS.

We now note that

|∂tu∇u · ν| ≤ |∂tu||∇u| ≤
1

2
(|∂tu|2 + |∇u|2)
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(the first inequality following from Cauchy-Schwarz, noting that ν is a unit vector,
and the second inequality following from the AM-GM inequalitiy). It follows that

0 =
d

dt
(E(t;x0, R)) +

∫
|x−x0|=R−t

1

2
|∂tu|2 − ∂tu∇u · ν +

1

2
|∇u|2 dS ≥ d

dt
(E(t;x0, R)).

Thus d
dt

(E(t;x0, R)) ≤ 0, as desired. �

This gives another way to derive the finite speed of propagation for the wave equa-
tion:

Corollary 12.7 (Finite Speed of Propagation). If (f0, f1) are identically zero on
{x : |x− x0| ≤ t0}, then u(t0, x0) = 0.

Proof. The assumptions give E(0;x0, t0) = 0, so by the local energy decay, we have
E(t;x0, t0) ≤ 0 for 0 ≤ t ≤ t0. Since E is defined as an integral of non-negative
terms, it follows that we must have E(t;x0, t0) = 0 for all t. This in turn implies that
∂tu(t, x) = 0 and ∇u(t, x) = 0 for all (t, x) such that 0 ≤ t ≤ t0 and |x− x0| ≤ t0− t,
so in particular u is constant on the region {(t, x) : 0 ≤ t ≤ t0, |x − x0| ≤ t0 − t}.
Moreover, this constant is zero, since u(0, x) = f0(x) equals 0 for |x − x0| ≤ t0. It
follows that u(t0, x0) = 0 as well. �
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13. Lecture 13: Geometric Optics and nonlinear first-order PDE:
method of characteristics (05/10)

The references for this section are Stefanov’s Lecture Notes on Geometric Optics
[Ste], as well as [Eva10] Sections 3.2 and 4.5.

13.1. Motivation for Geometric Optics Ansatz. This week we study the behav-
ior of “highly oscillating” solutions for hyperbolic equations. Recall that the solution
to

(∂2
t −∆)u = 0 in (0,∞)× Rn, u(0, x) = 0, ∂tu(0, x) = f(x)

is given (via the formula for the Fourier transform û(t, ξ)) by

u(t, x) = (2π)−n
∫
Rn
eix·ξ

sin(t|ξ|)
|ξ|

f̂(ξ) dξ =
∑
±

(2π)−n
∫
Rn
ei(x·ξ±t|ξ|)

±1

2i|ξ|
f̂(ξ) dξ

by writing sin(t|ξ|) = eit|ξ|−e−it|ξ|
2i

. We can view the above integrals as saying that the
solution u is a superposition of complex exponentials of the form

eiφ±(t,x;ξ), φ±(t, x; ξ) = x · ξ ± t|ξ|.
The functions φ± are the so-called phase functions associated to the complex exponen-
tial solutions. Moreover, note that these phase functions are (positively) homogeneous
of degree 1 in ξ, meaning that

λ > 0 =⇒ φ±(t, x;λξ) = λφ±(t, x; ξ).

Thus, if for ξ ∈ Rn we view it as a scaled version of a unit vector, i.e. ξ = λξ0 for
ξ0 ∈ Sn−1, then the complex exponential is eiλφ±(t,x;ξ0), or equivalently if h = λ−1

this is eiφ±(t,x;ξ0)/h; note then that large ξ ∈ Rn correspond to large λ > 0 or small
h > 0. This means that in the regime of “high frequency” (i.e. large “wavenumber” ξ,
corresponding to small wavelength), these complex exponentials become increasingly
oscillatory.

Thus, when studying hyperbolic equations (∂2
t − L)u = 0 in general (where L

is a second-order elliptic operator), we are motivated to consider highly oscillatory
“solutions” (really ansatzs) of the form

u(t, x) = eiφ(t,x)/ha(t, x)

where φ is a “phase function”, a is an “amplitude profile”, and h > 0 is viewed as a
small number. The idea is that as h→ 0, the ansatz above describes a solution which
oscillates rapidly, with the oscillation profile determined by φ, times a slower-varying
amplitude profile a. In general there is no reason to hope that this ansatz actually
gives an actual solution, but we may ask if we can obtain an approximate solution,
i.e. such that (∂2

t −L)u is “small” in h as h→ 0 (for example, perhaps it is “O(hN)”
for some N , for a suitably defined notion of big-O).

This is called the geometric optics ansatz. The name follows from studying light,
which satisfies a wave-particle duality property where, on one hand, it can be modeled
by a solution to the wave equation, and on the other hand it has features which are
consistent with treating it as a particle and considering certain classical geometric
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dynamics regarding that particle. The two features end up being related in the
high-frequency regime, where certain features of high-frequency solutions to the wave
equation are well-described by classical dynamics.

13.2. Plugging in the ansatz. To set the setting, we consider a general hyperbolic
operator32

∂2
t − L, L =

n∑
j,k=1

gjk(x)∂xj∂xk +
n∑
k=1

bk(x)∂xk + q(x).

For convenience, we assume all coefficients are smooth and bounded, and furthermore
the coefficients gjk satisfy that {gjk(x)}nj,k=1 forms a positive-definite symmetric ma-

trix for each x. Then, given functions φ(t, x) and a(t, x) on Rn+1 (say smooth for
convenience), we want to calculate

(∂2
t − L)(eiφ(t,x)/ha(t, x)).

Without doing the full calculation, we can easily see that the result will be of the
form

eiφ/h
(

1

h2
(. . . ) +

1

h
(. . . ) + (. . . )

)
,

where each . . . consist of expressions involving derivatives of φ and a (but otherwise
not depending on h). (See equation (10) below for the precise result.) This is because
when we take derivatives on the product eiφ/ha, they either land on the complex
exponential eiφ/h, which produces a factor of h−1, or on the amplitude (which produces
something involving a and later possibly φ, but no factors of h). Since we have a
second-order differential operator, this means that we could produce terms as large
as h−2.

It follows that if we just arbitrarily choose φ and a, then eiφ/ha not only is not a
solution, but (∂2

t − L)(eiφ/ha) might get quite large as h → 0. However, if we take
a closer look at what the . . . coefficients are, in terms of φ and a, we may be able
to arrange for those coefficients to vanish, meaning that eiφ/h does not get large as
h→ 0. Thus, we are motivated to find out what those coefficients are.

Note that we have

∂k(e
iφ/ha) = eiφ/h

(
i
∂kφ

h
a+ ∂ka

)
.

It follows that

∂j∂k(e
iφ/ha) = eiφ/h

(
i
∂jφ

h

(
i
∂kφ

h
a+ ∂ka

)
+ ∂j

(
i
∂kφ

h
a+ ∂ka

))
= eiφ/h

(
1

h2
(−∂jφ∂kφ)a+

i

h
(∂jφ∂ka+ ∂j(∂kφa)) + ∂j∂ka

)
.

32It’s probably more natural to call these coefficients ajk, bk, and c. However, I want to use the
letter a for the amplitude of our ansatz, and the letter c often denotes the wave speed; hence I use
gjk (which later on turns out to be associated to the dual metric of some Riemannian metric) and
q (which is another letter often used for potentials).
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Hence,

∂2
t (e

iφ/ha) = eiφ/h
(

1

h2
(−(∂tφ)2a) +

i

h
(∂tφ∂ta+ ∂t(∂tφa)) + ∂2

t a

)
and

n∑
j,k=1

gjk∂j∂k(e
iφ/ha) = eiφ/h

[
1

h2

(
−

n∑
j,k=1

gjk∂jφ∂kφ

)
a

+
i

h

n∑
j,k=1

gjk (∂jφ∂ka+ ∂j(∂kφa)) +
n∑

j,k=1

gjk∂j∂ka

]
and

n∑
k=1

bk∂k(e
iφ/ha) = eiφ/h

(
i

h

(
n∑
k=1

bk∂kφ

)
a+

n∑
k=1

bk∂ka

)
.

It follows that
(10)

(∂2
t − L)(eiφ/ha) = eiφ/h

[
1

h2

(
−(∂tφ)2 +

n∑
j,k=1

gjk∂jφ∂kφ

)
a+

i

h
Lφa+

(
∂2
t − L

)
a

]
where

Lφa = ∂tφ∂ta+ ∂t(∂tφa)−
n∑

j,k=1

gjk (∂jφ∂ka+ ∂j(∂kφa))−

(
n∑
k=1

bk∂kφ

)
a.

It follows that for the h−2 coefficient above to vanish, we need

−(∂tφ)2 +
n∑

j,k=1

gjk∂jφ∂kφ = 0.

This is called the eikonal equation for the phase function φ. Note that this is a
nonlinear first-order PDE on φ. We can rephrase this equation as

H(t, x, ∂tφ,∇φ) = 0, H(t, x, τ, ξ) = −1

2
τ 2 +

1

2

n∑
j,k=1

gjk(x)ξjξk

(the factor 1/2 is introduced for later convenience33). Note that the formula for H
does not depend on t (though it otherwise depends on τ , ξ, and possibly x depending
on how the coefficients gjk depend on x), though it turns out to be convenient to
include t as one of the independent variables.

We note that the eikonal equation only depends on the leading-order (i.e. 2nd
order) terms of L; note that the first-order terms appear in the h−1 and h0 coefficients
only, while the zeroth order term only appears in the h0 coefficient.

33This was not the convention introduced in lecture, but it is one that I would like to adopt in
retrospect.
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Example 13.1. Suppose L = ∆, so that (gjk) = Id. Then the eikonal equation
becomes

(∂tφ(t, x))2 − |∇φ(t, x)|2 = 0.

Then φ±(t, x; ξ) = x · ξ ± t|ξ| solves the eikonal equation for any ξ, since ∂tφ = |ξ|
while ∇φ = ξ (in particular both derivatives are constant).

More generally, if L = c2∆ for c > 0, then (gjk) = c2Id, and the eikonal equation
becomes

(∂tφ(t, x))2 − c2|∇φ(t, x)|2 = 0.

Then φ±(t, x; ξ) = x · ξ ± ct|ξ| solves the eikonal equation.

13.3. Nonlinear first-order PDE/Hamilton-Jacobi equations and the method
of characteristics. We now turn our attention to a general nonlinear first-order PDE
(sometimes called34 the Hamilton-Jacobi equation)

H(x,∇φ(x)) = 0

(of which the eikonal equation above is a special case, essentially by renaming t as an
x variable, e.g. as x0). The function H(x, ξ) : Rn×Rn → R is called the Hamiltonian
in this equation.

To solve this nonlinear PDE on all of Rn, we instead ask if we can solve for the
solution, perhaps not on all of Rn at once, but at least along certain (specially chosen)
curves x(s). The advantage of restricting to curves is that this will likely reduce our
problem to an ODE (i.e. a differential equation of one variable), whose theory we
understand more completely.

As such, suppose that φ solves the above equation, and let x(s) be some curve in
Rn (which we can choose later). We can then keep track of how the derivatives of our
solution φ look along this curve, i.e. we let

ξ(s) = ∇φ(x(s)).

Then ξ must satisfy

ξ̇i(s) =
n∑
j=1

∂2
ijφ(x(s))ẋj(s).

On the other hand, differentiating H(x,∇φ(x)) = 0 with respect to the xi variable
gives

∂xiH(x,∇φ(x)) +
n∑
j=1

∂ξjH(x,∇φ(x))∂2
ijφ(x) = 0.

It follows that if we choose our curve x(s) to satisfy

ẋj(s) = ∂ξjH(x(s),∇φ(x(s)))

34In some sources, a Hamilton-Jacobi equation is specifically of the form ∂tφ(t, x) +
H(x,∇φ(t, x)) = 0, which is of the form considered here after renaming t as another x variable.
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(note that if φ is known, then this determines x(s) up to a choice of initial condition
x(0)), then ξ(s) = ∇φ(x(s)) must satisfy

ξ̇i(s) =
n∑
j=1

∂2
ijφ(x(s))ẋj(s)

=
n∑
j=1

∂ξjH(x(s),∇φ(x(s)))∂2
ijφ(x)

= −∂xiH(x(s),∇φ(x(s))) = −∂xiH(x(s), ξ(s)).

This means that x (determined if φ is known), together with ξ = ∇φ(x), satisfy
Hamilton’s equations

ẋ = ∂ξH, ξ̇ = −∂xH.

Thus, if both (x(0), ξ(0)) are specified, then a unique trajectory (x(s), ξ(s)) is deter-
mined from Hamilton’s equations.

Moreover, if we then let z(s) = φ(x(s)), we see that

ż(s) = ∇φ(x(s)) · ẋ(s) = ξ(s) · ∂ξH(x(s), ξ(s)).

If we know (x(s), ξ(s)), then we can integrate the above equation to recover φ(x(s))
for any x(s) along our Hamilton trajectory.

This in theory gives us a way to solve for φ along certain trajectories. To be pedan-
tic, we’d need to check that this actually does give a solution to the claimed equation.
In particular, we need to specify “initial data” for φ, say on some hypersurface S,
and we want to check that any point away from S can be connected to a point in S
via a Hamiltonian trajectory. That is, for every x ∈ Rn, we’d like for there to exist
a Hamiltonian trajectory (x(s), ξ(s))0≤s≤T for some T ≥ 0 such that x(T ) = x and
x(0) ∈ S. Moreover, the choice of ξ in the Hamiltonian trajectory cannot be arbitrary
either: if we want ξ to represent the derivatives of our solution φ, then the starting
momentum ξ(0) in the above trajectory must be consistent with the prescribed data
φ on S. More specifically, we need

ξ(0) · ~v = D~v(φ|S) for all ~v ∈ Tx(0)S,

where Tx(0)S is the tangent space of S at the starting point x(0), and D~v(φ|S) is the
directional derivative of φ in the direction ~v.

It turns out that if those dynamical assumptions are satisfied, then our construction
does work. The details are checked in Evans, Section 3.2.4.

To conclude this lecture, we see what the Hamiltonian equations are for our situa-
tion with the eikonal equation, i.e. with

H(t, x, τ, ξ) = −1

2
τ 2 +

1

2

n∑
j,k=1

gjk(x)ξjξk.
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Then Hamilton’s equations become

ṫ(s) = −τ, ẋi(s) = ∂ξi

(
1

2
G(x, ξ)

)
τ̇(s) = 0, ξ̇i(s) = −∂xi

(
1

2
G(x, ξ)

)
where

G(x, ξ) =
n∑

j,k=1

gjk(x)ξjξk.

We will study these equations more next lecture, but it suffices to observe that τ
is constant (so s is just a linear reparametrization of t), and that (x, ξ) themselves
satisfy Hamilton’s equations for the Hamiltonian G(x, ξ). It turns out that, if we
consider a Riemannian metric (gjk) defined in coordinates by (gjk(x)) = (gjk(x))−1,
then the geodesic flow with respect to the Riemannian metric, lifted to the cotangent
bundle, corresponds exactly to Hamiltonian flow with respect to the Hamiltonian G.
More on this next time.
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14. Lecture 14 (05/12): Examples of Method of Characteristics and
the relationship of Geodesic Flow with Hamiltonian Dynamics

14.1. Method of characteristics: examples. Recall the general strategy to solve
H(x,∇φ(x)) = 0, say with specified “initial data” φ|S on some hypersurface S:

• Solve Hamilton’s equations

ẋ(s) = ∂ξH(x(s), ξ(s)), ξ̇ = −∂xH(x(s), ξ(s))

to understand the dynamics of Hamiltonian trajectory.
• For x ∈ Rn, find a Hamiltonian trajectory (x(s), ξ(s))0≤s≤T such that:

– x(T ) = x,
– x(0) ∈ S,
– ξ(0) is “compatible” with the initial data φ|S, i.e. that

ξ(0) · ~v = D~v(φ|S)

at x(0) for all ~v ∈ Tx(0)S.
• Along the trajectory x(s), z(s) := φ(x(s)) should satisfy

ż(s) = ξ(s) · ẋ(s) = ξ(s) · ∂ξH(x(s), ξ(s)),

with z(0) = φ(x(0)) known. Solve the above ODE for z to recover φ(x) = z(T ).

Remark 20. A general fact is that along a Hamiltonian trajectory, we have that
H(x(s), ξ(s)) is constant, i.e. “the Hamiltonian is preserved”. Moreover, if H is
homogeneous of degree m in ξ, then Euler’s formula gives

ξ · ∂ξH = mH,

which can simplify the above calculations for z(s) = φ(x(s)) especially in light of the
fact that H is constant along the trajectory.

Example 14.1. Transport equations: supposeH(x, ξ) = b(x)·ξ−f(x) for some vector
field b(x) (which we assume for convenience is non-vanishing) and some function f(x).
Then the corresponding PDE is

b(x) · ∇φ(x) = f(x).

Then the Hamiltonian equations become

ẋi(s) = bi(x(s)), ξ̇i(s) = −
n∑
j=1

∂ibj(x(s))ξj(s) + ∂if(x(s)).

