Asymptotic Behavior of Solutions
of Oblique Derivative
Boundary Value Problems

PEI HSU

1. Problems and Main Results

In the Euclidean space R" let L =(1/2)a" 3,0, + b'9; be a uniformly elliptic op-
erator and let V= (V1, ..., V") be a vector field. Let g be a bounded nonneg-
ative continuous function. Let D be a bounded domain and f a bounded mea-
surable function on aD. Finally, let v be a nontangential vector field on aD.
Consider the solution u§ of the boundary value problem (e’L+V) uf—qui=0
on D, duf/dy=f on aD. In this paper, we study the asymptotic behavior
of the solution u; as the parameter ¢ —0. To guarantee the existence of a
unique solution, we assume that ¢ is not identically equal to zero on D.
Under this condition, the solution tends to zero as e goes to zero; the ques-
tion is to find the appropriate exponential rate. This exponential rate de-
pends on the behavior of the dynamical system ¢, = V(¢,). We will discuss
two typical cases: (1) the dynamical system has a unique equilibrium point in
D; and (2) V'=0. In the first case, we prove that lim, _,, e log us exists and
is equal to —inf, 7*(x, y), where /% is the quasipotential function for the
oblique derivative boundary value problem, and the infimum is taken over
the essential support of the boundary value function f. In the second case,
under the stronger condition that g is strictly positive on D and f is con-
tinuous, lim, _,( elog uf exists and the limit can also be explicitly identified.
The key to our discussion is a probabilistic representation of the solution
uj. Let 0=(0") be a square root of the matrix a=(a”). Let X = X* ¢ be
the solution of the stochastic differential equation with oblique reflection:

(1.1) dX, = ea(X;)dB,+e2b(X,)dt + V(X )dt —y(X,)p(dl), X,=x,

where B is a standard n-dimensional Brownian motion and ¢ is the bound-
ary local time of the process X. Introduce the Feynman-Kac functional

eq (1) = exp{—g; q(Xs) dé} .

The solution u§ can be represented explicitly as
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(1.2) uf(x) =E;[§:eq(t>f(xt)¢(dr)]

(see [3] and [7]).
Let 74 denote the first hitting time of set 4 by the process X; that is,

T,=inf{t=0: X, e A}.
Let Sy =ess.supp f. The additive functional

bp(0)={ 10X;) $(ds)

does not increase until time 7 = Using the Markov property in (1.2) at time

Ty > WE have

(1.3) uf(x) = Exleq(Ts,) uf (X ).

It is thus clear from this representation that the magnitude of #; depends on
how soon the process X can reach the set Sy, and how fast #f vanishes on S
as e = 0. These two properties in turn depend on the path-space large devia-
tion properties of the associated diffusion process and the behavior of the
transition density function near the boundary.

Let us now state our assumptions and main results. Throughout the pa-
per, the following assumptions will be in force:

(i) a=(a"), b=(b’), and V= (V*) are uniformly bounded and with
uniformly Hoélder continuous second derivatives on R"; o =(0;;) isa
square root of the matrix a with the same property.

(ii) @ is uniformly elliptic on R"; that is, there exists a constant A such
that, for all xe R" and £ e R",

NEP <ETa(x)E < \|E]?

(¢7 denotes the transpose of £).

(iii) D is a bounded domain in R” with C? boundary.

(iv) q is a bounded nonnegative continuous function on R” which is not
identically equal to zero on the domain D.

(v) v is a C? nontangential vector field on dD which points outwards;
that is, {y(x),n(x))>0 on aD, where n(x) is the outward unit nor-
mal vector of D at x e aD.

(vi) fis a nonnegative bounded measurable function on dD.

Any additional assumptions will be stated explicitly.
The following notations will be used:

|x — y| =Euclidean distance between x and y;

B, (x) =Dball of radius e centered at x;
A(x,e)=B.(x)NaD;

o = surface measure on dD;
E, )= £Tay if « is a nonnegative symmetric matrix;
|E|2=(E, E)as
ess.supp f = essential support of f
=f{xeadD:o[A(x,e)N{y: f(¥)>0}]>0 for all positive €]}.



Asymptotic Behavior of Solutions of Boundary Value Problems 223

We need various rate functions (/-functions) from the large deviation
theory. For a set F on R", let Q,(F) denote the space of continuous paths
¢:[0,T]— F. The path space Q(F) is a topological space equipped with
the metric of uniform convergence |y —¢|r=5supg<s<7|¥s—os|. We will
only use the cases F =D and F=R". In the former case we abbreviate Q(D)
as Q7. For ¢ € Q7(R") and a function « from R" to the space of nonnega-
tive symmetric matrices, we set

1 ¢7 .
Ir(o;6) = SO |65 — V()| %(q, .

[It is always understood that I'-(«; ¢) and its likes are set equal to infinity
if ¢ is not L? integrable.] It is a well-known fact [4, p. 155] that I'-(a ~!;¢)
is the large deviation rate function in the path space 2,(R") for the unre-
stricted (without boundary condition) stochastic differential equation

(1.4) dZ,=eo(Z,)dB,+€*b(Z,)dt + V(Z,)dt.

According to [1] (see also [2]), the appropriate large deviation rate function
on (D) for the oblique reflecting diffusion (1.1) is /7 (@ ~%; ¢), where

N 1T, .
1.5 B@e)=- | 16,=xa (6 ws)v(de) = V(ds) g, ds,
and
(bs =V (ds), V(D5 Doy
wis)= [V (D5) ety vO-
For any two points x, y in R”, we define
Ir(osx,y) = inf  Ir(o;9),

¢EQT
¢(0)=x,¢(T)=y

Ir(o; x, A) = inf Ir(a;x,y),

yeA

I(a; x, y)= inf I7(a; x,y),
T>0

I{a; x, A) = inf I(a; x, p).
YeA

Notations I7 (et; x, y), I (a3 x, A), I T (e; x, y), and I T (a; x, A) are defined
similarly. The only two cases we will use are « =a ! and a =ga . In the
former case, we often suppress @ ! from the notation. We recall that all
these I-functions are continuous in the space variables.

