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Brownian Motion and Riemannian Geometry

Pei Hsu

Recent years have seen intensive activities of using probability theory as a powerful tool
or at least as an intuitive language in the study of problems from other fields of mathematics.
Taking advantage of their knowledge in stochastic analysis, probabilists venture into fields
previously unfamiliar to them. Many interesitng new problems and results emerge as a
result of this combination of probability theory with fields such as differential geometry,
partial differential equations, and mathematical physics. In my opinion, the advantage of
probabilistic methods lies in its intuitive language, its explicitness in expressing certain
analytical quantities and its flexibility in handling these quantities.

This paper discuss a few problems related to Brownian motion on Riemannian manifold.
Our goal is to show how Brownian motion can be used in geometric problems. Since the
paper intends to be expository, the proofs, if any, will be brief and references are given.
The choice of material reflects my own interests in the subject and does not claim to be
representative.

§1. Brownian motion on manifold and stochastic parallel transport

Let (M,g) be a Riemannian manifold of dimension m. Brownian motion X = {X,,s > 0}
on M is an M -valued (minimal) diffusion process whose infinitesmal generator is A/2, the
Lapalce-Beltrami operator. As such the transition density function of X with respect to the
standard Riemannian volume is the minimal fundamental solution of 8/8f — A/2. Since

. B2 = 8
A = ‘J . T T ‘J 3 o el
9 Baitai ~ 7 gt
locally Brownian motion X; = (X2, ..., X/™) can be generated as the solution of the stochas-
tic differential equation
) . 1. .
(11) dX} = o}(z, )dB] ~ —2ng (X2 )51 (Xo s

where o = (0;-) is a smooth square root of the matrix g~ = (¢/). Alternatively, X is a
Brownian motion if
L L ; 5 il 2
(1.2) X; +5f g’ (Xs)T5 (Xs ) ds = martingale; and d(X*, X7); = g (X;) dt.
0

One can also define Brownian motion as the projection (on M) of the horizontal Brownian
motion on the bundle of orthonormal frames. The advantage of this point of view is that the
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Brownian motion in the frame bundle can be formulated globally (see Ikeda-Watanabe[12],
§V.4.).

Geometric quantities often appear in probabilistic methods as expectations of functionals
on sample paths of Brownian motion. With sample paths we have much more flexibility. We
have several explicit formulas such as Feynmann-Kac formula, Martin-Girsanov transform,
solutions of partial differental equations, etc., which often enable us to carry out necessary
computations in a more explicit way. Also Brownian motion often provides new intuition
and interpretation to a geometric problem.

In general, we can divide problems which can be treated by Brownian motion method
into two classes: 1) local problems, such as short-time asymptotic behavior of heat kernel;
and 2) global problems, such as the existence of bounded harmonic functions. The latter
type problem is in general more difficult and results can only be proved under some global
geometric assumptions about the manifold.

On of the most important concept of stochastic analysis on manifold is that of stochastic
parallel transport (or displacement, or translation). Suppose # : E — M is a real or
hermitian vector bundle on M equipped with a connection V compatible with its metric.
Let X = {X,,s > 0} be a diffusion process on M (not necessarily Brownian motion). The
stochastic parallel transport 7¢ is a (random) linear map from Ey, to Ex, uniquely defined
by the following property: If f is a global section of £, then the Ex,-valued process i f(Xt)
satisfies the stochastic differential equation

(13) drf (X)) =nVif(Xe)odX{, ro=T

where o denote the Stratonovich integral and Vi = Vg g.6. If {e1,...,en} is alocal frame for

E, and Vie; = 75}6;; , then 7 'e; (Xo) = a (t)ej (X1 ) with a] (t) determined by the equation
dal(t) = 7, (XeJal(t) 0 dXF.

This is the local formula for the stochastic parallel transport.

§2. Solution of heat equation on sections of a vector bundle

I{ we are given a global section f of the vector bundle E, then 7 f(X¢) is a Ex,-valued
process. Thus u(t,z) = E; [f(X;)] is a global section of E. We claim that it satisfies the
heat equation:

8’!1‘. 1 H_ . _
(21) E —EA u; ’LL(U,') wf.

where AP is the horizontal laplacian on E, whose local form is given below. For the proof
of this fact, we need only to use (1.2) and (1.3), from which we obtain

dfry f (X:)] = d[martingale] + é?’z [gjk (X )V, Ve F(X) - gjk (X: )r;k (X Vif (X )} dt.
It follows that
¢
(2.2) ult,z) = f(z) +-;E, Uﬂ AR f(X, )d.s]

with ' o
A f =gV, f — 9T Vi,
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or invariantly
n
AT f = Vf(ei,e)
1=1

where {e;} is an orthonormal basis of £. From (1.3) it is also easy to show that

Eo {mEx, nf(Xe N} = Bz [roqef (KXot ).