The first equation tells us that the characteristic curves (in the x variable) are given
by integral curves of the vector field b (for example, if b is a constant nonzero vector,
then the curves are straight lines with tangent vector b). In this case, we can actually
ignore the equation for ξ, and just directly note that

d

ds
(φ(x(s))) = b(x(s)) ·∇φ(x(s)) = f(x(s)) =⇒ φ(x(T )) = φ(x(0)) +

∫ T

0

f(x(s)) ds.
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Example 14.2. Suppose H(t, x, τ, ξ) = τ − 1
2
|ξ|2, i.e. the PDE is

∂tφ(t, x) =
1

2
|∇φ(t, x)|2.

Then the Hamiltonian equations become

ṫ = 1, ẋ = −ξ, τ̇ = 0, ξ̇ = 0.

Note that τ̇ = 0 and ξ̇ = 0 imply that, along the characteristics where we’ll be solving
for φ, we have that ∂tφ and ∇φ will be constant. Furthermore, ṫ = 1 =⇒ t = s+C,
i.e. t and s are reparametrizations of each other up to a constant.

For example, if S = {t = 0}, then for a trajectory to satisfy (t(0), x(0)) ∈ S we
clearly have t = s. Furthermore, suppose φ|S is given by φ(0, x) = 1

2
|x|2. Then, along

any trajectory (s, x(s), τ(s), ξ(s)), we must have ξ(s) = ξ(0) = ∇φ(0, x(0)) = x(0),
while τ(s) = τ(0) = 1

2
|ξ(0)|2 = 1

2
|x(0)|2. Then

ẋ(s) = −ξ(s) = −x(0) =⇒ x(s) = x(0)− x(0)s = (1− s)x(0).

Note that for any s < 1 and any x ∈ Rn there exists a unique choice of x(0) such that
x(s) = x, namely x(0) = x

1−s , though all characteristics end up colliding at s = 1.
Furthermore,

d

ds
(φ(s, x(s))) = τ(s)ṫ(s) + ξ(s) · ẋ(s) =

1

2
|x(0)|2 − |x(0)|2 = −1

2
|x(0)|2.

It follows that

φ(t, x(t)) = φ(0, x(0)) +

∫ t

0

d

ds
φ(s, x(s)) ds =

1

2
|x(0)|2 − t

2
|x(0)|2 =

1− t
2
|x(0)|2.

Thus,

φ(t, x) = φ(t, x(t)) if x(0) =
x

1− t

=
1− t

2
|x(0)|2

=
|x|2

2(1− t)
.

We can go back and check:

∂tφ =
|x|2

2(1− t)2
, ∇φ =

x

1− t
=⇒ 1

2
|∇φ|2 =

|x|2

2(1− t)2
,

i.e. ∂tφ = 1
2
|∇φ|2, as desired. Note that this solution blows up as t→ 1−.

We now return to our nonlinear PDE of interest, the eikonal equation

H(t, x, ∂tφ,∇φ) = 0 where H(t, x, τ, ξ) = −τ 2 +
n∑

j,k=1

gjk(x)ξjξk.

Our initial hypersurface will be S = {t = 0}.
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We see that Hamilton’s equations become

ṫ(s) = −τ, ẋi(s) = ∂ξi

(
1

2
G(x, ξ)

)
τ̇(s) = 0, ξ̇i(s) = −∂xi

(
1

2
G(x, ξ)

)
where

G(x, ξ) =
n∑

j,k=1

gjk(x)ξjξk.

In particular, τ is constant, t(s) = t(0) − τs, and (x(s), ξ(s)) is a Hamiltonian tra-
jectory for the Hamiltonian 1

2
G(x, ξ). Note then that G(x(s), ξ(s)) is constant, and

it equals G(x(0), ξ(0)) (which also equals τ(0)).

14.2. Some Riemannian geometry: geodesic flow. How do we make sense of
the above Hamiltonian flow? It turns out we can do the following: let g be the
Riemannian metric whose dual Riemannian metric is

∑n
j,k=1 g

jk(x)∂xj ⊗ ∂xk , i.e. g =∑n
j,k=1 gjk(x)dxj ⊗ dxk where, as matrices, we have

(gjk(x)) = (gjk(x))−1.

Note for any tangent vector v =
∑
vk∂xk ∈ TxRn, if we let35

ξ =
∑

ξj dx
j, ξj =

∑
gjk(x)vk,

then for any other tangent vector w ∈ TxRn we have

ξ(w) =
∑
j

ξjw
j =

∑
jk

gjk(x)vkwj = gx(v, w).

Moreover, vj =
∑

k g
jk(x)ξk, and

gx(v, v) = ξ(v) =
∑
j

ξjv
j =

∑
jk

gjk(x)ξjξk = G(x, ξ).

Thus, G(x, ξ) is the dual metric function on T ∗Rn with respect to the metric given
by (gjk).

Given this Riemannian metric, we can consider when a curve is a geodesic with
respect to this metric. Recall a curve x(s) is a geodesic if ∇x′x

′ = 0, where ∇ is the
Levi-Civita connection associated with g; in coordinates this equation becomes the
system of n equations

x′′k(s) +
n∑

i,j=1

Γkij(x(s))x′i(s)x
′
j(s) = 0,

35This association of a covector ξ to a vector v via the metric is sometimes called the musical
isomorphism or raising/lowering indices.
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where the Γkij are the Christoffel symbols satisfying ∇∂i∂j =
∑n

k=1 Γkij∂k; in coordi-
nates we have

Γkij(x) =
1

2

n∑
m=1

gkm(x)(∂igjm(x) + ∂jgim(x)− ∂mgij(x)).

Then, it turns out we have:

Theorem 14.3. Suppose (x(s), ξ(s)) is a Hamiltonian trajectory for 1
2
G, where G(x, ξ) =∑n

j,k=1 g
jk(x)ξjξk, and let τ 2 be the constant value of G along this trajectory. Then

x(s) is a geodesic with respect to the metric gij. Moreover, the tangent vector ẋ(s)
satisfies

(11) gx(s)(ẋ(s), v) = ξ(s) · v

for all v ∈ Tx(s)Rn, and gx(s)(ẋ(s), ẋ(s)) = τ 2 for all s.

The proof is given in Appendix A. Note that (11) is easy to verify, since we have

ẋi(s) = ∂ξi

(
1

2

n∑
j,k=1

gjk(x)ξjξk

)
=

n∑
j=1

gij(x)ξj(s),

from which we see that ξj(s) =
∑n

k=1 gjk(x)ẋk(s), i.e. that

ξ ·

(
n∑
j=1

vj∂xj

)
=

n∑
j=1

ξj(s)v
j =

n∑
j,k=1

gjk(x)ẋk(s)v
j = gx(s)

(
ẋ(s),

(
n∑
j=1

vj∂xj

))
,

as desired.
Since t is also progressing in s at a rate of |τ |, it follows that:

Corollary 14.4. Suppose (t(s), x(s), τ(s), ξ(s)) is a Hamiltonian trajectory of

H(t, x, ξ, τ) =
1

2

(
τ 2 −

n∑
j,k=1

gjk(x)ξjξk

)
.

Then (t(s), x(s)) traces out a curve in Rn+1 which can be reparametrized in terms of t,
i.e. as (t, x(t)), such that x(t) is a unit-speed geodesic with respect to the Riemannian
metric (gij).

Example 14.5. Suppose G = ξ2
1 + 1

x21
ξ2

2 . Then

ẋ1 = ξ1, ẋ2 =
ξ2

x2
1

, ξ̇1 =
1

x3
1

ξ2
2 , ξ̇2 = 0.

Then ξ2 is constant. If ξ2 = 0, then ξ1 is constant as well. Then x2 is constant, and
x1 travels at constant speed. If ξ2 6= 0, then we note that G is constant, and ξ1 = ẋ1

implies

ẋ1
2 = G− ξ2

2

x2
1

.
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One can check that, up to constant-speed reparametrization, we have

x1(s) =

√
ξ2

2

G
+Gs2

in which case

ẋ2(s) =
ξ2

ξ22
G

+Gs2
=

ξ2G

ξ2
2 +G2s2

=⇒ x2(s) = arctan

(
Gs

ξ2

)
+ x2(0).

Note that if we let r0 = |ξ2|/
√
G and v =

√
G, then

x1(s) =
√
r2

0 + (vs)2, x2(s) = x2(0)± arctan

(
vs

r0

)
,

which is in fact the radius and angle of a straight line in R2 located a distance of
r0 from the origin parametrized at speed v. (In that case, |ξ2| = r0v, and ξ2 being
constant is the “conservation of angular momentum.”). This is no surprise, given that
the corresponding metric g = dx2

1 +x2
1dx

2
2 is the Euclidean metric in polar coordinates

(x1 the radial variable, x2 the angular variable; rewriting this gives g = dr2 + r2dθ2

which may be more familiar).
Moreover, if we now call r = x1 and θ = x2, the corresponding operator

L = ∂2
r + r−2∂2

θ

is, up to lower-order terms, the Laplacian in polar coordinates in R2, since in fact

∆ = ∂2
r +

1

r
∂r +

1

r2
∂2
θ .
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15. Lecture 15 (05/17): Back to the geometric optics ansatz and
applications

Recall that the reason we investigated solving first-order PDE was in considering
geometric optics ansatz:

(12) (∂2
t − L)(eiφ/ha) = eiφ/h

(
1

h2
H(t, x, ∂tφ,∇φ)a+

i

h
Lφ(a) + (∂2

t − L)a

)
,

from which we’d like to impose H(t, x, ∂tφ,∇φ) = 0, i.e. that φ solves the eikonal
equation. To do so, we saw that we wanted to study the Hamilton trajectories with
respect to the Hamiltonian

H(t, x, τ, ξ) = −τ 2 +
n∑

j,k=1

gjk(x)ξjξk,

whose trajectories (projected to the (t, x) variables) traced out a curve which in turn
can be traced by (t, x(t)), where x(t) is a unit-speed geodesic with respect to the
metric (gjk(x)) = (gjk(x))−1.

15.1. Finishing up the eikonal equation. For concreteness, we also need to im-
pose initial conditions on φ on some initial hypersurface, which we take to be S =
{t = 0}. We’ll make the particular choice

φ(0, x) = x · ξ0

for some ξ0 ∈ Rn. This corresponds to solving the following problem:

find an “approximate solution” u to (∂2
t − L)(eiφ/ha) = 0

with initial condition u(0, x) = eix·ξ0/ha(x).

If a is compactly supported in a small neighborhood of some point, say x0, then one
can view the initial value eix·ξ0/ha(x) as a “wavepacket” spatially supported near x0

with momentum ξ0/h; as h → 0 the momentum gets larger in magnitude (though
with a fixed direction).

Thus, for (t0, x0), we want to find a Hamiltonian trajectory (t(s), x(s), τ(s), ξ(s))
and some “final36 time” T such that

• (t(T ), x(T )) = (t0, x0),
• t(0) = 0,
• ξ(0) = ξ0.

Recall that τ̇ = ∂tH = 0, so τ is constant, and in fact we must have

τ = ±|ξ0|g,x(0),

where |ξ|2g,x = G(x, ξ). In particular, we have two possible choices for τ (this corre-
sponds roughly to having an “incoming” or “outgoing” wave.) Moreover, we have

ṫ = −τ =⇒ t = −τs.
36Actually, we can take T < 0: as we see below, this is needed if we subsequently take τ > 0.
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(Thus, T = −t0/τ .) Finally, x(s) traces a geodesic of speed |τ |. Reparametrizing by
t, we see then that x(t) is a geodesic of speed 1, since

∣∣ dt
ds

∣∣ = |τ |. Moreover, the initial
velocity ẋ(0) (when parametrized by t) has a corresponding momentum parallel to
ξ0.

This describes the trajectories, though as a reminder we also want to solve the
actual eikonal equation, for which understanding the trajectories gets us almost there.
We now note that

d

ds
(φ(t(s), x(s))) = (τ, ξ) · ∂τ,ξH = 2H = 0,

since H is homogeneous of degree 2 in (τ, ξ), and our trajectories stay in {H = 0}.
Thus, the initial value φ(0, x) = x · ξ0 is simply transported along the trajectories,
with no modification.

Example 15.1. Suppose (gij) = c2Id. In this case, τ is independent of (t, x), since
τ = ±c|ξ0|. Moreover, ξ is constant, so ξ = ξ0. Finally,

ẋ = c2ξ = c2ξ0 =⇒ x(s) = x(0) + c2ξ0s.

Thus, if (t(s), x(s)) = (t, x), then t = −τs = ∓c|ξ0|s =⇒ s = ∓ t
c|ξ0| , so

x = x(s) = x(0) + c2ξ0

(
∓ t

c|ξ0|

)
= x(0)∓ ct ξ0

|ξ0|
=⇒ x(0) = x± ct ξ0

|ξ0|
.

Finally, from above we have that φ maintains its value along the trajectory, so

φ(t, x) = x(0) · ξ0 =

(
x± ct ξ0

|ξ0|

)
· ξ0 = x · ξ0 ± ct|ξ0|.

Remark 21. Note that the speed of the trajectory x(t) measured with respect to t
does not depend on the magnitude of ξ0, only its direction (the speed measured with
respect to the original trajectory parameter s does depend on |ξ0|, but then so does
t(s); the two end up canceling here). This is a sign that the linear wave equation is
not dispersive, i.e. high frequencies are not “spreading” faster than low frequencies.

15.2. Solving the transport equation in the h−1 coefficient. Now that we’ve
solved the eikonal equation, thus removing the h−2 component in (12), let’s consider
the h−1 coefficient. This is iLφa, where

Lφa = ∂tφ∂ta+ ∂t(∂tφa)−
n∑

j,k=1

gjk (∂jφ∂ka+ ∂j(∂kφa))−

(
n∑
k=1

bk∂kφ

)
a.

Note that we can separate Lφ into a first order and zeroth order part, i.e. Lφa =

−L(1)
φ a+ L(0)

φ a where

L(1)
φ a = 2

(
−∂tφ∂ta+

n∑
j,k=1

gjk∂jφ∂ka

)
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and

L(0)
φ a = ψ(t, x)a(t, x), ψ =

(
∂2
t φ−

n∑
j,k=1

gjk∂jφ∂kφ−
n∑
k=1

bk∂kφ

)
.

Thus, we can rewrite the condition as L(1)
φ a = L(0)

φ a, with the LHS a vector field
applied to a, and the RHS a function multiplied by a. This is essentially a transport
equation, with a zeroth order term.

If we wanted to solve L(1)
φ a = 0, we would use the method of characteristics (cf.

Example 14.1), in which case we want to consider curves in Rn+1 whose velocities

agreed with the coefficients in L(1)
φ a, i.e. curves (t(s), x(s)) satisfying

(13) ṫ(s) = −∂tφ(t(s), x(s)), ẋk(s) =
n∑

j,k=1

gjk(x(s))∂jφ(t(s), x(s)).

Such curves are precisely the Hamiltonian trajectories with respect to H. So, in
considering the dynamics needed to solve the eikonal equation, to solve away the h−2

term, we also come up with the relevant dynamics to solve the transport equation in
the h−1 term.

In this case, we do have a zeroth order term. It turns out, to solve the transport
equation with zeroth order terms, that we can still consider the same characteristics;
the resulting ODE to solve for the value ends up differing. Explicitly, if (t(s), x(s))
satisfies (13), so that d

ds
(a(t(s), x(s))) = Lφa(t(s), x(s)), then our ODE becomes

d

ds
(a(t(s), x(s))) = ψ(t(s), x(s))a(t(s), x(s)),

which, given a known ψ (which can be determined having solved for φ), is just an
ODE on the unknown a(t(s), x(s)). So we can integrate that ODE to solve for a
along these characteristics. In particular, the geodesic dynamics (i.e. Hamiltonian
dynamics for our Hamiltonian H) once again show up in solving for a.

15.3. Solving the remaining terms: asymptotic series ansatz. Now that we’ve
solved away the h−1 component, we see that we are left with an order h0 component
(∂2
t − L)a. Given that we’ve already solved for a, it is in general unreasonable to

expect that (∂2
t − L)a = 0. So it seems initially that we can say:

there exists φ, a such that (∂2
t − L)(eiφ/ha) = O(1) as h→ 0.

However, we can do better. Note that a itself is independent of h–what if we added
a correction term to a, depending on h, to possibly solve away the O(1) error? That
is, we make the ansatz

a(t, x;h) = a0(t, x) + ha1(t, x).

Let us suppose for convenience that φ still solves the eikonal equation. Then

(∂2
t − L)(eiφ/ha) = eiφ/h

(
i

h
Lφa0 + iLφa1 + (∂2

t − L)a0 + h(∂2
t − L)a0

)
.
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We once again require Lφa0 = 0, and now we see if we can arrange

iLφa1 + (∂2
t − L)a0 = 0.

This is indeed possible, once a0 has been solved for: it’s essentially the same process
as described above, namely decomposing Lφ into a first-order term and a zeroth-order
term, in which case we are solving a transport equation (where the vector field is still
the same one as above, i.e. the ones obtained by Hamiltonian dynamics!), now just
with an inhomogeneity (namely the (∂2

t − L)a0 term).
It follows, by adding the order 1 correction, that

there exists φ(t, x), a(t, x;h) such that (∂2
t − L)(eiφ/ha) = O(h) as h→ 0.