We also need the following fundamental assumptions on the vector field
V' which will be collectively referred to as Condition (C):

(C1) (V(x),n(x))<O0 for all xeaD.

(C2) The dynamical system determined by the vector field ¥ has a unique
equilibrium .point xo € D. Namely, for every x € D, the trajectory ¢*
defined by ¢ = V(¢,) and ¢*(0) =x has the property that

lim ¢x(t) =Xg.

1 -+
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We are now in a position to state our main results.

THEOREM 1. Suppose that Condition (C) is satisfied and that g(xy) > 0. Let
us be the unique solution of the boundary value problem [e 2L+ Viuj—qui=0
on D, duf/dy=f on dD. Then we have, uniformly on D,

lim e’ loguf(x) = —I"(a"%;x, Sy),

e—0

and Sy =ess.supp f.

THEOREM 2 [Case V=0]. Suppose that q is strictly positive on D and f is
continuous on dD. Let uf be the unique solution of the boundary value
problem ezLuf—quj =0o0n D, duf/dy = f on dD. Then we have, uniformly
on D,

lim elog uf(x) = —2+/I;* (ga~%; x, S;) ,

e—0

and Sy =supp f.

REMARK. Our method applies to vector fields ¥ with more complicated
w-limit sets. In particular, if the w-limit set of V satisfies the condition speci-
fied in [4, p. 169] then Theorem 1 holds as stated. The proof of this case only
requires some minor modifications to the proof we will present.

As we mentioned earlier, the starting point of our method is the probabilis-
tic representation (1.2) of the solution uf. We naturally divide the proof of
Theorem 1 or 2 into two parts—that is, estimating the exponential decay
rate from above and estimating it from below. An estimate from above
can be obtained via (1.3) from a crude upper bound of u#f on the boundary
and an exponential upper bound of Eg[e, (T} f)]. (See Propositions 3 and 8
below.)

To get a lower bound of the exponential rate from (1.3), we have two
difficulties if f is merely assumed to be measurable (as in Theorem 1). First,
since Sy is a closed set and may not have a dense open set, the lower bound
of Eg[e, (T f)] is not easy to obtain. Second, infy ¢ Sy uf(y) may decrease too
fast to zero to be useful. To overcome these difficulties, we replace the set Sy
in (1.3) by an open set of the form A(x, €*) (with x € dD), whose diameter is
shrinking at the rate ¢®. The point x is chosen so that

o(dy)

SA(x,x) W) Saeny x>0 as A=0.

Such points are dense in S;. We have
T,
uf(x) =E§[§O e,(s) f(X5) d>(ds)] +Ele (T )uf(Xr)]

ZE;[eq(T;)] inf uje'(y)s
ryeA(x,e®)
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where T, =T, o), the first hitting time of A(x,e*). It turns out that if
a > 1 we can get an effective lower bound of uf over the set A(x, €*) (Propo-
sition 6). On the other hand, for o < 2 the exponential decay rate of Ex[e,(T;)]
can be obtained by proving a version of the large deviation lower bound for
a shrinking open set in the path space 2 (Lemma 9 and Proposition 10).
The lower bound in Theorem 2 is relatively easy because Sy does contain a
dense open subset.

The plan of the paper is as follows. Section 2 is devoted to the statement
of various intermediate results and the proof of the main Theorems 1 and
2. The proof of these intermediate results are taken up in Sections 3 and 4.
In Section 3, we discuss the bounds for the solution #§ on the boundary. In
Section 4 we discuss the exponential decay rate of the Feynman-Kac func-
tional E[e,(T,)] for various sets 4 on the boundary.

2. Outline of the Proof of the Main Theorems

Throughout the paper, ¢, €, ..., g, £1, ..-5 C, Cy, -.. denote constants which
depend only on L, D, V, v, q; otherwise the dependence will be explicitly in-
dicated. u; will denote the solution of the boundary value problem

(e’L+V)uj—quf=0on D, duf/dy=f on aD,

with data L, D,V,v,q subject to conditions (i)-(vi) stated in the preced-
ing section. The propositions stated below will be proved in the next two
sections.

First we give a global upper bound of the solution.

PROPOSITION 3. Suppose that Condition (C) is satisfied and that q(xy) >
0. Then there exist positive constants c; and €y such that

sup uf(x) < ¢ flawe
xeD

Jor all e <ey.

PROPOSITION 4. Suppose that V=0. Then uj tends to zero uniformly as
e —0.

We now turn to the lower bounds of the solution on the boundary. Define

J(x)= S()o(dy).

o[A(x,€)] SA(x,e)

By the Lebesgue differentiation theorem [11, p. 100], we have f.(x) — f(x),
o-a.e.on dD as e —» 0. Let

Qr= [x €dD: lim f (x)=1[(x) exists and is positive} .

e—0
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Obviously, Q is dense in ess.supp f. We have the following lower bound
for us
f.

PROPOSITION 6. Suppose that Condition (C) is satisfied. Fix an o« > 1 and
x € Qr. Then for each h >0 there exist €(x, f, h) >0 such that

. —he—2
inf  uf(z)=e he
ZeA(x,e%)

Jorall e <ey(x, f, h).
PROPOSITION 7. Suppose that V =0 and that f is continuous on dD. Then
Jor each x with f(x)> 0 there exist 6 =6(x, ) and ey(x, f) > 0 such that

inf  uf(z)=cref(x)
€ A(x,8)

Jor all e <eg(x, f).
Recall that
eq(?) def exp{— S; q(Xs) ds} .

The first hitting time of a set F by the process X is denoted by 7. We thus
have the following.

PROPOSITION 8. Suppose that Condition (C} is satisfied and that q(x,) >
0. Then for each closed subset F of the boundary 0D and each h >0, there
exists ey(F, h) >0 such that

e*log Efle (Tp)l<=—I*(a Y x,F)+h
SJor all xe D and all e <ey(F, h).