Now (2.1) follows from (2.2) in the usual way.
Oftentimes what is geometrically more interesting is a heat equation slightly different
from (2.1):

1
23) Bogtu w0 =1
where A is a second order elliptic operator such that the difference S = A — A¥ is a linear
iransform on each fibre. In such case, we can use the Feynmann-Kac formula to express
the solution of (2.3). Namely, define M; : Ex, — Ex, by the following ordinary differential
equation along path:

1
dM; = aMtTtS(Xt) T; ldt.

The solution of (2.3) i1s simply
(2.4) u(t,z) = B [Myme f(Xe)].

An important example is the case when F is the bundle of differential forms on M. In
this case A = —(d*d +dd*) is the Kodaira-DeRham laplacian and the difference § can be
explicitly expressed by the curvature tensor of the metric {(Weitzenbock’s formula). Formula
(2.4) then gives the solution of the heat equation on differential forms. We will use this
formula to prove the Gauss-Bonnet-Chern formula in §6.

§3. Large deviation properties of Brownian motion and Brownian bridge

A sequence of probability measures {Q%,¢ > 0} on a metric space {0 is said to obey the large
deviation principle with rate function I : Q@ — [0, 00] if for any closed F C Q,

limsupt log @ (F) < — inf I{w)
t—0 weF

and for any open G C {2,
iminft log @ > — inf T{w)
hﬂzgrft g Q' (G) 2 wlélé W)
H B is the ordinary m-dimensonal Brownian motion in R™, then the law of {By, 0 <
s < 1} obeys the large deviation principle with the rate function

1
(3.1) Iw) = 7'14/0 lw(s)|2ds

if |w(s) € L?[0,1] and I (w) = oo otherwise. For Brownian motion {X,,s > 0} on M, let Q%
be the law of X* = {X] = X,;,0< s < 1} in the path space {; = {w : [0,1] » M,w(0) =
¢}. Then the probabilities {@%,¢ > 0} obeys the large deviation principle with the same
rate function (3.1) but |w(s)| is understood to be the norm in the Riemanian metric. The
major step of the proof of this fact is to justify the use of the contraction principle in the
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large dewiation theory to the solution of [td’s stochastic differential equation. This can be
accomplished by approximating the solution by Euler polygonal method; see Varadhan[18);
see also Azencott[1].

We now discuss Brownian bridge. The Browian bridge *X*¥ from = to y with lifetime ¢
is obtained from the Browian motion starting from # by conditioning to reach y at time ¢.
As such it has the transition function

p(sa — 81,21,29) plt — 89,22,9)
p(t —51,21,31)

and the absolute distribution
p(ss 272)10("‘ - 52 y)
plt,z,9)
It is convenient to make the time chamge s — st and consider the process Xi¥'' =

1X%¥,0< s < 1. Another equivalent formulation of the Bronwnian bridge is the following:
If Q¢ , denotes the law of X*¥i* on Qpy ={w :[0,1] = M,w(0) ==z,w(1) =y}, then

thz, _P(t(l—‘g):w(&):'y)
(3.2) th: . = T

where {F,,0 < s < 1} is the standard filtration of o-fields on £};. This formula often help
us reduce problems about Brownian bridge to that of Brownian motion and that of the heat
kernel.

Let us assume that M is complete. Brownian bridge measures {@},,¢ > 0} obeys the
large deviation principle with the rate function

0<s<1

Jey @) = 1) - 5ple,y )’
where p(z,y) is the Riemannian distance. This result can be derived from the large deviation
of {@,t > 0} by using (3.2) and some local and global estimates of the heat kernel. Care
must be taken since the drift of Brownian bridge is singular. One may consider, for example,
the Brownian bridge from z to y up to time 1 — ¢ and then pass to the limit as e — 0; see
Hsul8].