We don’t have to stop there of course: if in general we make the ansatz

a(t, x;h) =
N∑
j=0

aj(t, x)hj,

then (continuing to assume that φ solves the eikonal equation) we have

(∂2
t−L)(eiφ/ha) = eiφ/h

(
i

h
Lφa0 +

N∑
j=1

hj−1(iLφaj − (∂2
t − L)aj−1) + hN(∂2

t − L)aN

)
.

It follows that if we inductively solve

iLφaj − (∂2
t − L)aj−1 = 0,

then
(∂2
t − L)(eiφ/ha) = O(hN).

Having solved for these aj, we may be tempted to consider

a(t, x;h) :=
∞∑
j=0

aj(t, x)hj

which should heuristically satisfy

(∂2
t − L)(eiφ/ha) = “O(h∞)′′ (i.e. O(hN) for each N).

However, there’s no guarantee that the sum
∑∞

j=0 a
j(t, x)hj converges in any mean-

ingful way. Nonetheless, we can make sense of it in the sense of asymptotic series (cf.
Taylor expansions), as follows:

Lemma 15.2 (Borel Summation Lemma). Let a0(y), a1(y), . . . be any sequence of
functions in C∞(Y ) (where Y is any manifold, say Rn). Then, there exists a function
a(y, h) ∈ C∞(Y × [0, 1)) such that, for any N and any compact subset K ⊂ Y , there
exists CN,K > 0 such that∣∣∣∣∣a(y, h)−

N−1∑
j=0

aj(y)hj

∣∣∣∣∣ ≤ CN,Kh
N

for all y ∈ K.



84 JOEY ZOU

The proof is somewhat explicit: we can take

a(y, h) =
∞∑
j=0

χ

(
h

εj

)
aj(y)hj,

where χ ∈ C∞c (R) is identically one for |h| < 1/2 and supported in |h| < 1, and εj
is a rapidly decreasing sequence of positive numbers whose rate of decrease we can
control. Note then that, for a fixed h > 0, the above sum is a finite sum (we sum only
over j where h < εj, which happens for only finitely many j), and we can control εj
to decrease sufficiently fast so that the sum is uniformly bounded as h→ 0.

Remark 22. The “zero-dimensional” version of this (i.e. when “Y is a point”, so
functions in C∞(Y ) are just numbers) says that the Taylor coefficients of a smooth
function can be completely arbitrary : any sequence (even those growing as fast as
you like) is the set of Taylor coefficients for some smooth function. Such a function
will necessarily non-analytic; in fact the Taylor coefficients of a (say 1-dimensional)
analytic function cannot grow faster than exponential (equivalently, the jth derivative
at a point cannot grow faster than Cjj! for some C > 0), essentially due to Cauchy’s
integral formula.

For t ≥ 0 and ξ ∈ Rn nonzero, let (x(t), ξ(t)) be a Hamiltonian trajectory where
x(0) = x and ξ(0) = ξ

|ξ|g ; here |ξ|2g =
∑
gjkξjξk. Note then that x(t) is a geodesic of

speed 1. Set
expt,ξ(x) = x(t).

Let’s make the following dynamical assumption:

Assumption 15.3. The set U ⊂ Rn is bounded, and T > 0 satisfies the property
that expt,ξ : U → Rn is a diffeomorphism onto its image for all 0 ≤ t ≤ T and all
ξ ∈ Rn\{0}.

Under this assumption, we have that for any ξ ∈ Rn\{0} there exists a unique
solution to the eikonal equation

H(t, x, ∂tφ,∇φ) = 0, φ(0, x) = x · ξ for x ∈ U
which is well-defined on

Ωξ := {(t, x) : 0 ≤ t ≤ T, x = expt,ξ(x0) for some x0 ∈ U}.
Then, the geometric optics ansatz developed in the previous few lectures give the
following result:

Theorem 15.4. Suppose U and T satisfy Assumption 15.3, and let a ∈ C∞c (U),
ξ ∈ Rn\{0}. Then there exists a family of smooth functions u(t, x;h) for h > 0,
supported on Ωξ, with the property that

u(0, x;h) = eix·ξ/ha(x)

and for every N there exists CN such that

|(∂2
t − L)u(t, x;h)| ≤ CNh

N uniformly on Ωξ.
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15.4. Approximate solution for hyperbolic equations. The development of this
ansatz also allows us to construct an “approximate solution” for the general wave
equation. Here the notion of “approximate inverse” must be taken with a grain of
salt–the approximation here is in the sense of regularity, not in terms of size. Thus,
the following theorem shows that we can construct a function (for short times) which
solves our hyperbolic equation (∂2

t − L)u = 0 up to smooth errors (which a priori
could be large in size, but at the very least contains no additional singularities):

Theorem 15.5. Suppose U and T satisfy Assumption 15.3, and suppose f0, f1 ∈
L2(Rn) and are compactly supported in U . Then there exists u ∈ C1([0, T ]; E ′(Rn))
such that

(∂2
t − L)u ∈ C∞c ([0, T ]× Rn),

lim
t→0+

[u(t)− f0] ∈ C∞c (Rn),

lim
t→0+

[∂tu(t)− f1] ∈ C∞c (Rn).

Moreover,

supp u ⊂
⋃

ξ∈Rn\{0}

Ωξ.

The motivation is that the solution to the Cauchy problem to the linear wave
equation is given by

u(t, x) = (2π)−n
∫
Rn
eix·ξ

(
cos(t|ξ|)f̂0(ξ) +

sin(t|ξ|)
|ξ|

f̂1(ξ)

)
dξ.

Writing cos and sin in terms of complex exponentials, and writing ξ in polar coordi-
nates ξ = ω/h, with h = 1/|ξ|, we can rewrite the solution as

u(t, x) = (2π)−n
∑

k=0,1,σ=±

∫
Sn−1

∫ ∞
0

eiφ±(t,x;ω)/hak,σ(ω)f̂k(ω/h)h−n−1−j dh dSn−1(ω)

where

a0,+ =
1

2
, a0,− =

1

2
, a1,+ =

1

2i
, , a1,− = − 1

2i
.

Proof. Let χ ∈ C∞c (U) satisfy χ ≡ 1 on the support of f0 and f1, and let ρ ∈ C∞c (R)
satisfy ρ(h) = 1 for all |h| < 1. We take

u(t, x) = (2π)−n
∑

k=0,1,σ=±

∫
Sn−1

∫ ∞
0

eiφσ(t,x;ω)/hak,σ(t, x;ω, h)ρ(h)f̂k(ω/h)h−n−1−j dh dSn−1(ω)

where φ±(t, x;ω) solve

−(∂tφ±)2 +
n∑

j,k=1

gjk(x)∂xjφ∂xkφ = 0, φ±(0, x;ω) = x · ω, ±∂tφ±(0, x;ω) > 0.
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(we require the differential equation to be satisfied at least on Ωω for all ω ∈ Sn−1

in case it cannot be solved on all of Rn), and ak,±(t, x;ω, h) satisfies an asymptotic
expansion

ak,±(t, x;ω, h) ∼
∑
j≥0

a
(j)
k,±(t, x;ω)hj

where

iLφ±a
(0)
k,± = 0, iLφ±a

(j)
k,± + (∂2

t − L)a
(j−1)
k,± = 0 for j ≥ 1

and at t = 0 we have

a0,+(0, x;ω) =
1

2
χ(x), a0,−;ω =

1

2
χ(x), a1,+ =

1

2i
χ(x), , a1,− = − 1

2i
χ(x).

(i.e. a
(0)
k,± are the above values at t = 0, and a

(j)
k,± = 0 at t = 0). Then, by differentiating

under the integral sign, we see that

(∂2
t−L)u(t, x) = (2π)−n

∑
k=0,1,σ=±

∫
Sn−1

∫ ∞
0

eiφσ(t,x;ω)/hO(h∞)ρ(h)f̂k(ω/h)h−n−1−j dh dSn−1(ω).

We note that this integral converges due to the ρ(h) term controlling behavior for
“large h” (i.e. for small ξ), and the “O(h∞)” error controlling behavior for “small h”
(i.e. for ξ large). Moreover, taking any derivatives in t and x will return an expression
of the same form, since the worst that could happen is multiplying the integrand by
a factor of h−1 (which is absorbed by the O(h∞) error). Moreover, by construction
all ak,± are compactly supported, since it solves a transport equation with compactly
supported initial data. Thus, we have (∂2

t −L)u ∈ C∞c ([0, T ]×Rn). Finally, at t = 0
we have

u(0, x) = (2π)−n
∑

k=0,1,σ=±

∫
Sn−1

∫ ∞
0

eix·ω/hak,σ(0, x;ω, h)ρ(h)f̂k(ω/h)h−n−1−j dh dSn−1(ω)

= (2π)−n
∫
Sn−1

∫ ∞
0

eix·ω/hχ(x)ρ(h)f̂0(ω/h)h−n−1 dh dSn−1(ω)

= χ(x)(2π)−n
∫
Rn
eix·ξρ(|ξ|−1)f̂0(ξ) dξ.

The integral returns f0(x) up to an error whose Fourier transform is supported in
|ξ|−1 ≥ 1, i.e. whose Fourier transform is compactly supported, and hence equals f0

plus a smooth error. Multiplying this by χ(x) returns f0(x) (since χ is identically
one on the support of f0) plus χ times a smooth error, i.e. a C∞c (Rn) error. Thus,
u(0, x)− f0(x) ∈ C∞c (Rn). Similarly, we have ∂tu(0, x)− f1(x) ∈ C∞c (Rn). �

Remark 23. A more polished (though characteristically terse) treatment of this is
given in Grigis and Sjöstrand’s Microlocal Analysis for Differential Operators [GS94],
Chapter 7.
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15.5. Finite Speed of Propagation. We end the variable-coefficient discussion
with the finite speed of propagation in the variable coefficient case. In the constant
coefficient case, we saw that solutions “propagate at finite speed” (specifically speed
1), in that the value of a solution depends only on the values at a previous time at
points which can be reached by a geodesic (i.e. straight line) at speed at most 1. The
natural generalization one may guess for the variable coefficient case is to replace the
above by a geodesic with respect to the metric gij induced by the dual coefficients
gij, and this is indeed the case here37:

More concretely, fix x0 ∈ Rn, and let q(x) = dg(x, x0) be the geodesic distance
from x0 to x ∈ Rn. Let Br(x0) be the geodesic ball of radius r around x0, i.e.
{x : dg(x, x0) < r}. One can check, as an exercise in the method of characteristics,
that if the metric has no conjugate points in Br(x0) (roughly speaking that a variation
in an initial velocity yields a nontrivial variation in the geodesic endpoint), then q is
smooth in Br(x0)\{x0}, and in fact it is the unique smooth solution to the equation

n∑
j,k=1

gjk(x)∂xjq(x)∂xkq(x) = 1 in Br(x0)\{x0}, lim
x→x0

q(x) = 0.

(Note that the assumption of no conjugate points is automatically satisfied if the
sectional curvature is non-positive everywhere.)

Now, assume t0 satisfies the assumption above. Let Kt = Bt0−t(x0) and K =
{(t, x) : 0 ≤ t ≤ t0, x ∈ Kt}. We then have the analogue of the finite speed of
propagation statement for the standard wave equation:

Theorem 15.6 (Finite speed of propagation). Suppose u ∈ C∞([0, t0] × Rn) solves
(∂2
t − L)u in [0, t0]× Rn, and suppose u ≡ 0 and ∂tu ≡ 0 on K0. Then u ≡ 0 in K.

Proof sketch. The proof is similar to the standard case: we define a suitable “local
energy”

E(t) =
1

2

∫
Kt

|∂tu(t, x)|2 +
n∑

j,k=1

gjk(x)∂xju(t, x)∂xju(t, x) dx

and aim to show that E ′(t) ≤ CE(t) for some constant C > 0. See [Eva10] Section
7.2.4 Theorem 8 for details. �

37The material below is taken from [Eva10] Section 7.2.4
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16. Lecture 16 (05/19): Introduction to Microlocal Analysis:
Symbols and Pseudodifferential Operators

References: Grigis and Sjöstrand, Microlocal Analysis for Differential Operators
[GS94], and Hörmander, The Analysis of Linear Partial Differential Operators III
[Hör07], specifically Ch. 18.

Some of the arguments will also be adapted from expository lecture notes of Melrose
[Mel] and Wunsch [Wun].
Convention: A capital D denotes derivatives with “a factor of i−1 built in”, i.e.
Dα =

(
1
i
∂
)α

= i−|α|∂α. Then with respect to (our conventions on) the Fourier

transform we have D̂αu(ξ) = ξαû(ξ).

16.1. Motivation. Suppose we have a constant-coefficient differential operator P .
We can write P in the form

P =
∑
|α|≤m

aαD
α, aα ∈ C

(where Dα is defined as above). We can ask: how can we invert such an operator P?
The answer is not by applying another differential operator: note that the compo-

sition of two differential operators is another differential operator, whose orders add.
Since the orders are always nonnegative, we can never compose two differential orders
of positive order to obtain a zeroth order differential operator, such as the identity.
However, if there was a way to define a “negative-order” differential operator, then
this may be possible–this is one motivation behind a pseudodifferential operator, as
a way of inverting a differential operator.

If u is sufficiently nice (say in S ′(Rn)), and Pu = f , then taking the Fourier
transform gives

p(ξ)û(ξ) = f̂(ξ), p(ξ) =
∑
|α|≤m

aαξ
α.

That is, on the Fourier side, constant-coefficient differential operators turn into mul-
tiplication by a polynomial. In particular, if this polynomial p(ξ) does not vanish for
any ξ ∈ Rn, then we can recover u (uniquely among tempered distributions) via the
Fourier transform:

û(ξ) =
1

p(ξ)
f̂(ξ).

If in turn f ∈ L1(Rn), we can rewrite the Fourier transforms as integrals to obtain

u(x) = (2π)−n
∫
Rn
eix·ξû(ξ) dξ = (2π)−n

∫
Rn
eix·ξ

1

p(ξ)
f̂(ξ) dξ

= (2π)−n
∫
Rn
eix·ξ

1

p(ξ)

(∫
Rn
e−iξ·yf(y) dy

)
dξ

= (2π)−n
∫
Rn
ei(x−y)·ξ 1

p(ξ)
f(y) dy dξ.
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In the case that P does not have constant coefficients, we can still write

P =
∑
|α|≤m

aα(x)Dα,

where now the aα(x) are functions and not constant numbers. Then we can still write

Pu(x) = (2π)−n
∫
Rn
ei(x−y)·ξp(x, ξ)f(y) dy dξ, p(x, ξ) =

∑
|α|≤m

aα(x)ξα.

One can guess that a way to recover u from f = Pu is to do the same Fourier multiplier
approach, except now with this multiplier p(x, ξ) which depends on x. That is, we
can guess:

u(x)
?
= (2π)−n

∫
Rn
ei(x−y)·ξ 1

p(x, ξ)
f(y) dy dξ.

Perhaps unsurprisingly this does not give us the correct answer, but we can ask how
close this gets us. This motivates studying expressions of the form on the RHS above.

We first study a class of “symbols” (i.e. the multiplier 1/p(x, ξ) above) before using
those symbols to create operators known as pseudodifferential operators.

16.2. Symbol classes.

Definition 16.1. Let n, p ∈ N, 0 ≤ ρ ≤ 1, 0 ≤ δ < 1, and m ∈ R. The space of
symbols Smρ,δ(Rp;Rn) is the set of smooth functions a : Rp

z × Rn
ξ → C such that, for

any multi-indices α ∈ Nn and β ∈ Np, there exists a constant Cα,β > 0 such that

|∂βz ∂αξ a(z, ξ)| ≤ Cα,β(1 + |ξ|)m−ρ|α|+δ|β|.

Typically either p = n (in which case we write x instead of z) or p = 2n (in which
case we write z = (x, y) ∈ Rn×Rn). One should interpret Rp×Rn as a vector bundle,
where Rp is the “base” space and Rn is the “fiber” of the bundle.

Note: a commonly used pair of parameters (ρ, δ) is (ρ, δ) = (1, 0).

Example 16.2. In all of these cases, p = n.

• Suppose a(x, ξ) =
∑
|α|≤m aα(x)ξα where aα are smooth, and all derivatives of

each aα are uniformly bounded. Then a ∈ Sm1,0(Rn;Rn).

• Suppose a is smooth and a(x, ξ) = P (ξ)
Q(ξ)

when ξ is sufficiently large, where

P and Q are polynomials of order m1 and m2, with |Q(ξ)| ≥ (1 + |ξ|)m2 for
sufficiently large ξ. Then a ∈ Sm1−m2

1,0 (Rn;Rn).
• Suppose a(x, ξ) = log(1 + |ξ|2). Then a ∈ ∩m>0S

m
1,0(Rn;Rn).

• Suppose a(t, x, τ, ξ) is smooth and independent of (t, x), and for |(τ, ξ)| suffi-
ciently large we have a(τ, ξ) = 1

|ξ|2+iτ
. Then a ∈ S−1

1/2,0(Rn;Rn).