PROPOSITION 10. Suppose that Condition (C) is satisfied. Fix a <2 and
z€dD. Then for each h> 0, there exists €y(z, h) > 0 such that

e*log Efle,(Tpq c))l = =T (@ G x,2)—h
Jor all e =ey(z, h).
PROPOSITION 12. Suppose that V=0 and q is strictly positive on D.
(@) For each closed subset F of aD and for each h> 0, there exists

eo(F, 1) >0
such that
elog Efle,(Tp)l < —2+/I*(ga~Y;x,F) +h
Jor all e <ey(F, h).

(b) Let ze€dD. Then for each open subset G of oD containing z and for
each h >0, there exists ¢,(G, z, h) > 0 such that
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elog Efle,(To) = —2/IF (qa—";x,2) —h
Sorall e<e(G,z,h).

Note that /27 [T(ga~1';x,dD) is simply the distance from x to 8D in the Rie-
mannian metric determined by ga ~'. We now turn to the proofs of our main
theorems.

Proof of Theorem 1. Fix ae(1,2). Let & be an arbitrary small positive
number. Since Q, is dense in ess.supp f, and 7 *(x, z) is uniformly contin-
uous in x, z, there exist a finite set of points {z,, ..., z;} C O such that

IT(x,S;)= min I7(x,z;)—h
I=si=<!

for all xe D. As we have argued in Section 1, the representation (1.2) and
the Markov property give, fori=1,...,/,

uf(x)=Egle,(T))]- inf  uf(y),

Y €A(z;,€%)

where T = Th(z;,exy- Using Propositions 6 and 10, we have

e*loguf(x)= —I*(a ';x,z;)—2h
for all e <e¢y(z;, f, h). Hence, there exists a positive number e,( f, #) such
that
2.1)  e*loguf(x)=— min I (a7 ;x,2,)—2h=—I"(x,S;)—3h

1=i=<l

for all e =e€,(f, 7). On the other hand, since

2.2) uf(x) < Eleg(Ts,)] SUp uf(2),

Propositions 3 and 8 immediately give
(2.3) e loguf(x) < —I"(a™';x,S;)+2h
for e < e3(f, h). (2.1) and (2.3) imply the conclusion of the theorem. O

Proof of Theorem 2. The upper bound can be obtained from (2.2) by
using Propositions 4 and 12(i). For the lower bound, we choose a finite set
of points {zy,...,%;} such that f(z;)>0, (i=1,...,/) and

I (ga™'x,87) = min I} (qa~';x,2;)—h

l=si<l]
for all xe D. Let A;=A(z;, §;) be a neighborhood of z; such that Proposi-
tion 7 holds. Using the inequality
up(x) = Eyle (Ty))- inf uf(y)
yeah;

and Propositions 7 and 12(i), we have
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eloguf(x) = —2+/I*(qa';x,z;) +h —2h
for all e <e€4(z;, 4A;, f, h). It follows that
eloguf(x) = =21 (qa =% x,S,) +2h —2h

for all e <e5(f, h). This proves the theorem. L]

3. Bounds of the Solution on the Boundary

The results concerning the estimates of u#f used in the last section will be re-
stated and proved in this section.

PROPOSITION 3. Suppose that Condition (C) is satisfied and that q(x,) >
0. Then there exist positive constants ¢, and €, such that

sup uj(x)<cy|flwe
xeD

Jor all e <ey.

Proof. Let T >0, whose value will be determined later. From the proba-
bilistic representation (1.2), we have (by the Markov property),

| . o _ [rn+0T
uf(x)= Ex[SnT eq(s) f(X5) ¢(dx)]

n=0

3. SIfle 3 Eile, (i) (@(nT+T) =g (nT)

<Ifle 3 Efley(nD)) sup E£I$(T)].

Using the Markov property, it is easy to show by induction that

(3.2) sugE;f[eq(nT)] s{sugEzf[eq(T)]} .

We will prove the following two inequalities: There exist positive 7, €g, c3,
and 0 < c, <1 such that, for any ¢ <€,

(3.3) sup EZ[e (T)]=c,<1
zeD

and

3.4) sugE§[¢(T)]5c3e.

If (3.3) and (3.4) hold, then we obtain from (3.1) and (3.2) that

C2C3

£ <
uf(X) 1 —Cy

|f]lo€

for all xe D and e <¢,. This will prove the proposition.
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To prove (3.3) and (3.4), we first recall a result about diffusion with small
parameter. Let X satisfy the stochastic differential equation (1.1). Let ¢* be
the solution of ¢ = V(¢,), ¢§=x. Then we have, for each fixed T >0,
(3.5) sup E5[| X —¢|F]1 < cy(T)e>.

xeD

[For unrestricted diffusion (1.4) (without boundary condition) this can be
verified in the usual way using Doob’s martingale inequality and Gromwall’s
inequality. For diffusion (1.1) with boundary condition, one can reduce it
to the case without boundary condition by the method of Anderson and
Orey [1].] Let us establish (3.3). Since g(x;) > 0, there exist positive numbers
N\, pn such that g(x)=u on By(xp). Now Condition (C) implies the follow-
ing fact: There is a Ty > 0 such that ¢; € B, (x,) for all ¢ = T;, and all x e D.
Let us now choose T'=T,+1. The choice of T, and the fact that g(xg) >0
implies the existence of a small 6 >0 such that, for all x e D,

. . T I
|¢p—¢*|r <6 implies Sq((bs)dsz—-,
0 2
Now we have
Efle,(T)] <Eile,(T);| X —|r <81+ PE[| X — | = 6]
<e M2 4c,(T)e*/52.

[We have used (3.5) and Chebyshev’s inequality in the second step.] Thus
(3.3) holds if € is small.