Let us mention some other interesting properties of Brownian bridge discussed in Hsu(7].
We can prove easily that the measures {@;,,t > 0} is sequentially compact as ¢t — 0.
From the large deviation property, any limiting measure p must be supported by the set
{w : Jzpy (w) = 0}, ie., the set I of minimizing geodesics joining z and y. The question
arises whether Q} , converges weakly ast — 0. It can be shown that this is the case for
any pair of points (z,y) if M and its metric are analytic. This is also the case if I;; is a
smooth manifold of dimension k and each geodesic joining «,y has exactly multiplicity k. In
the latter case the limiting measure can be descirbed explicitly. For example if I'; ; consists
of [ nondegenerate geodesics 71, ...,7;, then

detd exp, (7:(0))]"/*

p({w}) = Yoy detfd exp, (4 (0)) Y2

§4. Existence and nonexistence of bounded harmonic functions

Brownian motion can be used to study harmonic functions on Riemannian manifolds. Of
course the most important fact about harmonic functions in this respect is that f is harmonic

on M if and only if f(X;) is a local martingale.
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Let M be a Cartan-hadarmard manifold, namely, a simply connected manifold of nonpos-
itive sectional curvature. M is isomorphic to the tangent plane at any point zg € M by its ex-
ponential map. Thus the Brownian motion on M pulled back to the tangent plane at zg € M
can be decomposed into a radial process r; on with values in [0, 00) and an angular process 8;
with values in S™~1. We prove the existence of bounded nonconstant harmonic functons on
M by proving that the angular process converges to a limit: imy06; = ©. Let us assume
either (a) there area > 1,0 < 8 < 1 with a(1— 8) > 2 such that Sect(z) < a(a — 1)/p(z)?
and Ric(z) > —p(2)?; or (b) there are constants U > 0,L > 0 with U2/L > 1 such that
Sect(z) < U? and Ric(z) > —L%(z)*(p(z) = plz,z0)). Under one of these two assump-
tions, we claim that the limiting angle of Brownian motion exists. The idea is to consider
the successive stopping times

T = inf{t >0 ‘.p(Xg,Xu) = 1}, §1=T7T1

Tn =T100,, ,, 8p =Tn +8p-1
where ¢ is the shifting operator. Let A8, = sup, ,<i<4, @(fs,_y,0:) (d is the distance on
5m=1). It is enough to show that the series 3. Af, converges. Let us discuss case (a).
By the upper bound of the sectional curvature anc a comparison theorem in differential
geometry, we have A, < c/rs . Thus we want to show that r,, goes to infinity sufficiently
fast. Since the sectional curvature is nonpositive, Brownian motion wanders to infinity as
least as fast as ordinary Brownian motion in R™. This yields the estimate r; > tY2-e for
arbitrarily fixed small € and all large t. Thus we haver,, > .9,1;/ ¢ for large n. The problem
now teduces to estimating s, =71 +++- +7». Now the lower bound of the Ricei curvature
has exactly the opposite effect of the upper bound, i.e., the Brownian motion will not drift
too fast from where it starts. If the Ricei curvature on a geodesic ball centered at z and

with radius 1 is bounded from below by —L?2, then we can prove the estimate
(41) P, [1'1 <e L™ 1] < el V2emeal,

(e1,¢2,c3 are universal constants). Since at mth step, we have p(z, X;) < n, the above
estimate and our assumption on the lower bound of the Ricci curvature yield

P !:‘Tn < C4n_'a] < csn P/ 2g—cen”

It follows from Borel-Cantelli lemma that 7, > ¢ n™# for large n and hence s, grows at least
as fast as n2™® and A, < cgn=*(1-B)Y2-¢) This prove our assertion.

The existence of the limiting angle enables us to prove there are many bounded noncon-
stant harmonic functions on M. Indeed, let f be any continuous function on ™~ then the
function ug(z) = E; [f(©)] is harmonic. A more refined argument shows uy is not constant
as long as f is not. We refer to Hsu-March[9] for details.

It is not known whether in general the lower bound on Ricci curvature is necessary for
the existence of nonconstant bounded harmonic functions. The lower bound is not needed
ifm =2 orif M is radially symmetric; see Kendall[14] and March([16] for probabilistic proof
of these two facts. We also mention that in the case when sectional curvatures are bounded
from below and from above by constants, Kifer[15] succeeded in giving a probabilistic proof
that the Martin boundary of M can be identified with the sphere at infinity.

A complete Riemannian manifold is said to be stochastically complete if the lifetime (
of Brownian motion on M is infinite a.s. Analytically this means that fp, p(t,z,y )My = 1
forallt > 0 and all z € M. A by-product of the above proof is the result that if the Ricd
curvature of a compact Riemannian manifold has the lower bound Ric(z) > —L2p(z)? for
some L > 0, then M is stochastically complete. Compare with Elworthy|7], §IX. 6.