• Suppose a(x, ξ) ∈ Smρ,δ(Rn;Rn), and ã(y, η) = a(F (y), G(y)η), where F : Rn →
Rn is smooth with bounded derivatives of all orders, G : Rn → Matn×n(R) is
a matrix-valued smooth function with bounded derivatives of all orders, such
that detG(y) is bounded from above and also bounded away from zero. Then
ã ∈ Sρ,max(δ,1−ρ)(Rn;Rn), and the parameter max(δ, 1 − ρ) cannot in general



90 JOEY ZOU

be improved. (An example of such a pair (F,G) would be: F is an arbitrary
diffeomorphism of Rn such that F and F−1 both have bounded derivatives,
and G(y) = (DF (y)>)−1, where in this context DF is the derivative matrix
of F : Rn → Rn. Note that (y, η) 7→ (F (y), G(y)η) is the symplectomorphism
on T ∗Rn = Rn × Rn corresponding to the diffeomorphism x = F (y).)
• Suppose a(x, ξ) = eix0·ξ where x0 ∈ Rn. Then a ∈ S0

0,0(Rn;Rn).

Remark 24. If Rp
z = Rp1

x ×Rp2
y , and a(x, ξ) ∈ Sm(Rp1 ;Rn), then ã(x, y, ξ) = a(x, ξ) is

also in Sm(Rp;Rn), since any derivatives in the additional variables just annihilate ã
completely.

Proposition 16.3. Each Smρ,δ(Rp;Rn) is closed under addition, and under pointwise
multiplication we have

Sm1
ρ,δ (Rp;Rn) · Sm2

ρ,δ (Rp;Rn) ⊂ Sm1+m2
ρ,δ (Rp;Rn)

(in fact, it turns out to be an equality).

Proof sketch for the multiplication property. Given a ∈ Sm1
ρ,δ (Rp;Rn) and b ∈ Sm2

ρ,δ (Rp;Rn),
we need to estimate derivatives on the product ab. By Leibniz rule, this turns into
a sum of products of the form (some derivatives on a) times (some derivatives on b);
multiplying the estimates on those terms gives the desired estimate. �

We consider a “residual space” consisting of symbols decaying very quickly:

Definition 16.4. The space S−∞(Rp;Rn) consists of smooth functions a : Rp → Rn

with the property that, for all multi-indices α and β, and all N ∈ R, there exists
Cα,β,N such that

|∂βz ∂αξ a(z, ξ)| ≤ Cα,β,N(1 + |ξ|)−N

As a quick exercise:

S−∞(Rp;Rn) = ∩m∈RSmρ,δ(Rp;Rn)

for any (ρ, δ).

16.3. Pseudodifferential Operators. We now take p = 2n, and consider operators
which are defined with respect to a ∈ Smρ,δ(R2n;Rn) as follows:

(14) Au(x) = (2π)−n
∫
R2n

ei(x−y)·ξa(x, y, ξ)u(y) dy dξ.

We can write that the Schwartz kernel of this operator is

(15) K(x, y) = (2π)−n
∫
Rn
ei(x−y)·ξa(x, y, ξ) dξ

interpreted as an oscillatory integral. Actually, all of this really means that we want
to consider the distribution K satisfying

(16) (K,φ⊗ ψ)R2n = (2π)−n
∫
Rn

(∫
R2n

ei(x−y)·ξa(x, y, ξ)φ(x)ψ(y) dx dy

)
dξ

for φ, ψ ∈ S(Rn).
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Proposition 16.5. Suppose u ∈ S(Rn). Then the integral in the RHS of (14),
interpreted as an iterated integral (first over y ∈ Rn, then over ξ ∈ Rn) converges for
every x. Moreover, the resulting function Au(x) belongs to S(Rn).

We denote the operator A obtained in (14) through the symbol a as Op(a), i.e. the
operator corresponding to the symbol a. Thus,

Op(a)u(x) = (2π)−n
∫
Rn

(∫
Rn
ei(x−y)·ξa(x, y, ξ)u(y) dy

)
dξ.

Proof. Since we assume, for fixed ξ, that a is uniformly bounded in (x, y), it follows
that the inner integral ∫

Rn
ei(x−y)·ξa(x, y, ξ)u(y) dy

converges for every ξ, as u ∈ S(Rn). The question is whether the value of this
integral, considered as a function of ξ, is sufficiently controlled so that it is integrable.
To show that this inner integral is integrable as a function of ξ, it suffices to show that
(1 + |ξ|2)N

∫
Rn e

i(x−y)·ξa(x, y, ξ)u(y) dy satisfies a uniform bound in ξ for sufficiently
large N .

This in turn follows from integration by parts. We note that

(1 + |ξ|2)ei(x−y)·ξ = (1− ξ ·Dy)(e
i(x−y)·ξ)

from which we have

(1 + |ξ|2)N
∫
Rn
ei(x−y)·ξa(x, y, ξ)u(y) dy

=

∫
R2n

(1− ξ ·Dy)
N(ei(x−y)·ξ)a(x, y, ξ)u(y) dy

=

∫
R2n

ei(x−y)·ξ(1 + ξ ·Dy)
N(a(x, y, ξ)u(y)) dy.

(the last line following by iterating integration by parts, noting that boundary terms
at infinity vanish due to u being Schwartz). I now claim that

(17) (1 + ξ ·Dy)
N(au) =

∑
|α|≤N

aα,ND
αu

for some choice of symbols aα,N satisfying aα,N ∈ Sm+N+δ(N−|α|)
ρ,δ (R2n;Rn). This fol-

lows by induction and from the Leibniz rule: each derivative Dy either falls on u
(which just returns another Schwartz function) or on a symbol; in that case it raises
its order by δ; furthermore we can absorb the ξ· multiplier on the symbol and raise
its order by 1 as well. It follows that∣∣∣∣∫

R2n

ei(x−y)·ξ(1 + ξ ·Dy)
N(a(x, y, ξ)u(y)) dy

∣∣∣∣ ≤ CN(1 + |ξ|)m+N+δN ,
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the exponent following since it is the highest order of any of the aα,N in (17), and
hence∣∣∣∣∫

Rn
ei(x−y)·ξa(x, y, ξ)u(y) dy

∣∣∣∣ = (1 + |ξ|2)−N
∣∣∣∣∫

R2n

ei(x−y)·ξ(1 + ξ ·Dy)
N(a(x, y, ξ)u(y)) dy

∣∣∣∣
≤ CN(1 + |ξ|)−2N(1 + |ξ|)m+N+δN

= CN(1 + |ξ|)m−(1−δ)N .

If δ < 1, then taking N sufficiently large gives that the interior integral is at most
(1 + |ξ|)−n−ε and hence integrable. Thus, the outer integral defining Au(x) converges
absolutely, and furthermore by the Dominated Convergence Theorem we have that
Au ∈ C0(Rn) ∩ L∞(Rn).

It remains to show that in fact Au ∈ S(Rn). To do so, we provisionally consider
the space

S = Op
(
∪mSmρ,δ(Rn)

) (
S(R2n;Rn)

)
= {v : v = Op(a)u for some u ∈ S(Rn) and some a ∈ ∪mSmρ,δ(R2n;Rn)}.

That is, we consider the space of all functions obtainable as Op(a)(u) for some symbol
a and some Schwartz function u. The above paragraph shows that S ⊂ C0(Rn) ∩
L∞(Rn). It suffices to show that

∂xjS ⊂ S and xjS ⊂ S

to show that

S ⊂ S(Rn).

To show that S is closed under differentiation, we note that

∂xj

(
(2π)−n

∫
R2n

ei(x−y)·ξa(x, y, ξ)u(y) dy dξ

)
= (2π)−n

∫
R2n

ei(x−y)·ξ(iξja+ ∂xja)(x, y, ξ)u(y) dy dξ = Op(ã)u,

where ã = iξja + ∂xja ∈ Sm+1
ρ,δ (R2n;Rn) if a ∈ Smρ,δ(R2n;Rn). Thus, ∂xjOp(a)u ∈ S.

Similarly, for multiplication, we rewrite xj = (xj − yj) + yj to obtain

xjOp(a)u = Op((xj − yj)a)u+ Op(a)(yju(y)).

The latter term belongs to S since yju(y) ∈ S(Rn) when u ∈ S(Rn). By the former
term, we mean the function whose value is the interated integral

(2π)−n
∫
R2n

ei(x−y)·ξ(xj − yj)a(x, y, ξ)u(y) dy dξ,

which a priori is not of our desired form, as (xj−yj)a is unbounded in (x, y). Nonethe-
less, we can integrate by parts by noting that

(xj − yj)ei(x−y)·ξ = Dξj(e
i(x−y)·ξ),
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so the above integral can be written as

(2π)−n
∫
R2n

Dξj(e
i(x−y)·ξ)a(x, y, ξ)u(y) dy dξ

= (2π)−n
∫
R2n

ei(x−y)·ξ(−Dξja)(x, y, ξ)u(y) dy dξ = Op(−Dξja)u.

Thus, xjOp(a)u = Op(−Dξja)u+ Op(a)(yju) ∈ S, as desired. �

Remark 25. The uniform integrability of the function defined by the inner integral in
(14) allows one to prove, using Fubini’s theorem, that the iterated integral definition
coincides with the distributional definition given in (15) or (16).

Definition 16.6. Given a(x, y, ξ) ∈ Smρ,δ(R2n;Rn), the operatorA = Op(a) : S(Rn)→
S(Rn) defined in (14) is called the pseudodifferential operator quantized by the sym-
bol a (sometimes written ΨDO for short). The set of ΨDO quantized by a(x, y, ξ) ∈
Smρ,δ(R2n;Rn) is denoted Ψm

ρ,δ(Rn).

Remark 26. If (ρ, δ) = (1, 0), then often the subscript (ρ, δ) is dropped.

Example 16.7. Some examples of ΨDOs:

• If a(x, y, ξ) =
∑
|α|≤m aα(x)ξα, then A =

∑
|α|≤m aα(x)Dα.

• If a(x, y, ξ) =
∑
|α|≤m aα(y)ξα, then A =

∑
|α|≤mD

αaα(x), i.e. Au(x) =∑
|α|≤mD

α(aαu)(x).

• If a = a(ξ) is independent of x and y, then A is the Fourier multiplier operator
corresponding to multiplier a(ξ).

We now consider the (complex) formal adjoint of a ΨDO, i.e. the operator A∗

satisfying
∫
Rn Au(x)v(x) dx =

∫
Rn u(x)A∗v(x) dx for u, v ∈ S(Rn). The Schwartz

kernel satisfies38

KA∗(x, y) = KA(y, x) = (2π)−n
∫
Rn
ei(y−x)·ξa(y, x, ξ) dξ = (2π)−n

∫
Rn
ei(x−y)·ξa(y, x, ξ) dξ.

It follows that Op(a(x, y, ξ)) = Op(a(y, x, ξ)). Thus

A ∈ Ψm
ρ,δ(Rn) =⇒ A∗ ∈ Ψm

ρ,δ(Rn).

Since A∗ maps S(Rn) to itself, we can then claim:

Proposition 16.8. A ΨDO A ∈ Ψm
ρ,δ(Rn), initially defined as an operator S(Rn)→

S(Rn), extends uniquely to an operator S ′(Rn)→ S ′(Rn).

Finally, ΨDOs can be left-reduced, meaning the following: while we initially con-
sidered quantizing symbols whose base space is R2n, i.e. symbols a(x, y, ξ) where we
allow for dependence both in x and y, it turns out that requiring dependence on just
n base variables is sufficient. In particular, we can choose a symbol independent of y
(i.e. only depending on the “left” variables x) to give the same operator:

38To be rigorous/safe, these manipulations should be done distributionally.
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Proposition 16.9. Suppose ρ > δ. Let a(x, y, ξ) ∈ Smρ,δ(R2n;Rn). Then there exists
a unique ã(x, ξ) ∈ Smρ,δ(Rn;Rn) such that σ(a) = σ(ã).

The idea of this proof is by considering a Taylor expansion of a(x, y, ξ) along the
diagonal y = x:

a(x, y, ξ) ∼
∑
α

∂αy a(x, x, ξ)

α!
(y − x)α.

Putting this into the integral, and recognizing that (y−x)αei(x−y)·ξ = (i∂ξ)
α(ei(x−y)·ξ),

we thus have that the Schwartz kernel equals∑
α

(2π)−n
∫
Rn

(i∂ξ)
α(ei(x−y)·ξ)

∂αy a(x, x, ξ)

α!
dξ.

Integration by parts gives

(2π)−n
∫
Rn
ei(x−y)·ξ

∑
α

∂αyD
α
ξ a(x, x, ξ)

α!
dξ.

Thus, we should take

ã(x, ξ) ∼
∑
α

∂αyD
α
ξ a(x, x, ξ)

α!
.

Note that each of the terms in the sum belongs to Sm−(ρ−δ)|α|, so at least we are
summing over “lower-order” terms.

The issue with this argument is that the sum above has no reason to converge
anywhere (in fact, the Taylor expansion which started the proof is an “asymptotic
expansion” and should not be interpreted as a convergence in the sense of series; cf.
non-analytic smooth functions). So we would need a notion of asymptotic summation
for symbols. Such a notion happens to exist in this case.

Next time: more on left-reduction/asymptotic summation, composition, principal
symbol, ellipticity, elliptic regularity.
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17. Lecture 17 (05/24): More on the pseudodifferential calculus

For today: always take 0 ≤ δ < ρ ≤ 1.

Remark 27. If ρ′ ≤ ρ and δ′ ≥ δ, then it is easy to see that Smρ,δ(Rp;Rn) ⊂ Smρ′,δ′(Rp;Rn).
In particular, Sm1,0 is contained in Smρ,δ for any (ρ, δ) satisfying 0 ≤ δ, ρ ≤ 1, so we can
always multiply a symbol (of any parameter (ρ, δ)) by a symbol in Sm1,0 (e.g. by
polynomials in ξ) and get out another symbol with parameter (ρ, δ) (with the orders
adding as expected).

17.1. More on reduction, asymptotic summations. Last time, we gave an ar-
gument that a ΨDO a priori quantized by a symbol a(x, y, ξ) ∈ Smρ,δ(R2n;Rn) can
be quantized by a symbol depending only on n variables ã(x, ξ) ∈ Smρ,δ(Rn;Rn). The
idea is to use the Taylor expansion

a(x, y, ξ) ∼
∑
α

∂αa(x, x, ξ)

α!
(y − x)α

(the sum is taken over all multi-indices α). More specifically, we have

a(x, y, ξ) =
∑
|α|≤N

∂αy a(x, x, ξ)

α!
(y − x)α +

∑
|α|=N+1

Rαa(x, y, ξ)(y − x)α

where

Rαa(x, y, ξ) =

∫ 1

0

|α|(1− t)|α|−1

α!
∂αy a(x, x+ t(y − x), ξ) ∈ Sm+δ|α|

ρ,δ (R2n;Rn).

Noting as well that (y − x)αei(x−y)·ξ = (i∂ξ)
α(ei(x−y)·ξ), we have

(2π)−n
∫
Rn
ei(x−y)·ξ ∂

α
y a(x, x, ξ)

α!
(y − x)α dξ = (2π)−n

∫
Rn

(i∂ξ)
α(ei(x−y)·ξ)

∂αy a(x, x, ξ)

α!
dξ

= (2π)−n
∫
Rn
ei(x−y)·ξ i

−|α|∂αy ∂
α
ξ a(x, x, ξ)

α!
dξ;

similarly

(2π)−n
∫
Rn
ei(x−y)·ξRαa(x, y, ξ)(x− y)α dξ = (2π)−n

∫
Rn
ei(x−y)·ξDα

ξRαa(x, y, ξ) dξ,

withDα
ξRαa ∈ Sm−(ρ−δ)|α|

ρ,δ (R2n;Rn). It follows that for ãN(x, ξ) =
∑
|α|≤N

i−|α|∂αy ∂
α
ξ a(x,x,ξ)

α!

we have

Op(a)−Op(ãN(x, ξ)) ∈ Ψ
m−(ρ−δ)(N+1)
ρ,δ (Rn),

so with ρ − δ > 0 we see that we can find a left-reduced symbol ãN where the
corresponding operator Op(ãN) agrees with Op(a) up to a lower-order operator error

in Ψ
m−(ρ−δ)(N+1)
ρ,δ (Rn); by choosing N appropriately large we can make the error have

arbitrarily small (i.e. negative) order.
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We however would like a left-reduced symbol which straight up matches Op(a). To
do this, we’d like to set

ã ∼
∑
α

∂αyD
α
ξ a(x, x, ξ)

α!
,

but we’d need a way to make sense of the above sum.

Proposition 17.1. Suppose {mj} is a decreasing sequence of real numbers, and aj ∈
S
mj
ρ,δ (Rp;Rn) is any sequence of symbols (of decreasing order mj). Then there exists
a ∈ Sm0

ρ,δ (Rp;Rn) such that, for any N ∈ R,

a−
∑

mj>−N

aj ∈ S−Nρ,δ (Rp;Rn).