To establish (3.4), we choose a function g e C?(D) such that dg/dy =10on
oD. Using Itd’s formula on g(X,) with X, determined by (1.1), we have

T T
o) =c| (V&)o(X,)dB+e*| Le(X,)ds
(3.6) ;
+| Ve ) ds—g(Xp) +8(x).

For the last three terms in the above equation we have

[} <V venx) ds—g(Xr) +g(x)

3.7 <ST(VV) XY ds — g (¢ T+1)| X —¢*
=], V- Ver (@) ds—g(¢7) +8(x)| +cs(T+ )| X —o*|r

=cs5(T+1)| X —o%|7.

[The first term after the inequality sign vanishes because of Condition (Cl).]
Taking the expectation in (3.6) and using (3.5) and (3.7), we obtain (3.4) im-
mediately. The proof of Proposition 3 is completed. Ll

PROPOSITION 4. Suppose that V=0. Then, uniformly on D,

lim uf(x)=0.

e—0



230 PEI HSU

Proof. We prove the following two inequalities:
(i) For each positive 6, there exists A =A(6) > 0 such that

3.8) sup E<[¢(Ne"2)] <6

xeD
for all e = 0.
(ii) For each fixed N\ > 0, there exists ¢g(\) > 0 such that

1
3.9) sup Ef[e,(\e %)] < —,
xeD 2

for all e <€p(N).

Suppose these two inequalities hold. Taking 7= e~ in (3.1) and (3.2),
we have immediately that uf(x) <|f|.6 for e <eg(N\), which proves the
proposition.

Let us prove (3.8). In (3.6), we may choose g such that |g|. < 6/3. Since
V =0, the term involving V disappears. We obtain (3.8) by taking \ =
8(3|Lg|w) ! and T=Ne"2.

To prove (3.9), we note from (1.1) that the law of {X,,0=<¢ =<1} under
probability Py is identical to that of {X,2;,0=<¢ <1} under probability P}.
Therefore we can write

Etle, (v~ = 25 exp{ = [ g ]

(3.10) =E} —exp{—eiz S:q(Xs)dSH

def
= X(x).

Now each x,(x) is continuous on D. Since we assume that g #0 on D, we
have x.(x) | 0 as e | 0 for fixed x € D. Therefore x, | 0 uniformly on D (Dini’s
theorem). (3.9) follows immediately. Ll

We now turn to the lower bound for the solution u}. First, we need a simple
lemma. Recall the definition of £, in the last section. We have the following.

LEMMA 5. There is a constant ¢; > 0 such that, for any two points x,y on
the boundary 3D satisfying |y —x|<e,
y—x
i —f.o) selsla 22

€

Proof. From the definition of f_, we have

|l ff(x)—f. )= o[—l%%ﬁ {o[A(x, e)\A(Y, €)]+o[A(y, e)\A(x, €)])
1
+[f ] o[A(y,€)].

glA(x,€)]  o[A(),€)]
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By simple geometric considerations, we see that the expression inside the
braces in the above inequality is bounded by ¢,|y —x|e"” L. The assertion of
the lemma follows easily. [l

Recall the definition of Q from the previous section. We have the follow-
ing lower bound for uf.

PROPOSITION 6. Suppose that vector field V is uniformly bounded. Fix
a>1and x € Qf. Then, for each h> 0, there exists ey(x, f, h) >0 such that

inf  uj(z)=e "

Z€A(x,e%)

Jorall e =ey(x, f, h).

Proof. Set §=]q| for simplicity. Define the process Y =Y*¢ by the sto-
chastic differential equation

(3.11) dY,=eo(Y,)dB,+e*b(Y,)dt —y(Y,)¥(dt), Yy=z.

Set ¢r(t) =§b f(X;) p(ds) and () =§§ f(Ys) ¥(ds). We have from the
probabilistic representation (1.2) that, for any 7 >0,

us(z) zE;[STe-B’¢f(dz)] =e FTE[¢:(T)]
(3.12) 0
= e FTES My (T)].

In the last step we have used the well-known theorem of Girsanov on absolute
continuity of diffusion measures. The exponential martingale {M,, f =0} is
1 1
M, = exp{——Nt— —T(N>t} ’
€ 2¢
with

{
N, = SO VTo(Y,)"' dB,.

By Schwarz’s inequality, we have

E{[Yy (1)) < E{[M7 (T E{ (M7 'Yy (T)]
< E{IMry (T ESIM, 1 EZ[Y(T)* 12,
This is equivalent to
E{[y (1))
E;[M52]1/2E§[1//f(T)2]1/2 '
From (3.12) and (3.13) we need (a) an upper bound for ES(M72); (b) an

upper bound for E£[y,(T)]; and (c) a lower bound for E[y,(T)].
(a) Since @ ~! and V are uniformly bounded, we have

(3.13) E; (MY (T)] =

T
(NYp= So Via-\W(Y,) ds<c,T.
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Hence

3
E;[M;2]=Ef ——<N>r+-—<N>TH

-
e NS
€ €
3;T
=exp{ = }

(b) To obtain an upper bound for E; [¢f(T)2], we note first that ¢,(T)
has the same law under the probability P; as y[zf(ezT) has under the proba-
bility E.. Let us use py(f, z, ) to denote the transition density function of
Y under the probability E}. We have

(3.14) <E

N om

(3.15) Elypo)= ds{ py(s,z, /(3 o(dy).

Using the method of parametrix, we can show that py(s, z, y) has the fol-
lowing exponential bounds (see [9], where the heat kernel with the oblique
derivative boundary condition is treated in great detail): There is a £, >0
such that, for s <#,,

Py(s,z, y) = cs ™ expl—ci |y —z|¥/s}—c3s TV 2 expies |y —z|Ys),

—-n/2

py(s,2,y)=c3s exp{—c{l|y—z|2/s}.