We then say that a is an asymptotic sum of the symbols aj.

Note that any two asymptotic sums differ by a symbol in S−∞(Rp;Rn). In addition,
there are no requirements on the aj (in particular the sum does not need to pointwise
converge anywhere) for an asymptotic sum to exist, beyond that the symbols belong
to a specified symbol class.

Thus, we can find ã ∈ Smρ,δ(Rn;Rn) such that ã ∼
∑

α i
−|α| ∂

α
y ∂

α
ξ a(x,x,ξ)

α!
. In that case,

we have

Op(a)−Op(ã) = (Op(a)−Op(ãN))−Op(ã− ãN) ∈ Ψ
m−(ρ−δ)(N+1)
ρ,δ (Rn).

So we once again have Op(a)−Op(ã) ∈ Ψ
m−(ρ−δ)(N+1)
ρ,δ (Rn) for all N , except the LHS

does not depend on N . Thus, we have Op(a)−Op(ã) ∈ ∩NΨ−Nρ,δ (Rn). We would like
a characterization of the latter space:

Proposition 17.2. Let A be a ΨDO on Rn. The following statements are equivalent:

• A = Op(ã) for some ã(x, ξ) ∈ S−∞(Rn;Rn).
• A = Op(a) for some a(x, y, ξ) ∈ S−∞(R2n;Rn).
• A ∈ ∩mΨm

ρ,δ(Rn).

• The Schwartz kernel K(x, y) of A is a smooth function on R2n which is
“Schwartz off the diagonal”: that is, for any multi-indices α ∈ N2n and
β ∈ Nn, there exists Cα,β > 0 such that

|(x− y)α∂βx,yK(x, y)| ≤ Cα,β for all (x, y) ∈ R2n.

Definition 17.3. The space Ψ−∞(Rn) consists of operators which satisfy any (and
hence all) of the equivalent conditions in Proposition 17.2.

Thus, it follows that Op(a)−Op(ã) ∈ Ψ−∞(Rn), so Op(a)−Op(ã) = Op(a∞) for
some a∞(x, ξ) ∈ S−∞(Rn;Rn), and hence Op(a) = Op(ã(x, ξ) + a∞(x, ξ)). It follows
that ã(x, ξ) + a∞(x, ξ) is our desired left-reduced symbol; note that such a symbol
satisfies the same asymptotic sum as ã since the addition of a∞ does not affect our
asymptotic sum.
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Remark 28. A computation which helps with proving Proposition 17.2: if A is quan-
tized by a left-reduced symbol a(x, ξ), then we have

K(x, y) = (2π)−n
∫
Rn
ei(x−y)·ξa(x, ξ) dξ = F−1

ξ→za(x, x− y),

where F−1
ξ→za(x, z) is the inverse Fourier transform of a in the ξ variables only. Thus

we can recover a(x, ξ) by taking the Fourier transform of K(x, x− z):

a(x, ξ) =

∫
Rn
e−iξ·zK(x, x− z) dz.

This in fact also shows the uniqueness of the left-reduced symbol.

From now on, we denote Sm(Rn;Rn) simply by Sm(Rn), or even Sm if the context
is clear; in other words we will by default consider symbols on Rn × Rn.

Definition 17.4. Suppose ρ > δ, and let A ∈ Ψm
ρ,δ(Rn). The left-reduced symbol

σL(A) is the unique symbol a(x, ξ) ∈ Smρ,δ(Rn) satisfying A = Op(a). The principal
symbol (of order m) σm(A) of A is the equivalence class of σL(A) in the quotient

space Smρ,δ(Rn)/S
m−(ρ−δ)
ρ,δ (Rn).

In practice, we identify σm(A) with one of its representatives; this is particularly
the case if one of the representatives is homogeneous of degree m.

Example 17.5. Let A =
∑n

j,k=1 g
jk(x)∂j∂k +

∑n
k=1 b

k(x)∂k + q(x). Then A ∈
Ψ2

1,0(Rn), and

σL(A)(x, ξ) = −
n∑

j,k=1

gjk(x)ξjξk + i
n∑
k=1

bk(x)∂k + q(x),

and

σ2(A)(x, ξ) = −
n∑

j,k=1

gjk(x)ξjξk.

By the last line, we mean that there exists a representative in the equivalence class
of σL(A) which is homogeneous of degree 2 (in fact a polynomial), and σL(A) equals
the above homogeneous polynomial up to a difference in S1

1,0(Rn).

Thus, to summarize our left-reduction result:

Proposition 17.6. Suppose a(x, y, ξ) ∈ Sm(R2n;Rn). Then there exists a unique
ã ∈ Sm(Rn) such that Op(a) = Op(ã). Moreover,

ã(x, ξ) ∼
∑
α

i−|α|

α!
∂αy ∂

α
ξ a(x, x, ξ),

so that in particular

σm(Op(a)) = a(x, x, ξ).
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Corollary 17.7. Let A ∈ Ψm
ρ,δ(Rn), and let a = σL(A) ∈ Smρ,δ(Rn). Then

σL(A∗) ∼
∑
α

i−|α|

α!
∂αx∂

α
ξ a(x, ξ).

In particular, σm(A∗)(x, ξ) = a(x, ξ).

Proof. This follows since if A is left-quantized by a(x, ξ), then A∗ is quantized by the

full symbol (x, y, ξ) 7→ a(y, ξ). Applying Proposition 17.6 gives the desired asymptotic
expansion. �

Corollary 17.8. Let A ∈ Ψm
ρ,δ(Rn). Then there exists a unique “right-reduced” symbol

aR(y, ξ) ∈ Sm(Rn) such that A = Op(aR(y, ξ)). Moreover, if aL(x, ξ) = σL(A) is the
left-reduced symbol of A, then

aR(y, ξ) ∼
∑
α

i|α|

α!
∂αx∂

α
ξ a(y, ξ).

In particular, aR(y, ξ)− aL(y, ξ) ∈ Sm−(ρ−δ)
ρ,δ (Rn).

Proof. aR(y, ξ) = σL(A∗)(y, ξ). �

Remark 29. One advantage of using left/right-reduced symbols is that they interact
well with the Fourier transform. If A = Op(aL(x, ξ)), then we can in fact write

Au(x) = (2π)−n
∫
Rn
eix·ξaL(x, ξ)û(ξ) dξ,

while if A = Op(aR(y, ξ)), then

Au(x) = (2π)−n
∫
Rn
eix·ξ

(∫
Rn
e−iy·ξaR(y, ξ)u(y) dy

)
dξ,

and noting that the inner integral does not depend on x, it follows that Au is just
the inverse Fourier transform of the inner integral, i.e.

Âu(ξ) =

∫
Rn
e−iy·ξaR(y, ξ)u(y) dy.

17.2. Composition. The above work leads to:

Theorem 17.9. Let A ∈ Ψm
ρ,δ(Rn) and B ∈ Ψm′

ρ,δ(Rn). Then AB ∈ Ψm+m′

ρ,δ (Rn).
Moreover,

σL(AB) ∼
∑
α

i−|α|

α!
∂αξ σL(A)(x, ξ)∂αxσL(B)(x, ξ).

In particular,

σm+m′(AB) = σm(A) · σm′(B).
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Proof. Consider the left-reduced symbol aL = σL(A) of A and the right-reduced
symbol bR = σR(B). Then

ABu(x) = (2π)−n
∫
Rn
eix·ξa(x, ξ)B̂u(ξ) dξ

= (2π)−n
∫
Rn
eix·ξa(x, ξ)

(∫
Rn
e−iy·ξbR(y, ξ)u(y) dy

)
dξ

= (2π)−n
∫
Rn×Rn

ei(x−y)·ξaL(x, ξ)bR(y, ξ)u(y) dy dξ.

Thus, AB is the ΨDO quantized by the full symbol (x, y, ξ) 7→ aL(x, ξ)bR(y, ξ).
The asymptotic sum for σL(AB) follows by applying the left and right-reduction

formulas for full symbols in Proposition 17.6 and Corollary 17.8. We check that
the formula holds up to the |α| = 1 terms, i.e. we check the formula holds modulo

S
m+m′−2(ρ−δ)
ρ,δ (Rn); see [Mel] for a full computation.
For α = 0, we just evaluate aL(x, ξ)bR(y, ξ) along the diagonal. This is

aL(x, ξ)bR(x, ξ) = aL(x, ξ)

bL(x, ξ) +
∑
|β|=1

i∂βx∂
β
ξ bL(x, ξ) + S

m′−2(ρ−δ)
ρ,δ (Rn)


= aL(x, ξ)bL(x, ξ)−

∑
|β|=1

i−1aL(x, ξ)∂βx∂
β
ξ bL(x, ξ) + S

m+m′−2(ρ−δ)
ρ,δ (Rn).

For |α| = 1 we have the term

i−1∂αy ∂
α
ξ |y=x (aL(x, ξ)bR(y, ξ))

= i−1
(
aL(x, ξ)∂αx∂

α
ξ bR(x, ξ) + ∂αξ aL(x, ξ)∂αx bR(x, ξ)

)
= i−1

(
aL(x, ξ)∂αx∂

α
ξ bL(x, ξ) + ∂αξ aL(x, ξ)∂αx bL(x, ξ)

)
+ S

m+m′−2(ρ−δ)
ρ,δ (Rn).

It follows that

σL(AB) mod S
m+m′−2(ρ−δ)
ρ,δ (Rn) = aL(x, ξ)bL(x, ξ)−

∑
|β|=1

i−1aL(x, ξ)∂βx∂
β
ξ bL(x, ξ)

+
∑
|α|=1

i−1
(
aL(x, ξ)∂αx∂

α
ξ bL(x, ξ) + ∂αξ aL(x, ξ)∂αx bL(x, ξ)

)
= aL(x, ξ)bL(x, ξ) +

∑
|α|=1

i−1∂αξ aL(x, ξ)∂αx bL(x, ξ),

as desired. �

Remark 30. Note that Ψ−∞(Rn) is a two-sided ideal: if A ∈ Ψm
ρ,δ(Rn) and B ∈

Ψ−∞(Rn), then AB ∈ Ψ−∞(Rn) and BA ∈ Ψ−∞(Rn).
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Corollary 17.10. Let A ∈ Ψm
ρ,δ(Rn) and B ∈ Ψm′

ρ,δ(Rn). Then the commutator

[A,B] = AB −BA ∈ Ψ
m+m′−(ρ−δ)
ρ,δ (Rn). Moreover,

σm+m′−(ρ−δ)([A,B]) = i−1
∑
|α|=1

(
∂αξ a∂

α
x b− ∂αxa∂αξ b

)
, a = σm(A), b = σm′(B).

Remark 31. The above formula can be rewritten as i−1{σm(A), σm′(B)}, where

{f, g} =
n∑
j=1

∂ξjf∂xjg − ∂xjf∂ξjg

is the Poisson bracket on R2n.

Next time: We will study ellipticity, which we begin to define in this lecture:

Definition 17.11. A symbol a ∈ Smρ,δ(Rn) is elliptic if there exist constants c, C > 0
such that

|a(x, ξ)| ≥ c(1 + |ξ|)m for all |ξ| > C.

An operator A ∈ Ψm
ρ,δ(Rn) is elliptic if its principal39 symbol is elliptic.

Example 17.12. For A =
∑n

j,k=1 g
jk(x)∂j∂k +

∑n
k=1 b

k(x)∂k + q(x), we have

σ2(A)(x, ξ) = −
n∑

j,k=1

gjk(x)ξjξk.

Due to the homogeneity of (our choice of representative of) the principal symbol, we
see that40

σ2(A) is elliptic ⇐⇒
n∑

j,k=1

gjk(x)ξjξk 6= 0 for all ξ 6= 0.

If gjk is in turn real-valued, this means that the matrix (gjk(x))j,k is always positive
definite or negative definite.

One main feature:

Lemma 17.13. Suppose a ∈ Smρ,δ(Rn) is elliptic, and b(x, ξ) is a function satisfying

b(x, ξ) = 1
a(x,ξ)

for sufficiently large ξ. Then b ∈ S−mρ,δ (Rn).

Thus, we will consider operators quantized by such symbols b, and consider how
they interact with an elliptic operator A.

39By this, we mean if some (and hence every) representative is elliptic; it is easy to see the notion
of ellipticity does not change under lower-order perturbations.

40Technically one also needs to arrange the uniformity of the estimates, which can be an issue
if the coefficients vary wildly over all of Rn, but locally the nonvanishing of the quadratic form is
enough to give locally uniform ellipticity estimates.
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18. Lecture 18 (05/26)

18.1. Elliptic operators and parametrices. From the composition calculus, we
can find “parametrices”, or approximate inverses, for elliptic operators. Recall that
a ΨDO A ∈ Ψm

ρ,δ(Rn) is elliptic if its principal symbol a = σm(A) is elliptic, meaning
that

|a(x, ξ)| ≥ c(1 + |ξ|)m for all |ξ| > C

for some c, C > 0. In that case, 1/a (or more pedantically a smooth function agreeing
with 1/a for large enough ξ) will also be a symbol, in fact in S−mρ,δ (Rn).

Proposition 18.1. Suppose A ∈ Ψm
ρ,δ(Rn) is elliptic. Then there exists B ∈ Ψ−mρ,δ (Rn)

such that AB − I, BA− I ∈ Ψ−∞(Rn).

Proof. We first guess B0 = Op(b0), where b0 ∈ S−mρ,δ (Rn) agrees with 1/a for suffi-

ciently large ξ. Then A ◦B0 ∈ Ψ0
ρ,δ(Rn), with41

σ0(A ◦B0) = σm(A)σ−m(B0) = 1.

This means that σ0(A ◦ B0 − I) = 0, i.e. R0 := A ◦ B0 − I ∈ Ψ
−(ρ−δ)
ρ,δ (Rn). Thus B0

does not exactly invert A, but it inverts A up to an error that is a bit better than
the identity.

Thus, we modify our guess toB0+B1. We want to chooseB1 such that A(B0+B1) =
I, i.e. that

0 = A(B0 +B1)− I = AB1 + (AB0 − I) = AB1 +R0.

Thus, we want B1 to satisfy AB1 = −R0. This suggests we take B1 ∈ Ψ
−m−(ρ−δ)
ρ,δ (Rn),

with
σm(A)σ−m−(ρ−δ)(B1) = −σ−(ρ−δ)(R0).

Thus, if r0 = σL(R0), we let b1 = −b0r0 (i.e. heuristically −r0/a), and we consider
A(B0 + B1) with B1 = Op(b1). Then similar arguments as before give that if R1 =

A(B0 +B1)− I, then σ−(ρ−δ)(R1) = 0, so R1 ∈ Ψ
−2(ρ−δ)
ρ,δ (Rn).

Iterating this argument, by induction we can find Bj ∈ Ψ
−m−j(ρ−δ)
ρ,δ (Rn) such that

Rj := A

(
j∑

k=0

Bk

)
− I ∈ Ψ

−(j+1)(ρ−δ)
ρ,δ (Rn).

The inductive step is by setting σL(Bj) = −b0σL(Rj).
Finally, if bj = σL(Bj), we find a symbol b which asymptotically sums the bj, i.e.

b(x, ξ) ∼
∑
j≥0

bj(x, ξ).

Then one can show that
AB − I ∈ Ψ−∞(Rn).

41Technically, ab0 equals 1 only outside a sufficiently large ball in ξ, i.e. ab0 − 1 is supported in
a region of the form |ξ| < C. But that means that ab0 − 1 ∈ S−∞, so we get equality after passing
to the quotient.
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Thus, we have found a right parametrix for A; pedantically we should write ABR−I ∈
Ψ−∞(Rn) for some BR ∈ Ψ−mρ,δ (Rn). Similar arguments yield the existence of a left

parametrix BLA− I ∈ Ψ−∞(Rn). A priori the two parametrices can be different, but
it turns out they differ by a trivial error as well: indeed, note that

BL +BL(ABR − I) = BLABR = BR + (BLA− I)BR.

Thus BL −BR = (BLA− I)BR −BL(ABR − I) ∈ Ψ−∞(Rn). In particular, the right
parametrix BR is also a left parametrix, since BRA− I = (BR−BL)A+ (BLA− I) ∈
Ψ−∞(Rn); similarly the right parametrix is also a left parametrix. �

18.2. Mapping properties. To make the “approximate” part of the approximate
inverse more useful, it is helpful to have mapping properties of ΨDOs. Note that
if A is a Fourier multiplier, and the corresponding multiplier a is bounded, then by
Parseval’s theorem we have that A maps boundedly from L2 to L2. We show that
this is the case for 0th order ΨDOs as well.

Theorem 18.2. Let A ∈ Ψ0
ρ,δ(Rn). Then A maps boundedly from L2 to L2.