The upper bound of py(s, z, ¥) and (3.14) imply by simple integration that
there is a constant ¢4 such that, for all 1 <¢,,

SUPE [Yr(D)] = AV

zeD

Using the Markov property, we have

Elg 0%1= 261 [[ 140 =) ¥yt

=2E1 || B o t1=5)) 4y s)

<cs|fl%t.
Hence we have, for e2T' < ¢,,
(3.16) E{ (T 1=E; ¥ (e*T)] < 5| f|%€*T

(c) To obtain a lower bound of E;[{,(T)] =Ezl[1,bf(62T)] with z e D, we
integrate the lower bound of the heat kernel py (s, z, ¥) to get

t _ C6t —d+3 C'}'t
$,2,y)Yds=cgly—z d+2H( )—c —z|7%* H(—-— ;
SOPY( y) 61y —z| \y—z2 7|y —z| \y—z
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where

H;(u)= §gs“("‘i)/2e"/s ds, i=0,1.

For fixed uy, > 0 there exists N = \(#) such that, for all u = u,,

Hy(u) = \u, Hi(u)<\'u, if n=1;
Hy(u)=Nogu, Hyu)<\"u, if n=2;
Hy(u) =\, Hiu)<N'logu, if n=3;
Hy(u) =\, Hyu)=s\"}, if n=4.

Take uy =T min(cg, c7). Using the above estimates, we can verify that in all
dimensions the following assertion holds: There exists €,{7") >0 such that,
for all e <¢;(T) and all pair of points z, y satisfying |y —z| <e,

2T
G.17) So Dy(s,2, ¥) ds = cg(T)e 9+2,

Let t =€2T in (3.15) and use (3.17). By the definition of f,, we have imme-
diately that

(3.18) E{[Yr(T)] =E [¥7(e’T)] = co(T)ef ().
Collecting (3.13), (3.14), (3.16) and (3.18), we have proved that
(3.19 E{Mryr(T)] = c1o(T) | f]5' fu(z)* exp{—3c, Te 2},

Now let xe Q. Then f.(x)—I;(x)>0. Since a >1, Lemma 5 implies that
there exists €,(x, /) > 0 such that

(3.20) inf  f(z)= llf(x)

ZeA(x,e®) 2

for all e =¢,(x, f). Combining this inequality with (3.12) and (3.19), we see
that

inf  uf(z) = (1) (x)*| 15" exp{—3c, Te ™)

z€A(X,e%)
for e =e;3(x, f, T). To obtain the proposition it is enopgh to take T=h/6c,
in the above inequality. Ol
PROPOSITION 7. Suppose that V=0 and that f is continuous on oD. Then
there exist 6 =06(x, f) and eo(x, ) >0 such that

inf  uj(z)=cief(x)

z€A(x, )

Jor all e <ep(x, f).

Proof. We have in this case

uf(z) = e PTES[Y,(T)].
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Choose 6 >0 so that f(z) > f(x)/2 for z € A(x, §). We have from (3.18) that

co(T)
2

for all e <min{é, ¢;(7")} and z € Bs(x). The proposition follows by taking
T=1. ]

Ei[Yr(T)]=

ef(x)

4. Large Deviation Bounds for
Feynman-Kac Functional Ef[e (7,)]

A result of Anderson and Orey [1] (see also [2]) states that IT+ (a”!, ¢) intro-
duced in Section 1 is the large deviation rate function (in the path space Q)
of the diffusion (1.1) with oblique reflection. (Refer to their work for the
exact statement of this result.) We will need a modified version of the large
deviation lower bound. See Lemma 9 below.

Our first result in this section is the following.

PROPOSITION 8. Suppose that Condition (C) is satisfied and that q(x,) >
0. Then, for each closed subset F of the boundary oD and each h >0, there
exists eq(F, h) >0 such that

T
e?log E;[exp{—SOFq(XS) ds}] < -ItaYx,F)+h

Jor all xe D and all e <ey(F, h).

Proof. Recall that x; is the unique equilibrium point of the deterministic
dynamical system ¢, = V(¢,). We use the well-known method of Freidlin
and Wentzell [4] to handle the equilibrium point. Let 4 be an arbitrary posi-
tive number. Choose a positive » such that:

(1) the closure of B,(x,) is contained in D;
(2) I™(xy,y)<I*(z,y)+h for any z € B,(x,) and y € D; and
(3) q is positive on B,(x,).
Let K, =dB,(x) and K, = dB,/5(x,). Define the following sequence of stop-
ping times:
g = 0,
T1= TKI

g1=171 + TK2°071s

Tpn=0n-1+Tk b5 .,

Un = Tn+TK2°9Tn.

No matter where the process starts, we have either Tp<Tg =7, or Tre
(7, 0,) for some n=1. Therefore, using the Markov property we can write,
for any x € D,
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Exle (Tr)l = Exle(TF); Tr<Tk,]

4.1) +n§lE;[eq(Tn)E5(,n{eq(TF); Tr<Tk,}), 7, <TF]

< PiTp=Tg 1+ sup P [Tr=Tk,] 2 Exle (7a)].
zekK, n=1

We will prove the following two inequalities. There exist eo(F, #) >0 such

that

4.2) e’log P{[Tr<Tyl<—I*(x,F)+h
and
(4.3) 2 Eileg(m)]l=c

n=1

for all e = ey(F, h).
Proof of Inequality (4.2). Fix T > 0. We have
4.4) PelTp=Tg 1= Pi[Tp=T]+P[Tg >T].

By Proposition 4 of [1] and the additivity of I7 (¢) in 7, the argument of
[4, Lemma 2.2(a), pp. 110-111] shows that there exist constants ¢, and T
such that if ¢: [0, T] - D\ B,(xp), then I;((;S) = c,(T—T,). This implies, as
in [4, Lemma 2.2(b)], that

(4.5) Pi[Ty, > T1=<exp{—c;(T—Tp)/e?}.