Proof. We first show that Ψm
ρ,δ(Rn) maps L2 to L2 when m < −n. In that case, the

oscillatory integral defining the Schwartz kernel

K(x, y) = (2π)−n
∫
Rn
ei(x−y)·ξa(x, ξ) dξ

converges absolutely, so K(x, y) is a bounded function on R2n. Moreover,

(x−y)αK(x, y) = (2π)−n
∫
Rn
Dα
ξ (ei(x−y)·ξ)a(x, ξ) dξ = (2π)−n

∫
Rn
ei(x−y)·ξ(−Dξ)

αa(x, ξ) dξ,

with (−Dξ)
αa(x, ξ) ∈ Sm−|α|(ρ−δ)ρ,δ (Rn); hence (x−y)αK(x, y) is uniformly bounded for

every α. By taking enough multi-indices, we can conclude that K(x, y) is uniformly
integrable in x or y, i.e. that there exists C > 0 such that

(18)

∫
Rn
|K(x, y)| dy < C for all x,

∫
Rn
|K(x, y)| dx < C for all y.

We then use:

Lemma 18.3 (Schur’s criterion). Suppose K ∈ C0(R2n) satisfies (18). Then the
corresponding operator Au(x) =

∫
Rn K(x, y)u(y) dy is bounded from L2 to L2.

(Idea: estimate |Au(x)|2 ≤
∫
Rn |K(x, y)||u(y)|2 dy

∫
Rn |K(x, y)| dy for each x.)

Thus, we see that Ψm
ρ,δ(Rn) maps L2 to L2 when m < −n.

Next, we show that the same conclusion holds for all m < 0 (not just m < −n).
This follows from the observation that

A is bounded L2 → L2 ⇐⇒ A∗A is bounded L2 → L2.

This essentially follows from the observation

‖Au‖2
L2 = 〈Au,Au〉L2 = 〈A∗Au, u〉L2 .
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From this, we see that

Ψm
ρ,δ(Rn) maps L2 to L2 ⇐⇒ Ψ2m

ρ,δ (Rn) maps L2 to L2.

In particular, for any k we have that Ψm
ρ,δ(Rn) maps L2 to L2 if and only if Ψ2km

ρ,δ (Rn)

maps L2 to L2. For any m < 0, we have 2km < −n for k large enough, from which
we get the result.

Finally, suppose A ∈ Ψ0
ρ,δ(Rn). Let a ∈ σL(A), and let C > 0 satisfy C > |a(x, ξ)|+

1 for all (x, ξ). The heuristic argument goes as follows: we should be able to find
B ∈ Ψ0

ρ,δ(Rn) such that

CId = A∗A+B∗B.

In that case, we have

C‖u‖L2 = 〈(A∗A+B∗B)u, u〉 = ‖Au‖2
L2 + ‖Bu‖2

L2 ≥ ‖Au‖2
L2 .

In fact, for the above equation to hold, we should have

C2 = |a(x, ξ)|2 + |b(x, ξ)|2 =⇒ b(x, ξ) =
√
C2 − |a(x, ξ)|2.

It turns out that b, as defined above, is indeed a symbol in S0
ρ,δ(Rn).

However, since the symbol of the composition is not exactly the product of the
symbols, the best we can say is that

σ0(A∗A+B∗B − C) = 0 =⇒ A∗A+B∗B − C = R ∈ Ψ
−(ρ−δ)
ρ,δ (Rn).

But this turns out to be okay, since the remainder R is still some negative-order ΨDO,
and hence bounded from L2 to L2 by our discussion above. Thus

‖Au‖2
L2 = 〈A∗Au, u〉L2 = C‖u‖2

L2 − ‖Bu‖2
L2 + 〈Ru, u〉L2 ≤ (C + ‖R‖L2→L2)‖u‖L2 ,

i.e. A is bounded as desired. �

Corollary 18.4. A ∈ Ψm
ρ,δ(Rn) is bounded Hs+m to Hs for any s ∈ R.

Proof. Let Λs denote the Fourier multiplier operator with multiplier (1 + |ξ|2)s/2.
Then, by definition,

‖u‖Hs(Rn) = ‖Λs‖L2(Rn).

Moreover, Λs ∈ Ψs
ρ,δ(Rn) for any (ρ, δ). It follows that ΛsAΛ−(s+m) ∈ Ψ0

ρ,δ(Rn) and is

thus bounded L2 to L2, so

‖Au‖Hs(Rn) = ‖ΛsAu‖L2(Rn) = ‖ΛsAΛ−(s+m)(Λs+mu)‖L2(Rn)

≤ C‖Λs+mu‖L2(Rn) = C‖u‖Hs+m(Rn),

as desired. �

A related mapping property:

Proposition 18.5. Let A ∈ Ψ−∞(Rn) and u ∈ S ′(Rn). Then Au ∈ C∞(Rn).
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18.3. Applications to Elliptic Regularity.

Theorem 18.6. Suppose P ∈ Ψm
ρ,δ(Rn) is elliptic, and suppose u ∈ S ′(Rn) satisfies

Pu = 0. Then u ∈ C∞(Rn).

Proof. Since P is elliptic, there exists a parametrix Q ∈ Ψ−mρ,δ such that R = QP−I ∈
Ψ−∞(Rn). Then

QPu = u+Ru.

But Pu = 0, so u = −Ru ∈ C∞(Rn) by Proposition 18.5. �

Theorem 18.7. Suppose P ∈ Ψm
ρ,δ(Rn) is elliptic, Pu ∈ Hs(Rn), and u has some

initial Sobolev regularity, say u ∈ H−N(Rn). Then u ∈ Hs+m(Rn), and for any
s′ < s+m (in particular for very negative s′) we have

‖u‖Hs+m(Rn) ≤ Cs′(‖Pu‖Hs(Rn) + ‖u‖Hs′ (Rn)).

Proof. Similar to above, the existence of the parametrix Q ∈ Ψ−mρ,δ allows us to con-
clude

u = Q(Pu)−Ru.
Since Pu ∈ Hs and Q is order −m, i.e. it maps boundedly from Hs to Hs+m, we have
Q(Pu) ∈ Hs+m. On the other hand, R maps any Sobolev space (in particular the
initial H−N space to which u belongs) to any other Sobolev space. Hence, u ∈ Hs+m.
Furthermore,

‖u‖Hs+m ≤ ‖Q‖Hs→Hs+m‖Pu‖Hs + ‖R‖Hs′→Hs‖u‖Hs′ , ,

giving the desired estimate. �

As an application, if u ∈ L2(Rn), P is a second order differential operator which is
elliptic as an element of Ψ2

1,0(Rn)42, and Pu ∈ L2(Rn), then u ∈ H2(Rn).

18.4. Pseudolocality. Differential operators are local, heuristically meaning that the
behavior of the output on an open set depends only on the behavior of the input on
that open set. More precisely, if P is a differential operator, then supp (Pu) ⊂ supp u,
so if u = ũ on some set U , then Pu = Pũ on U as well.

Pseudodifferential operators do not have this property. For example, if a(x, ξ) =
a(ξ) is independent of x, then Op(a) is a Fourier multiplier operator, which is equiv-
alent to convolution with the inverse Fourier transform of a(ξ). This operator is not
local unless F−1(a) is supported at the origin.

Nonetheless, pseudodifferential operators are pseudolocal, in that they do locally
preserve smoothness property. Recall that a distribution u is smooth at x ∈ Rn if
there exists a neighborhood V 3 x such that u|V is smooth (i.e. agrees with the

42This is equivalent to P =
∑
gjk∂j∂k where (gjk(x)) is uniformly elliptic, i.e.

n∑
j,k=1

gjk(x)ξjξk ≥ θ|ξ|2, θ > 0 independent of x.



MATH 218 LECTURE NOTES (SPRING 2022) 105

restriction of a smooth function on V ), and that the singular support sing supp u of
u is the set of points where u is not smooth.

Proposition 18.8. Let A ∈ Ψm
ρ,δ(Rn). Then, for any u ∈ S ′(Rn), we have that

sing supp (Au) ⊂ sing supp (u).

In particular, if u is smooth on U , then Au is smooth on U as well.

Proof. This is equivalent to noting that the Schwartz kernel K of A is smooth away
from the diagonal... �

Corollary 18.9. Suppose P ∈ Ψm
ρ,δ(Rn) is elliptic. Then, for any u ∈ S ′(Rn), we

have that sing supp (Pu) = sing supp u.

Proof. Since P admits a parametrix Q ∈ Ψ−mρ,δ (Rn), we have

u = QPu−Ru
where R ∈ Ψ−∞(Rn). Then R is smoothing, i.e. Ru ∈ C∞(Rn), so sing supp u =
sing supp (QPu). But Q ∈ Ψ−mρ,δ (Rn), so sing supp (QPu) ⊂ sing supp (Pu), as
desired. �
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19. Lecture 19 (05/31)

19.1. Coordinate Invariance. Suppose we have a ΨDO

Au(y) = (2π)−n
∫
R2n

ei(y−y
′)·ηa(y, η) dy′ dη

and a diffeomorphism F : Rn
x → Rn

y . We now want to study the operator Ã =

F ∗A(F−1)∗. That is, given v(x), if v(x) = u(y) when y = F (x) (i.e. u(y) =
v(F−1(y))), then

Ãv(x) = Au(y).

Proposition 19.1. Let A ∈ Ψm
ρ,δ(Rn), and suppose, for technical convenience, that

supp KA ⊂ R2n
y,y′ is compact.

Then Ã = F ∗A(F−1)∗ ∈ Ψm
ρ,δ′(Rn), where δ′ = max(δ, 1 − ρ). Moreover, if ρ < 1/2,

i.e. ρ > δ′, then

σm(Ã)(x, ξ) = σm(A)(F (x), (DF>)−1(x)ξ).

Proof Sketch. We have

Ãv(x) = (2π)−n
∫
R2n

ei(F (x)−y′)·ηa(F (x), η)u(F−1(y′)) dy′ dη

y′=F (x′)
= (2π)−n

∫
R2n

ei(F (x)−F (x′))·ηa(F (x), η)u(x′) | detDF (x′)| dx′ dη.

We can write

F (x)− F (x′) = G(x, x′)(x− x′)
for some smooth matrix-valued function G. Explicitly

Gij(x, x
′) =

∫ 1

0

∂jFi(tx+ (1− t)x′) dt,

so in particular G(x, x) = DF (x). It follows that if we let ξ = G(x, x′)Tη, so that

(F (x)− F (x′)) · η = (x− x′) ·G(x, x′)Tη = (x− x′) · ξ,
then

Ãv(x) = (2π)−n
∫
R2n

ei(x−x
′)·ξa(F (x), (G(x, x′)T )−1ξ)u(x′)

| detDF (x′)|
| detG(x, x′)|

dx′ dξ.

Thus, it suffices to show that

ã(x, x′, ξ) = a(F (x), (G(x, x′)>)−1ξ)
| detDF (x′)|
| detG(x, x′)|

is a symbol in Smρ,δ′(R2n;Rn). We leave this calculation as an exercise; we only com-
ment that taking derivatives in x′ on ã may end up taking derivatives in η on a and
then subsequently multiplying by η, thus leading to an overall loss of 1− ρ orders of
decay; hence the need to increase δ to δ′.
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In particular, since G(x, x) = DF (x), it follows that

ã(x, x, ξ) = a(F (x), (DF (x)>)−1ξ),

so if ρ > δ′, then we get the desired principal symbol statement. �

Thus, we can view the (principal) symbol a as naturally living on T ∗Rn. In gen-
eral, the coordinate invariance result allows us to define pseudodifferential operators
Ψm
ρ,1−ρ(M) (with ρ > 1/2) on smooth manifolds M , essentially by considering opera-

tors whose restrictions to local charts look like ΨDOs on Rn.

19.2. Symbolic iterated regularity and radial compactification. For now, we
consider (ρ, δ) = (1, 0).

The symbolic estimates for Sm1,0(Rn) can be thought of as saying: there is an “initial”
growth rate of (1 + |ξ|)m, with every derivative in x preserving this rate, and every
derivative in ξ improving the rate of decay by 1. Thus there is an asymmetry in the
roles of x and ξ. One way to have the two variables serve somewhat more similar roles
is as follows: viewing the derivatives ∂xj and ∂ξj as vector fields on T ∗Rn, instead of
considering the vector fields ∂ξj , we consider the vector fields

ξi∂ξj , 1 ≤ i, j ≤ n.

Then, applying a vector field of the above form to a symbol will keep the rate of
growth: the derivative lowers the rate by one, but the multiplication by ξi raises it
back.

This is also true for a product V α of vector fields of the above form as well. Here,
V α denotes a product V α = V α1V α2 . . . V α|α| , where each V αk is either ∂xj or ξi∂ξj
for some 1 ≤ i, j ≤ n. In fact, we have:

Lemma 19.2. Let a : T ∗Rn → C be smooth. Then a ∈ Sm1,0(Rn) if and only if, for
every product V α of vector fields of the form ∂xj or ξi∂ξj , 1 ≤ i, j ≤ n, there exists a
constant Cα (depending on the choice of vector fields) such that

|V αa(x, ξ)| ≤ Cα(1 + |ξ|)m for all (x, ξ) ∈ T ∗Rn.

Thus, we can say that a satisfies “iterative regularity” with respect to the set of
vector fields given by

∂xj , ξi∂ξj , 1 ≤ i, j ≤ n.

There is a geometric way to think about this set of vector fields. We can “radially
compactify” the fibers of T ∗Rn to form a fiber bundle T ∗Rn where each fiber is a
compact manifold with boundary, namely a closed half-sphere. For each fiber Rn, this
is done via the radial compactification map Rn → Sn+, where

Sn+ =

{
(z1, . . . , zn+1) ∈ Rn+1 :

n+1∑
i=1

z2
i = 1, zn+1 > 0

}
defined by

ϕ(x) =

(
x√

1 + |x|2
,

1√
1 + |x|2

)
.
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Geometrically, this is done by mapping x ∈ Rn to (x, 1) ∈ Rn+1, and then setting
z = ϕ(x) to be the point on Sn on the ray from the origin to (x, 1). We then define

Rn := Sn+ =

{
(z1, . . . , zn+1) ∈ Rn+1 :

n+1∑
i=1

z2
i = 1, zn+1 ≥ 0

}
,

where we identify the interior of Rn with Rn via the identification of Rn with the
interior of Sn+, i.e. Sn+. We define T ∗Rn by radially compactifying each fiber; in other

words T ∗Rn = Rn × Rn.

Remark 32. An alternative way to construct the radial compactification is as follows:
we define the compactification map “near infinity” by the “inverse polar coordinates”
map ϕ̃ : Rn\{0} → (0,∞)× Sn−1,

ϕ̃(x) =

(
1

|x|
,
x

|x|

)
.

In polar coordinates, this is the map (r, ω) 7→ (r−1, ω). We then identify [0,∞)×Sn−1

with Sn+\{(0, . . . , 0, 1)} via a “collar neighborhood” map viewing Sn−1 = ∂Sn+, before
adding back in the origin which was originally left out, identifying it with the point
(0, . . . , 0, 1) ∈ Sn+.

Note that if ρ = 1/r = 1/|x|, then

|dx|2 = dr2 + r2 dω2 =
dρ2

ρ4
+
dω2

ρ2
.

Let X = T ∗Rn, and consider the map ι : T ∗Rn → X, ι(x, ξ) = (x, ϕ(ξ)) where ϕ is
the radial compactification map.

Proposition 19.3. Let V(X; ∂X) denote the collection of vector fields on X (with
coefficients in C∞(X), i.e. functions smooth up to the boundary) which are tangent
to ∂X. Then the vector fields

ι∗(∂xj), ι∗(ξi∂ξj), ι∗(∂ξj), 1 ≤ i, j ≤ n,

initially defined as vector fields in the interior of X, extend to smooth vector fields
in V(X; ∂X). Moreover, V(X; ∂X) is generated, over C∞(X) by these vector fields.
Here, ι∗ denotes the pushforward of vector fields (colloquially the vector field in the
interior viewed as a vector field on X).

Proof sketch. Viewing the fiber as a subset of Rn+1 with coordinates η1, . . . , ηn+1, we
have

∂ξjϕk =

{
− ξjξk

(1+|ξ|2)3/2
+ δjk

1
(1+|ξ|2)1/2

1 ≤ k ≤ n

− ξj
(1+|ξ|2)3/2

k = n+ 1
,

so

ι∗(∂ξj) =
n∑
k=1

(δjk − ηjηk)ηn+1∂ηk − ηjη2
n+1∂ηn+1
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and, using that (ι−1)∗(ξi) = ηi
ηn+1

, we have

ι∗(ξi∂ξj) =
n∑
k=1

ηi(δjk − ηjηk)∂ηk − ηiηjηn+1∂ηn+1 .

To show these generate all tangent vector fields, we work with local coordinates.
Note that Sn+ can be covered with open sets of the form {|ηi| > ε}, 1 ≤ i ≤ n+ 1 for
sufficiently small ε > 0 (explicitly ε < 1√

n+1
would work).

Suppose first we are in the open set {|ηi| > ε} for some 1 ≤ i ≤ n; w.l.o.g. we can
take i = n. Consider

zi =
ξi
ξn
, 1 ≤ i ≤ n− 1, zn =

1

ξn
.