On the other hand, since the set {¢ € Q7: ¢(0) =x, Tp(¢) < T} is at a posi-
tive distance from the set {¢ € Qr: ¢(0) =x, If (¢) < I (x,F)—h/2}, the
large deviation upper bound implies that there exists ¢,(F, T, #) > 0 such that

(4.6) e2log P Tr<Tl<—I7(x,F)+h<—-I*(x,F)+h

for all xe D and e < ¢(F, T, h). (The uniformity in x is not explicitly stated
in [1] for the large deviation upper bound, but it can be verified easily in the
present case.) It follows from (4.4)-(4.6) that

e’ log P{[Tp=< Ty, 1< —min{I *(x, F), c;(T—Ty)} +2h.
Taking 7 = Ty+max,.p I T(x, F)/c;, we obtain (4.2).
Proof of Inequality (4.3). Since

n—1

Op= kEO(TKI +Tk,07; )05y

we have (by the Markov property) that
n n
Efle (o,)] = { sup Ezle,(Tk,+Tk,°0r, )]} < { sup Ez‘[eq(TKz)]} .
zek, ! zek,
To show (4.3), it is sufficient to prove that there exists 0 < c4 <1 such that
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4.7) sup Ezle (Tg,)1<c, for e<ey(h),

ZGKl

because then the left-hand side of (4.3) is bounded by c,(1—c,) .
Define

750=inf{t >0: p? € K,).

Let so=inf g 7° 9, It is clear that s5,> 0. Let 8 € (0, 5,). Since the distance
between the set

(e, :6(0)=2, Tk, ($) < 79— 0}
and the set
feeQ, :6(0)=2, I}(6)=0)={de®, : $(0) =2, ¢;=V(d,)]

is positive, the large deviation upper bound shows that there is a positive
¢5(6) > 0 such that

(4.8) e’ log P{[Tx,<7°—8] < —c5(8).

[We have written 7° instead of 7% 9 for simplicity.] By the choice of r, func-
tion g(z) is strictly positive on the closure of B,(x). Thus it is possible to
choose 6 so small that there exists a cg with the property that

70—5
4.9) |6—%|,0_s<6 implies §0 q(¢.) ds = cs>0

for all z e K;. We now can write
E¢le,(Tx,)1 = Ele,(Tk,); Tx, > 70— 81+ E{le,(Tk,); Ty, < 7°— 0]
<Efle,(1°=8)]+P{[Tx,<7°-0]
<Efle,(1°—8); | X —¢%|,0_s<8]+PS[| X —*|,0_5>8]
+P[Ty,<7°-6].
The first term after the last inequality sign is bounded by e 6 by (4.9). As
e — 0, the second term and the third term go to zero by (4.8) and (3.5). Thus
(4.7) is proved.

Finally, we show that (4.2) and (4.3) imply our proposition. Indeed, re-
placing K; by K, in (4.2), we have

e’log P{[Tr=Tg )< —I*(z,F)+h=—I*(xy,F)+2h

for all z € K; and € <¢,(F, h). Now (4.1), (4.2), (4.3), and the above inequal-
ity together give immediately that

e*log Efle, (Tr)] < —min{l " (x, F), I *(xo, F)} +3h
for all € < e4(F, h) and x € D. Since X, is the unique equilibrium point, we have
I*(xq, F)=1%(x,F) for all points x € D. The proposition follows. O

Our next goal is Proposition 10. We first prove a modified version of the large
deviation lower bound. In the large deviation theory one usually computes
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a large deviation lower bound for the probability of a fixed open set in the
path space. In our situation we need the open set to shrink as € { 0. If the size
of the open set does not decrease too fast, we expect the same lower bound
should hold. The following proposition makes this idea explicit.

LEMMA 9. Fixa<2.LetT >0 and ¢ € Qr such that $(0) =x and I (¢) <
co. Then there exists an ey=eo(T, ¢, h) >0 such that

e?log P{[ X0, 7€ Oc($)] = =17 (¢) —
Jor all e < ey(T, ¢, h).

REMARK. The above result claims that the size of an open set in the path
space can shrink as fast as ¢* (o < 2) without affecting the exponential large
deviation lower bound. Because of Lemma 5, it is important for our ap-
plication that the radius can go to zero faster than . The lower bound pre-
sented in [5, p. 332] implies that the exponential lower bound does not
change if the radius does not go to zero faster than coﬁe for some constant
¢o. This result is not sufficient for our application. Also, here we consider
diffusion process with oblique reflection rather than unrestricted diffusion
(1.4). We will handle the oblique reflection by the method of Anderson and
Orey [1].

Proof of Lemma 9. First of all we notice that the problem can be localized,
so we may assume that D is the half-space D= {x = (x!,x2,...,x"): x>0}
and v is the unit outward normal vector field v(x)=(-1,0,...,0). Intro-
duce the map I': C(R") —» C(R}) on the paths space as follows. For ¢ =
(¢),...,9"), the image I'(¢) = ¢ is defined by y'=¢' for i=2,...,n and
Yi=¢}—ming ., ., (¢A0) (the Skorohod equation). The following three
facts hold.

() If Y=Y™*¢is the solution of the stochastic differential equation

(4.10) dY,=eo(T(Y),)dB,+e*b(T(Y),)dt + V(I'(Y),)dt, Y,=x,
then the process X =I'(Y) is the solution of (1.1) with desired oblique
reflection.

(B) The large deviation rate function for the above diffusion process is

1 .
It (¢)= > SoTlfﬁs—b(P(¢))s)|3(r(¢)s)—l ds.

It is related to the rate function of the oblique reflecting diffusion by
IF (¢) =inf{I7 (¥): Y € Qr(R"), T (¥) = ¢}.
(v) The map I' is Lipschitz in the path space

T (¢1) =T ()| r<2|d1— 3|7
for any two paths ¢,, ¢, in C(R").
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Using (y), we can write
P[X(0,11€ Oce(9)] = P{[ Y10, 1 €T 7 (Oca(9))]
= P{[ Yo, 71 € Ocara(T' ~(9))].