Then (z1, . . . , zn) give local coordinates on {|ηn| > ε}, since

zi =
1

ηn
ηi, 1 ≤ i ≤ n− 1, zn =

1

ηn
ηn+1.

We then have ξi = zi/zn, 1 ≤ i ≤ n− 1¡ and ξn = 1
zn

. It follows that

∂zi = ξn∂ξi , 1 ≤ i ≤ n− 1, zn∂zn = −
n∑
i=1

ξi∂ξi .

Thus, we have that ∂zi , 1 ≤ i ≤ n − 1, together with zn∂zn , are locally generated
by vector fields of the form ξi∂ξj . Note that in this open set we have that zn is a
boundary defining function for ∂X, so vector fields tangent to ∂X are generated by
∂zi , 1 ≤ i ≤ n− 1, together with zn∂zn .

Otherwise, suppose we are in the open set {|ηn+1| > ε}. In that case, the ξ
coordinates {ξ1, . . . , ξn} themselves give local coordinates, so {∂ξj} form a local basis
for smooth vector fields on X (here the boundary ∂X plays no role). �

Corollary 19.4. Let a ∈ T ∗Rn → C, and for technical convenience assume that

Πx(supp a) is compact,

where Πx : T ∗Rn → Rn is the projection onto the base. Then the following are
equivalent:

• a ∈ Sm1,0(Rn)
• For any product V α of vector fields in V(X, ∂X), we have a uniform estimate

of the form

V α
(
(1 + |ξ|)−ma

)
≤ Cα.

• a is smooth, and for any product V α of vector fields which are homogeneous
of degree 0, we have a uniform estimate of the form

V α
(
(1 + |ξ|)−ma

)
≤ Cα.

Remark 33. The second condition above is sometimes written as u ∈ A(T ∗Rn), or
that u is (L∞-) conormal to the boundary ∂X of X.
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Thus, we can view the symbolic requirements on a as iterated regularity statements
with respect to the class of vector fields tangent to a particular compactification of
the cotangent bundle.

19.3. Parametrices for parabolic operators: the hypoelliptic calculus of
Boutet de Monvel. We now turn to a seemingly different topic. Last lecture we
showed that elliptic operators admitted parametrices; this crucially used the fact that

a ∈ Smρ,δ(Rn) elliptic =⇒ ∃b ∈ S−mρ,δ (Rn) such that ab− 1 ∈ S−(ρ−δ)
ρ,δ (Rn).

A non-example of an elliptic operator is the heat operator P = ∂t −∆ on Rn+1. Its

full symbol is p(τ, ξ) = iτ + |ξ|2 ∈ S2
1,0(Rn), and while 1−χ(τ,ξ)

iτ+|ξ|2 is well-defined if χ is

identically one for small (τ, ξ), this function does not belong to S−2
1,0(Rn).

Nonetheless, we do have

q :=
1− χ(τ, ξ)

iτ + |ξ|2
∈ S−1

1/2,0(Rn),

and furthermore since p, q are independent of (t, x), i.e. the corresponding operators
are Fourier multiplier operators, we have

Op(q)P − I = POp(q)− I = Op(qp− 1) ∈ Ψ−∞(Rn)

since qp−1 is compactly supported in (τ, ξ). Thus, P admits a parametrix Q = Op(q),
which is a ΨDO, albeit not of the “ideal” order (at best we can say it’s order −1,
despite P itself being order 2). Nonetheless, it still has nice mapping properties; in
particular it is pseudolocal. Thus we have:

Proposition 19.5. Suppose u ∈ S ′(Rn+1). Then

sing supp (u) = sing supp ((∂t −∆)u).

In particular, if f = (∂t −∆)u ∈ C∞(Rn+1), then u ∈ C∞(Rn+1).

Thus, we can say that the heat operator ∂t −∆ is hypoelliptic, in that like elliptic
operators we have the property that solutions u do not have additional singularities
beyond what’s present in the output Pu.

There is, however, a more refined pseudodifferential calculus we can consider. This
is a construction of Boutet de Monvel, in 1974 (see [Bou74]).
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20. Lecture 20 (06/02)

20.1. The Boutet de Monvel hypoelliptic calculus. We consider the calculus
first introduced by Boutet de Monvel in 1974 to provide parametrices for hypoelliptic
operators. We are particularly interested in

P = ∂t −

(∑
j,k

ajk(t, x)∂j∂k +
∑
k

bk(t, x)∂k + c(t, x)

)
,

where we assume for convenience that all coefficients above are smooth and have
bounded derivatives of all orders, and that the matrix (ajk(x))j,k is uniformly elliptic
with bound independent of x. Then

σL(P ) = iτ +
∑
j,k

ajk(x)ξjξk − i
∑
k

bk(x)ξk + c(x).

The calculus is in general defined for any manifold M and any conic subset Σ ⊂ T ∗M ;
we’ll focus on the specific case M = Rn+1

t,x and

Σ = {(t, x, τ, ξ) ∈ T ∗Rn+1 : ξ = 0}.
In this case, let

dΣ =

(
|ξ|2

|(ξ, τ)|2
+

1

|(ξ, τ)|

)1/2

.

Note that dΣ is bounded from above in the region |(τ, ξ)| > 1, and also bounded from
below by (|ξ|/|(ξ, τ)|)2; on the other hand at ξ = 0 we have that dΣ decays as |τ |−1/2.

Definition 20.1. Let m, k ∈ R. The space Sm,k(M,Σ) (where M = Rn+1 and
Σ = {ξ = 0}) is the space of smooth functions a : T ∗Rn+1 → C such that we have
estimates of the form

|W βV αa(t, x, τ, ξ)| ≤ Cα,β|(τ, ξ)|mdk−|β|Σ for all |(τ, ξ)| > 1

whenever V α is a product of vector fields homogeneous of degree 0 tangent to Σ, and
W β is a product of vector fields homogeneous of degree 0 (not necessarily tangent to
Σ).

For this lecture, we write the space as Sm,k for short.
Thus, in our iterated regularity requirement, we distinguish between “tangent”

vector fields tangent to Σ (which do not affect the growth/decay of the symbol) and
“non-tangent” vector fields which affects the behavior when dΣ is small, i.e. near Σ.

Remark 34. In our specific case, in testing the symbolic requirement it suffices to
consider the tangent vector fields

∂xj , ξi∂ξj , ξi∂τ , τ∂τ , 1 ≤ i ≤ n

and the non-tangent vector fields

τ∂ξj , 1 ≤ j ≤ n.

This since the tangent (resp. non-tangent) vector fields homogeneous of degree 0 can
be generated (say over S0(Rn+1) away from the origin) by the above vector fields.
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Example 20.2. Let P be our parabolic operator. Then

σL(P ) = iτ +
∑
j,k

ajk(x)ξjξk − i
∑
k

bk(x)ξk + c(x) ∈ S2,2(Rn+1,Σ).

To see this, we note that σL(P ) is a sum of terms which are monomials in (τ, ξ) with
coefficients in (t, x). If we consider just the vector fields in Remark 34, then each
vector field applied to a monomial in (τ, ξ) with coefficients in (t, x) will return a
term of the exact same form and of the same degree. Thus, the terms of degree at
most 1 all remain monomials of degree at most 1 under arbitrary application of the
relevant vector fields (regardless of whether they are tangent to Σ or not). Noting
that

|(ξ, τ)|2d2
Σ = |ξ|2 + |(ξ, τ)|,

we see that monomials of degree 1 are bounded by |(ξ, τ)|, and hence always by
|(ξ, τ)|2d2

Σ.
Thus, it remains to check the sum

∑
j,k a

jk(x)ξjξk. We see that we always obtain a
monomial of degree 2 upon applying one of the vector fields in the Remark ??, and
in fact applying a tangent vector field will return a monomial where the terms are
both ξ’s (no τs). The only issue is in applying the non-tangent vector fields τ∂ξj .
One application returns terms of the form τξk, and one additional application returns
terms of the form |τ |2. (Applying it a third time actually annihilates the term, but
the fact that the behavior changes under application of one or two of these vector
fields already indicates an interesting behvaior). We now note that

|τξk| ≤ |(ξ, τ)| · |(ξ, τ)|dΣ = |(ξ, τ)|2dΣ, |τ |2 ≤ |(ξ, τ)|2

to conclude that

|W βV α(σL(P ))(t, x, ξ, τ)| ≤ Cα,β|(ξ, τ)|2d2−|β|
Σ

whenever V and W are products of vector fields in Remark 34.

Proposition 20.3. The symbol classes Sm,k satisfy the following properties:

• Sums and products: Sm,k is closed under addition, and

Sm,k · Sm′,k′ ⊂ Sm+m′,k+k′ .

• Inclusion: we have Sm,k ⊂ Sm
′,k′ if and only if

m ≤ m′ and m− k/2 ≤ m′ − k′/2.
This follow by noting that if k′ ≥ k, then

dkΣ = dk
′

Σd
−(k′−k)
Σ ≤ dk

′

Σ |(ξ, τ)|(k′−k)/2.

• We have Sm1,0(Rn+1) ⊂ Sm,0 ⊂ Sm1/2,0(Rn+1). Consequently, we also have

Sm,k ⊂ S
m+(k−)/2
1/2,0 (Rn+1), k− = max(0,−k).

• Vector fields: we have ∂t, ∂xj : Sm,k → Sm,k, and ∂ξk : Sm,k → Sm−1,k−1. We

also have ∂τ : Sm,k → Sm−1,k.
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• Ellipticity: suppose a ∈ Sm,k also satisfied

|a(t, x, τ, ξ)| ≥ c|(ξ, τ)|mdkΣ for all |(ξ, τ)| > 1.

Then, if b is smooth and agrees with 1/a for sufficiently large |(ξ, τ)|, then
b ∈ S−m,−k. We will then say that a is an elliptic Sm,k symbol.
• Residual class: for any m and k, we have

∩j≥0S
m−j,k = ∩j≥0S

m−j,k−j = S−∞(Rn+1).

(For the second space, note that Sm−j,k−j ⊂ Sm−j/2,k.)
• Asymptotic sum: if aj ∈ Sm−j,k−j, then there exists a ∈ Sm,k such that

a−
N−1∑
j=0

aj ∈ Sm−N,k−N .

Example 20.4. Let p = σL(P ) where P is as above. Then, if χ(τ, ξ) ∈ C∞c (Rn+1) is
identically one on a sufficiently large ball, we have

1− χ(τ, ξ)

p(t, x, τ, ξ)
∈ S−2,−2 ⊂ S

−2+(−2)−/2
1/2,0 (Rn) = S−1

1/2,0(Rn).

We now quantize such symbols. Since, for anym, k, we have that Sm,k ⊂ Sm
′

1/2,0(Rn+1)

for some m′, it follows that we can quantize symbols in Sm,k to get operators that at
the very least belong to Ψm′

1/2,0(Rn).

Definition 20.5. The space Ψm,k(Rn+1,Σ) is the collection of operators Op(a) for
a ∈ Sm,k(Rn+1,Σ). (We can view them as mapping S(Rn) → S(Rn) or S ′(Rn) →
S ′(Rn).

We write this space of operators as Ψm,k for short. Some properties about these
operators:

Proposition 20.6. We have:

• Composition: Ψm,k ·Ψm′,k′ ⊂ Ψm+m′,k+k′, and

σL(AB) ∼
∑
α

i−|α|

α!
∂ατ,ξσL(a)(t, x, τ, ξ)∂αt,xσL(b)(t, x, τ, ξ).

Note that each term in the asymptotic sum belongs to Sm+m′−|α|,k+k′−|α|.
• Principal Symbol: As such, we can define a principal symbol σm,k : Ψm,k →
Sm,k/Sm−1,k−1, in which case

σm+m′,k+k′(AB) = σm,k(A)σm′,k′(B).

• Mapping: we have Ψ0,0 maps boundedly from L2(Rn+1) to L2(Rn+1) (note that
mapping properties for other Ψm,k can be obtained via appropriate inclusions).
• Parametrix: If σm′,k′(A) is an elliptic Sm,k symbol, then there exists B ∈

Ψ−m,−k such that AB − I and BA− I both belong to Ψ−∞(Rn).
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Indeed, the third item regarding parametrices follows from the composition and
principal symbol results, using exactly the same arguments as in the standard case.

We apply the Boutet de Monvel hypoelliptic calculus to parabolic regularity results.
Thus, let

P = ∂t −

(∑
j,k

ajk(t, x)∂j∂k +
∑
k

bk(t, x)∂k + c(t, x)

)
be our parabolic operator of interest. Note that our assumptions on the coefficients
imply that P is an elliptic Ψ2,2 operator. As such, we have:

Theorem 20.7. Let u ∈ S ′(Rn), and let f = Pu. Then:

• sing supp u = sing supp f .
• If f ∈ L2(Rn+1), and u has some initial regularity u ∈ H−N(Rn+1), then u,
∂tu, ∂xju, and ∂2

xjxk
u are all in L2(Rn+1), with L2 norm bounded by a multiple

of ‖f‖L2(Rn+1) + ‖u‖H−N (Rn+1).

Proof Sketch. All of this follows from the equation

u = Qf −Ru

where Q ∈ Ψ−2,2 is a parametrix for P , and R = QP − I ∈ Ψ−∞(Rn). To obtain the
L2 bounds on the derivatives of u, we note that

∂tu = ∂tQf − ∂tRu,

with ∂t ◦ R ∈ Ψ−∞(Rn), and ∂t ◦Q ∈ Ψ1,0 ◦ Ψ−2,−2 ⊂ Ψ−1,−2 ⊂ Ψ0,0; in particular it
maps boundedly from L2 to L2. A similar argument holds for ∂xj . Finally, for ∂2

xjxk
,

we note that

σL(∂2
xjxk

) = −ξjξk ∈ S2,2.

That is, not is the symbol of order 2, but the fact that it vanishes (quadratically)
on Σ means that we can also capture its behavior with respect to dΣ. Consequently,
∂2
xjxk
◦Q ⊂ Ψ2,2 ◦Ψ−2,−2 ⊂ Ψ0,0, so it also maps boundedly from L2 to L2. �

Remark 35. The property that u, ∂xju, and ∂2
xjxk

u all belong to L2 can be rephrased

as saying that u ∈ L2(Rt;H
2(Rn

x)); furthermore in the above case we have

‖u‖L2(Rt;H2(Rnx)) ≤ C(‖f‖L2(Rn+1) + ‖u‖H−N (RN+1)).

Remark 36. The symbol calculus can also be defined by iterative regularity (with
no change in growth/decay) with respect to a certain class of vector fields. We can
no longer take the vector fields tangent to the boundary of radial compactification
of T ∗Rn+1. However, if we take this compactification, and perform a parabolic blow-
up of Σ ∩ ∂T ∗Rn+1, thus creating a manifold with corners, then it turns out that
the symbolic requirements to be in S0,0 are equivalent to requiring iterative uniform
bounds with respect to vector fields tangent to the boundary of this blown-up space.
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20.2. Wavefront sets.

Definition 20.8. Let u ∈ D′(Rn), and let (x0, ξ0) ∈ R2n, with ξ0 6= 0. We say that u
is microlocally smooth at (x0, ξ0) if there exists a cutoff χ ∈ C∞c (Rn) with χ(x0) 6= 0
and some ε > 0 such that, for every N > 0, we have

|χ̂u(ξ)| ≤ CN(1 + |ξ|)−N

for all ξ which point “roughly in the same direction as ξ0”, i.e. more precisely for all

ξ 6= 0 such that
∣∣∣ ξ|ξ| − ξ0

|ξ0|

∣∣∣ < ε. We let WF (u) denote the collection of all (x, ξ) with

ξ 6= 0 where u is not microlocally smooth.

The motivation is the following: recall that the Fourier transform interchanges
regularity (in x) for decay (in ξ), and in fact if u is a compactly supported distribution,
then u is smooth if and only if its Fourier transform decays faster than any power of
ξ as ξ →∞. We employ a similar notion here, except we also want to distinguish the
directions43 where a singularity may occur.

Note by definition that WF (u) is a conic set44 which is closed in Rn × (Rn\{0}).
As an exercise, one may show that

Πx(WF (u)) = sing supp u,

where Πx : Rn × (Rn\{0})→ Rn is the projection onto the x-variables.
We proceed to define some quantities associated to operators. Here, we take (ρ, δ) =

(1, 0) for convenience.

Definition 20.9. Let (x0, ξ0) ∈ (Rn)×(Rn\{0}). A conical neighborhood Γ of (x0, ξ0)
is a set of the form

Γ =

{
(x, ξ) ∈ (Rn)× (Rn\{0}) : |x− x0| < ε,

∣∣∣∣ ξ|ξ| − ξ0

|ξ0|

∣∣∣∣ < ε

}
.

Definition 20.10. Let A ∈ Ψm(Rn). We say that A is microlocally trivial at (x0, ξ0)
if there exists a conical neighborhood Γ of (x0, ξ0) such that, for every N > 0, we
have

|σLA(x, ξ)| ≤ CN(1 + |ξ|)−N for all (x, ξ) ∈ Γ.

We let the essential support WF ′(A) of A denote the set of points (x, ξ) ∈ (Rn) ×
(Rn\{0}) where A is not microlocally trivial.