This reduces the lemma to the following large deviation lower bound for the
diffusion (4.10) (with nonanticipating coefficients):

4.12) e?log PE[ Yo, 11 € O (Y)] = — I (Y) — h.
Indeed, choose y € ' "!(¢) such that

IFW)< inf IF)+h=I}(¢)+h.
yel~1(e)
Since O,«(¥) C O.«(I'"(¢)), we have from (4.11) and (4.12) (ignoring the
unimportant factor 1/2)

elog P{[ X0, 11 € Oce($)] = —I7 () —2h,

(4.11)

which is equivalent to what we want.

To prove (4.12), we follow the usual proof of the large deviation lower
bound ([5], [4]) and pay special attention to the size of the open set involved.
Let U, =Y;—y,. Then, from (4.10),

dU,=ea(T(U+Y),)dB;+e*b(T(U+y),dt + V(I (U+y),)dt —y, dt.
Consider also the process
4.13) dW,=c(I'(eW+V),)dB,.
We have by Girsanov’s theorem that
(4.14)  P{[Y(o, 11 € Oca(¥)] = P U7 < €1 = PS[A 7 | W<€,

where {A,, t =0} is the exponential martingale
_ 1 1
At—exp E@t_ZE(@)t ’
with
t .
@, = | [T (W +),) + VITEW +9),) — s 1To " T (W +1),) dB,.
The quadratic variation of & is given by
T .
(B)r= SO 2D (eW + 1))+ V(T (eW+)) — | ar(ew+4y,)-1 5.

By the Lipschitz property of the map I,
|W|r=<e*! implies (®)r<TIF)+e%ci(¥).

Here c;(y) can be taken as ¢ {{|¥/|*ds+c,T for some constant c,. It fol-
lows from (4.14) that
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(4.15)
I
Pi1Y e Outi zexp ~ =0 - S e ey T Vrsen].

€2-

For the last expectation we will show that

€

1]
(4.16) E;[exp{ T} s | W r= e“"l] 2c3ea_1exp[—e_3/2c2(¢/)].

(4.12) is a consequence of (4.15) and 4.16), and the proof will be completzd.
We now establish (4.16). First we notice that there is a constant ¢4 such
that

T .
(‘1’>TSC4SO 5|2 ds+cs T E es(¥).

Using Chebyschev’s inequality, we have
E[(®)r]

€ -1/2 1/2
4.17) Pil|®r|=e /%cs(¥) /4] < D)

Next, define a continuous martingale W, by
!
W= o(C();) dB,.

Subtract this from equation (4.13) and use the martingale moment inequal-
ity {8, p. 110] twice. We obtain

P
Estlw-woRr) <ere ([ Imias) |

<cs(p)e*PTPEL[| W3]

<c,(p)e?PT?.

Hence we have
a—1

¢ 5 ] <cg(p)e?PC-T2P

Pf[l W—wOr=

On the other hand, since W is a continuous martingale with (W %) ( = const. £,

we have
a—1

; 5 ] > co(T)e .

P;[|W°|T.<.

Since o < 2, it follows (by choosing p sufficiently large) that

a—1

€ eot—l
5 |-re| - worr= S|
(418) ZCg(T)ea—l+Cg(p)EZp(Z—a)TQp

= Clo(T)Ea—l.

P§[|W|T56°“1]2P§[|W°|Ts
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From (4.17) and (4.18) we see that there is a set of probability greater than
c10(T)e*~Y/2 on which &;= —e™V2cd/2(y) and |W |y < e*~L. (4.16) follows
immediately. The proof of the lemma is completed. I

We now prove the following.

PROPOSITION 10. Fix a<?2. For each z € 0D and each h> 0 there exists
€o(z, h) >0 such that, for all e <e¢y(z, h),

e?log Ef[e (Taz, )= =11 (x,2)—h.

Proof. Let 8=|q|- and T, =T, .o as before. We have, for any 7' =0,
Ele,(T)]1ze PTP{T,<T].

The conclusion of the proposition is a consequence of the above inequality
and the following assertion: For any 4> 0, there are 7 > 0 and €y(z, #) >0
such that

4.19) e2log PS[T,.<T1=—-I*(x,2)—h

for all e =€g(z, k). Let us therefore prove (4.19).

Consider the following process X. It satisfies the same equation (1.1) as
process X before time T, the first hitting time of the set A(z, €“). After this
time it satisfies the unrestricted equation (1.4).

Fix h> 0. By the definition of I (x, z), there exist T, < T; < T and a path
¢ € Qr(R") such that:

(@) ¢#(0)=x and ¢(77) =z;

(b) ¢(t)e D—{z} for t<Ti, and ¢(¢)=z+n(z)(t—T)) for Ty<t<T,

© If(¢)<I"(x,z)+hand Ir_7($(To+ ) <.

(See [10, p. 27].) From (a) and (b), if Xio,7) € Ocay3(9) for sufficiently small
e then 7,(X) <T. On the other hand, (b) implies that z is not on the path
¢10,751- Thus, for sufficiently small ¢, if Xo, 7) € Oo/3(¢) then Xo 1) does
not intersect the neighborhood A(z, ¢%/3). We have therefore 7,=T, for
such paths. (The reader is advised to draw a picture to convince himself of
the above argument.) It follows that

PiT.<T]
=P{[T(X)=<T]
(4.20) = P{[X(0,71€ Oco3(9)]

= P{[ X0, 7,1 € Ocey3(9); T. = Ty; Xjo, 7—1)°07, € Ocas3(¢(To + +))]

> P{[X[0,75 € Ocey3(#)]  inf  P§[X (o 7_7,) € Ocar3(d(To+ )]
J’EBea/3(¢TO)
Here we have used the Markov property in the fourth step. In this step we
also removed the first tilde because, as we argued before, Xo 1) € Oca/3(¢)
implies 7, = T, and hence X, = X for s < Tp.
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In the last expression of (4.20), the lower bound for the first factor is given
by Lemma 9. As for the second factor, we notice that X,e B a/3(¢;,~) and
Xo, T—Ty) € Oeas3(d(Tp+ +)) imply that Xio0.7- 1,1 does not intersect the part
of the boundary dD\ A(z, €®). Thus, in evaluating the probability we may
ignore the boundary condition and assume that the X satisfies the unre-
stricted equation (1.4). Thus the usual lower bound for the large deviation
of paths (modified for shrinking open sets; see the proof of Lemma 9) gives

e inf  log Pj[ X r—1, € Oald(To+ N1 = —Ir_g1 (¢ (To+ -)) —ht
Y €Beass(er,)
= —2h.
It follows that

(4.21) e2log PST.<T]= -—I};(d:) —h—2h=—-1%(x,z)—3h,
which is just (4.19). The proposition is proved. O

Finally, we discuss the case V'=0.

PROPOSITION 11. Suppose V=0 and q is strictly positive on D.

(i) Let F be a closed subset of the boundary dD. Then for any h > 0 there
is to(F, h) > 0 such that, for all t < ty(F, h),

T
tlog P§[S0Fq(XS) ds < t] < —I'(qa ' x,F)+h.

(ii) Let G be an open subset of dD. Then for any h >0 there is a t(G, h) >
0 such that, for all t <t,(G, h),

T,
tlog P} [Squ(XS) ds < t] > —It(ga"';x,G)—h.

Proof. Let
at)=| a(x,)ds.

Consider the time-changed process Y, = X,), where 7(¢) =inf{s = 0: a(s) = ¢}
is the inverse process of a(f¢). It is clear that Y is a diffusion process asso-
ciated with the operator g ~'e2L. Hence the large deviation rate function for
Y is just I7 (ga~'; ¢). On the other hand, we have

Tg
| "ax) ds=T().
(Tr(¢) denotes the first hitting time of set F for path ¢.) Under the assump-
tion V=0, the law of {X,, s =0} under the probablhty P! is identical with
the law of { X, -1, s =0} under the probability P . Hence we have

P;[S:Fq(xs)dsst] P‘/_[S (X)ds<1] =PV [Te(Y)<1].
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Now the large deviation upper bound immediately gives
1| (7F + -1
tlog P, SO q(X,)ds<t|=<-I{"(qa”";x,F)+h.

This proves part (i). The proof of part (ii) is essentially the same as the
proof of (4.19) in Proposition 10. Let us briefly repeat the argument. Let
z€ G be such that I (ga ', x, z) <I{' (ga~'; x, G) + h. By the definition of
It (ga~';x, z), there are Ty < Ty <1 and a path ¢ € 2,(R") with the follow-
ing properties:

(@) ¢(0)=x and ¢(7}) =2z;
(b) ¢(t)eD—{z} for t<Tj, and ¢(¢)=z+n(z)(t—17) for Ty<t =<1,
© In(ga~';¢)<I(ga~";x,2)+h, and IT_g(qa~";¢(To+ ) <h.

Choose ¢; so small that 17[0, 71 € Ocy/3(¢) implies T (Y) <1and that Yio,1 €
O,,/3(¢) implies T6(Y) = Tp, where the process Y is defined similarly to X in
the proof of Proposition 10, but with 7 replaced by T, ¢,)- The same argu-
ment used there leads to the following inequality:

PV [To(Y)<1]

=Py [Yio,1, € Oqa(@)] _ inf )Pf [¥10,7-11 € Ocy/3(d(To+ - N1

We therefore have, as in (4.21) of Proposition 10,
tlog PY [To(Y)<1]= —Iif(qa s x,2)—3h =1 (qa""; x, G)—4h.
The proposition is proved. O

PROPOSITION 12. Suppose V=0 and q is strictly positive on D.

(1) Let F be a closed subset of dD. Then for any h > 0 there exists ey(F, h) >
0 such that, for all e <¢yo(F, h),

Tg
elog E;[exp{—so q(X;) ds}] < —2\/[1+(qa—l;x, F) +h.

(ii) Let G be an open subset of dD. Then for any h > 0 there exists
€1(G, h) > 0 such that

Tg
(4.22) elog E;[exp{—so q(Xs)ds}] > —2\/11+(qa—1;x, G) —h.
Proof. Let J(F)=1I;"(ga™!;x, F) for simplicity. By Proposition 11, for any
h there is a £y > 0 such that, for all £ <¢,,
tlog PHTR(Y)<t]l< —J(F)+h,
tlog P To(Y)<tl= —-J(G)—h.

Integrating by parts, we have
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€ 1 1
Exle,(Tp)] = Ex| exp{ — pry Tr(Y)
o 4 1
=S exp} —— { dPNTR(Y) <]
0 €
t 1 ¢ t
< exp{- —g—} +— S 0exp{— —5} P;[TF(Y) <t]dt
€ 0 €

! 1 ¢t t J(F)—h
SeXp{_EQI + = Sooexp{—(z + ——t—)} dt
exp{ tO} to xp{— 2\/J(1:)—h}‘

+—e
€2

This gives immediately

elog Pile ,(Tp)l < =2~/J(F)—h +h

for e < ¢o(F, h). Part (i) is proved. Using Proposition 11(ii), we have

1
E,l[e,(T)] =E;[CXP{— ?TG(Y)}]
‘ t
ZSOOexp{— ?} dPNT(Y)=<t]
1 tg { 1
> — SO exp{— ?} PTG(Y)<t]dt
1 ¢ t J(G)+h 1 ¢ t
> = So exp{—(? + ——t———>} di— = Sto exp{—e—z} dt

= 2 TG H K NIGY /0 —exp{ ~ 3]

Here K;(z) is the Bessel function of imaginary argument [6, formula 3.324.1,
p. 307]. By the asymptotic formula for K;(z) [6, formula (16), p. 936], we
have

elog Exle,(Tg)1= —2+/J(G)+h —h

for e <¢;(G, h). This proves part (ii), and the proof of the proposition is
completed. ]
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