Definition 20.11. Let A ∈ Ψm(Rn). We say that A is elliptic at (x0, ξ0) (of order
m) if there exists a conical neighborhood Γ of (x0, ξ0) such that

|σLA(x, ξ)| ≥ c(1 + |ξ|)m for all (x, ξ) ∈ Γ, |ξ| ≥ C

for some c, C > 0. The set of (x, ξ) ∈ (Rn)× (Rn\{0}) where A is elliptic is denoted
Ell(A). The complement of ell(A) (in (Rn) × (Rn\{0})) is denoted Char(A), the
characteristic set.

43More naturally the co-directions
44In the sense that (x, ξ) ∈WF (u) =⇒ (x, λξ) ∈WF (u) for all λ > 0.
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Example 20.12. Suppose P =
∑
|α|≤m aα(x)Dα. Then

WF ′(P ) = ∪|α|≤msupp aα

(this is essentially due to the fact that polynomials cannot vanish on a nonempty
open set). On the other hand, ell(A) may be smaller, and we can in fact describe its
complement by

Char(A) = p−1
m ({0}),

where pm(x, ξ) : (Rn)× (Rn\{0})→ C,

pm(x, ξ) =
∑
|α|=m

aα(x)ξα.

Proposition 20.13. Let A ∈ Ψm(Rn) and u ∈ S ′(Rn). Then

WF (Au) ⊂ WF ′(A) ∩WF (u).

Furthermore,
WF (u) ⊂ WF (Au) ∪ Char(A).

See [Mel] for proofs.

Corollary 20.14. If A is elliptic, then WF (u) = WF (Au).

Corollary 20.15. If Au ∈ C∞(Rn), then WF (u) ⊂ Char(A).

Using the above properties, we can give an equivalent definition of wavefront set
which is often more microlocally practical:

Proposition 20.16. Given u ∈ S ′(Rn), we have that (x0, ξ0) is not in WF (u) if and
only if there exists some ΨDO A which is elliptic at (x0, ξ0) such that Au ∈ C∞(Rn).

Thus, if A is a differential operator, and we want to study solutions to Au = 0,
we have some precision in describing how singularities of u can look; namely that the
wavefront set must be part of the characteristic set of A, or roughly speaking the zero
set of the principal symbol. We now mention one of the most important results in
this topic, namely that of the propagation of singularities:

Theorem 20.17 (Hörmander’s Propagation of Singularities). Let P ∈ Ψm(Rn) sat-
isfy the property that the principal symbol p = σm(P ) is real-valued and homogeneous
of degree m. Then, if Pu ∈ C∞(Rn), we have that WF (u) is invariant under the
Hamilton flow of p. That is, if (x, ξ) and (x′, ξ′) lie on a common Hamiltonian tra-
jectory with respect to p, then (x, ξ) ∈ WF (u) ⇐⇒ (x′, ξ′) ∈ WF (u).

Example 20.18. Let g be a Riemannian metric, and consider the wave equation
Pu = 0, P = ∂2

t −∆g with respect to the Laplace-Beltrami operator ∆g of g. Note
that the leading order term of ∆g is

∑
j,k g

jk∂xj∂xk , where (gjk) = (gjk)
−1. Then

σ2(P ) = −τ 2 +
∑
j,k

gjk(x)ξjξk,

and Hamiltonian trajectories (t(s), x(s), τ(s), ξ(s)) satisfy that the (t, x) components
trace out a curve that can be described by (t, x(t)) where x(t) is a geodesic of speed
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1. It follows that, on physical space, singularities of u appear to propagate along
unit-speed geodesics, with WF (u), i.e. the “phase-space singularities”, propagating
along Hamiltonian trajectories.

Recall that the Hamilton vector field appears in the symbol for the commutator
of operators: if P ∈ Ψm and A ∈ Ψm′ , with p = σm(P ) and a = σm′(A), for
[P,A] := PA− AP we have

σm+m′−1([P,A]) = i−1{p, a} = i−1Hpa

where {, } is the Poisson bracket, and Hp =
∑n

j=1 ∂ξjp∂xj − ∂xjp∂ξj is the Hamilton

vector field of p; note that Hpa(x, ξ) = d
ds
|s=0(a(x(s), ξ(s))) where (x(s), ξ(s)) is (the)

Hamilton trajectory with (x(0), ξ(0)) = (x, ξ).
Below is a very rough sketch of the proof (see Section 4.2, Theorem 4.11 in [Wun]

or Ch. 5 in [Mel] for more details):

• Assume for additional simplicity that Pu = 0, and that P ∗ = P (this is
certainly consist with the condition that σm(P ) is real-valued, since σm(P ∗) =

σm(P ). Then we have

〈i[P,A]u, u〉 = 0

for any ΨDO A, since

〈[P,A]u, u〉 = 〈PAu, u〉 − 〈APu, u〉
P ∗=P

= 〈Au, Pu〉 − 〈APu, u〉 Pu=0
= 〈Au, 0〉 − 〈A(0), u〉.

• Suppose (x, ξ) is not in WF (u), and suppose (x′, ξ′) is along the same Hamil-
tonian trajectory of (x, ξ). We want to show that (x′, ξ′) is also not in WF (u).
It turns out that the former condition implies that if C ∈ Ψs satisfies WF ′(C)
is supported sufficiently close to (x, ξ), then Cu ∈ L2.
• We now claim that, for any s, that there exist a ∈ S2s−m+1 and b, c ∈ Ss such

that

Hpa = b2 − c2,

where b is elliptic near (x′, ξ′) and c is supported sufficiently close to (x, ξ).
The idea is that the above equation is a first-order linear equation in a, which
we can solve with the method of characteristics; in this case the relevant
characteristics are precisely the Hamiltonian trajectories. Thus, the above
equation reduces essentially to an ODE.
• In that case, we have

i[P,A] = B∗B − C∗C +R, R ∈ Ψ2s−1.

If R = 0, we then have

0 = 〈i[P,A]u, u〉 = 〈(B∗B − C∗C)u, u〉 = ‖Bu‖2
L2 − ‖Cu‖2

L2 ,

i.e. ‖Bu‖L2 = ‖Cu‖L2 . Since Cu ∈ L2 as c is supported close enough to
(x, ξ), it follows that Bu ∈ L2 as well. Hence, for any s, there is B ∈ Ψs,
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elliptic at (x′, ξ′), such that Bu ∈ L2. This is morally the same as saying
(x′, ξ′) 6∈ WF (u): in fact, we can make a more precise definition

WFs(u) = {(x, ξ) : 6 ∃A ∈ Ψs elliptic at (x, ξ) s.t. Au ∈ L2},
in which case the above argument gives (x, ξ) 6∈ WFs(u) =⇒ (x′, ξ′) 6∈
WFs(u). It turns out WF (u) = ∩sWFs(u), giving the desired result.
• In general, R 6= 0. Hence we have to work iteratively, and assume u has some a

priori regularity. For example, if we want to establish that (x′, ξ′) 6∈ WFs(u),
we can assume that u a priori is (microlocally) Hs−1/2. Then 〈Ru, u〉 is finite
as well, so the above argument still follows through.
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Appendix A. Geodesic and Hamiltonian dynamics

Let gjk(x) (j, k = 1, . . . , n) be real-valued smooth functions on Rn such that (gjk(x))
is a positive-definite symmetric matrix for each x ∈ Rn, and let gjk(x) be functions
such that, as matrices, we have (gjk(x))−1 = (gjk(x)). The goal here is to prove the
relationship between geodesic flow and Hamiltonian flow of 1

2
G where

G(x, ξ) =
n∑

j,k=1

gjk(x)ξjξk.

Following geometric conventions on sub/superscripts, we will write spatial coordinates
with superscripts (xj), coordinates of tangent vectors with superscripts (vj), and
coordinates of cotangent vectors with subscripts (ξj).

A convenient way to represent vectors and covectors is to represent vectors as

column vectors, i.e.

v1

...
vn

 corresponds to the vector
∑

j v
j∂xj , and to represent

covectors as row vectors, i.e.
(
ξ1 . . . ξn

)
corresponds to the covector

∑
j ξj dx

j. In

that case, viewing g = (gjk) and G = (gjk) as matrices, we have G = g−1, and

g(v, w) = v>gw, G(ξ) = ξGξ>.

Given the metric g, we can define so-called musical isomorphisms [ : TRn → T ∗Rn

and ] : T ∗Rn → Rn, also known as raising and lowering indices, which give fiber-
wise isomorphisms between the tangent and cotangent bundles via the metric. More
concretely, [ is defined by

v[ = v>g

when we view the vectors and covectors as column/row vectors; in terms of coefficients
we have

(v[)j =
n∑
k=1

gjkv
k,

and

ξ] = Gξ>, i.e. (ξ])j =
n∑
k=1

gjkξk.

(Note that [ and ] are inverses of each other.) Moreover, the musical isomorphisms
satisfy

v[ · w = g(v, w), g(ξ], w) = ξ · w.
(Here, the · represents the natural pairing of covectors with vectors.) In addition, we
have

g(v, v) = G(ξ) if ξ = v[ (equivalently v = ξ]).

Finally, we note that matrix-valued functions satisfy a matrix form of the product
rule

∂i(AB) = ∂iAB + A∂iB
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(note that here the order of multiplication matters), from which we obtain that

0 = ∂i(AA
−1) = A∂iA

−1 + (∂iA)A−1 =⇒ ∂iA
−1 = −A−1∂iAA

−1.

Thus, ∂ig = −g∂iGg, so that in particular if ξ = v[ (or equivalently v = ξ]), then

v>∂igv = −ξ∂iGξ>.
We now recall that given a Riemannian metric g, there is an object called the Levi-
Civita connection ∇ which measures how vector fields are changing along curves; in
particular it gives a notion of when a vector field is “parallel” along a curve. This
object takes in two vector fields X and Y and returns another vector field ∇XY which
measures “how Y is changing along an integral curve of X”. The connection satisfies

∇fX1+X2Y = f∇X1Y +∇X2Y

and
∇XfY1 + Y2 = X(f)Y1 + f∇XY1 +∇XY2

for all smooth functions f and vector fields X1, X2, Y1, and Y2, where X(f) is the
function which gives the directional derivative of f in the direction of X (note that all
connection satisfy the above properties). In particular, if we let Γkij be the functions
satisfying

∇∂xi
∂xj =

∑
k

Γkij∂xk ,

then one can compute ∇XY solely in terms of the derivatives of the component
functions of X and Y as well as these functions Γkij. The Γkij are called the Christoffel
symbols.

Remark 37. For a fixed x, if γ is the integral curve of X through x, then the value
of ∇XY at x depends only on the values of Y along γ, i.e. if Y = Ỹ along γ, then
∇XY = ∇X Ỹ at x. It follows that, for any curve γ, it makes sense to discuss ∇γ̇Y
where Y is a vector field only defined along γ, by (locally) extending Y arbitrarily
away from γ. In coordinates, if γ̇(s) =

∑
i a

i(s)∂xi , and Y (γ(s)) =
∑

j b
j(s)∂xj , then

∇γ̇Y =
n∑
j=1

ḃj∂xj +
n∑

i,j,k=1

aibjΓkij∂xk =
n∑
k=1

(
ḃk +

n∑
j,k=1

Γkija
ibj

)
∂xk .

The Levi-Civita connection satisfies two additional conditions (which uniquely spec-
ifies this choice of connection), namely that it is torsion-free, meaning

∇XY −∇YX = [X, Y ]

where [, ] is the Lie bracket of vector fields,[∑
i

ai∂xi ,
∑
j

bj∂xj

]
=

n∑
i,j=1

(
ai∂xib

j∂xj − bj∂xjai∂xi
)

=
n∑
i=1

(
n∑
j=1

aj∂xjb
i − bj∂xjai

)
∂xi ,

as well as a compatibility with the metric, meaning

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ)
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for all vector fields X, Y , and Z. Note that the first condition gives Γkij = Γkji by
applying the condition to X = ∂i and Y = ∂j (noting that [∂i, ∂j] = 0), while the
second condition can be used to solve for Γkij in terms of the components of the metric
g and its derivatives, by noting that plugging in X = ∂i, Y = ∂j, and Z = ∂k to give

∂igjk =
n∑
l=1

Γlijgkl + Γlikgjl

(recall that gjk = g(∂j, ∂k)). Changing the order of i, j, and k, and taking advantage
of the symmetry Γkij = Γkji derived above gives, after some cancellation,

∂igjk + ∂jgik − ∂kgij = 2
n∑
l=1

Γlijgkl.

This can be used to solve for Γkij by noting that, in matrix notation, if we form a
vector whose kth entry is as above, we have

(∂igjk + ∂jgik − ∂kgij)k = 2g(Γlij)l =⇒ (Γlij)l =
1

2
G(∂igjk + ∂jgik − ∂kgij)k,

i.e.

Γlij =
n∑
k=1

1

2
glk(∂igjk + ∂jgik − ∂kgij).

Finally, a geodesic with respect to the Riemannian metric g is a curve x(s) which
satisfies the property that ∇ẋ(s)ẋ(s) = 0. In coordinates, if v = ẋ, then we have

v̇k(s) +
n∑

i,j=1

Γkij(x(s))vi(s)vj(s) = 0, , k = 1, . . . , n.

We now aim to show:

Theorem A.1. Let G(x, ξ) =
∑n

i,j=1 g
jk(x)ξjξk, and let g be the corresponding Rie-

mannian metric satisfying (gjk(x)) = (gjk(x))−1. Suppose (x(s), ξ(s)) satisfies Hamil-
ton’s equations with respect to the Hamiltonian 1

2
G, i.e.

ẋi(s) = ∂ξi

(
1

2
G

)
(x(s), ξ(s)), ξ̇i(s) = −∂xi

(
1

2
G

)
(x(s), ξ(s)), i = 1, . . . , n.

Then x(s) is a geodesic with respect to the Riemannian metric g. Moreover, viewing
ξ(s) as a covector in T ∗x(s)Rn, i.e.

ξ(s) =

(
n∑
i=1

ξi(s) dx
i

)∣∣∣
x(s)

,

we have that ξ(s) = (ẋ(s))[. Finally, if τ 2 is the constant value of G along the
trajectory, then the geodesic has speed |τ | with respect to the metric g, i.e. that
gx(s)(ẋ(s), ẋ(s)) = τ 2.
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Proof. Note that

∂ξj

(
1

2
G

)
(x, ξ) =

n∑
k=1

gjk(x)ξk,

and hence x(s) satisfies

ẋj(s) =
n∑
k=1

gjk(x(s))ξk(s).

Letting v = ẋ, we see that v(s) = ξ(s)], i.e. that ξ(s) = v(s)[. Moreover, we have

∂xi

(
1

2
G

)
(x, ξ) =

1

2

n∑
j,k=1

∂ig
jk(x)ξjξk;

since v(s) = ξ(s)], we see that

∂xi

(
1

2
G

)
(x(s), ξ(s)) = −1

2

n∑
j,k=1

∂igjk(x(s))vj(s)vk(s).

As such, we have

ξ̇i(s) = −∂xi
(

1

2
G

)
(x(s), ξ(s)) =

1

2

n∑
j,k=1

∂igjk(x)vj(s)vk(s)

and hence

v̇j(s) =
n∑
k=1

d

ds
((gjk(s)))ξk(s) +

n∑
k=1

gjk(x(s))ξ̇k(s)

=
n∑

i,k=1

∂ig
jk(x(s))vi(s)ξk(s) +

1

2

n∑
i,k,l=1

gjk(x(s))∂kgil(x(s))vi(s)vl(s).

Using that ∂iG = −G∂igG, or in terms of entries that ∂ig
jk(x) = −

∑n
l,m=1 g

jl(x)∂iglm(x)gmk(x),

and then using that
∑n

k=1 g
mk(x)ξk = vm, we have

n∑
i,k=1

∂ig
jkviξk = −

n∑
i,k,l,m=1

gjl∂iglmg
mkviξk = −

n∑
i,l,m=1

gjl∂iglmv
ivm.

In the sum on the RHS, we relabel m to l and l to k, and note that the resulting sum
is symmetric after interchanging i and l due to the symmetry of gkl, and hence

n∑
i,l,m=1

gjl∂iglmv
ivm =

1

2

(
n∑

i,k,l=1

gjk(∂igkl + ∂lgki)v
ivl

)
.

Hence

v̇j(s) = −1

2

n∑
i,k,l=1

gjk(x(s)) (∂igkl(x(s)) + ∂lgki(x(s))− ∂kgil(x(s))) vi(s)vl(s).
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Using

Γjil(x) =
1

2

n∑
k=1

gjk(x) (∂igkl(x) + ∂lgki(x)− ∂kgil(x)),

it follows that

v̇j(s) = −
n∑

i,l=1

Γjil(x(s))vi(s)vj(s).

These are precisely the geodesic equations, as desired. �
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[GS94] Alain Grigis and Johannes Sjöstrand. Microlocal Analysis for Differential Operators: An In-

troduction. London Mathematical Society Lecture Note Series. Cambridge University Press,
1994.
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