100 PEI HSU

Let us assume that M is complete with nonnegative Ricci curvature. Let us prove
that such manifold does not have nonconstant bounded harmonic functions. The following
probabilistic proof is due to Debiard-Gaveau-Mazet[6]. If f is a bounded harmonic function
then f(X:) is bounded martingale (note that from the above discussion the lifetime of the
Browian motion is infinite). Since bounded martiangale converges, a little argument shows
that its total quadratic variation of f(X;) must be integrable, i.e.,

(4.2) E, Unm |df [2(X; )dt] < oo
On the other hand, since 7y preserves the metric, we have from (1.3),
dldf|*(X:) = d{rdf (X¢ ), redf (X))
= 2Admdf (X, ), mdf (X)) + %(dﬂdf()ft ) drudf (X))
> d[martingale] + (A7 df (X, ), df (X, ))dt.
Now Weitzenbdck’s formula gives A¥ (df ) = A(df )+ Ric(df ) = Ric(df ) because for harmonic
f we we have A(df) = 0. It follows from the above that

t
df|3(X¢) > |df|*(z) + martingale +f Ric(df, df Ms.
0

Taking expectation and integrating with respect to the time variable, we have

1 1
2 = df|*(z — 8)E; Ric(df, s ds.
e M ] (Xz)dt} —d7e) 1+ [ (¢ o) Ricldf, O

From (4.2) and the assumption of nonnegative Ricci curvature, the above equality can hold
for all t only il df (z) = 0. It follows that f must be a constant.

§5. Asymptotic behavior of heat kernel

For a long time, analytic properties of the heat kernel were used to study diffusion processes.
With the introduction of powerful probabilstic methods (stochastic differential equations, in
particular), diffusion theory becomes a useful tool in studying the heat kernel. Works in this
direction was initiated by Molchanov(17] and Azencott et al[3] contributed much toward the
clarification of the work of Molchanov.

The basic asymptotic relation

. 1 2
Limtlogp(t,z,y) = —5p(2,y)

was proved by Varadhan to hold for any z,y on a manifold. For z,y such that y does not
belong to the cut-locus of #, one can prove, either by analytic method or by probability, the
asymptotic relation

m/2
S ‘.‘3("!"11)’)2/2£
(5.1) st~ (5)  Hlewk

where H (z,y) = detld exp, (¥z,4 (0))]"¥? and Yz,y 15 the unique minimizing geodesic joining
z,y. Let Iy be the space of minimizing geodesics from z toy with uniform speed. Let O be a
neighborhood of the middle cross section of Tz, (1/2) = {z : z = y(1/2) for some y € Ty}
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Since T'zy intersects the cut-locus of neither z nor y, one can choose O close to Ty (1/2)
so that it keeps a positive distance from the cut-locus of 2 and that of y. Now the large
deviation result in §2 implies easily that ast — 0,

g W(1/2) € 0] =;(t—,1mfop (%,z‘, Z> P (%:m’) dz— 1.

t t
p(t,w,y)~/OP(E,E,Z)p(E,z,y) dz.

Since O does not intersect the cut-locus of z and y, we have from (5.1)

It follows that

(52) p(t,m,y) ~ (_1.) 6—9(3,3')2/25/ H(E},Z)H (z,y)e—E(z)/L’tdz,
o

Tt

where
E(z) =2]p(z, 2)* + p(z,¥)*] - p(=,9)%.

Formula (5.2) together with Laplace’s method can be used effectively to compute the asymp-
totic behavior of the heat kernel for distant points.

If M and its metric are analytic, then E(z) is also analytic. In this case, we can show
using (5.2) that for any =,y € M, an asymptotic relation of the form

1\*? )
plt, @, y) ~ const.t™ (log;) e—PEy) /2

holds, where o is a rational number between m/2 and m— 1/2 and 3 is a nonnegative integer.

Let us consider now a smooth strictly convex body D in R™. Let p(t, z,y) be the heat
kernel on the exterior of D with the Neumann boundary condition. Let z,y be two close
points in 8D. The precise asymptotic behavior of p(t, z,y) in this ase was conjectured long
ago in mathematical physics (see Buslaev[5]). This conjecture was proved recently in full
generality in Hsu[10] by probabilistic method. We have

2 /3 rp
(5.3 p(t,z,y)~cH(m,y)iN(O)N(p)]”‘"’r@“”“fﬁ)exp{—%—%‘—f,T / N(s)ﬂ“ds}

where N (s) is the normal curvature of the unique geodesic in 0D joining @,y and ¢,y are
universal constants (p = p(z,y)). The proof is to follow the original idea of Molchanov([17]
for the proof of (5.1) and reduce the problem to the computation of the asymtotics of

E [exp{—/\joll(s)WKs) dsH

where [ is a continuous, positive function and W is the standard Brownian bridge in R!.
It is interesting to see what is the proper form of (5.3) when N(s) vanishes at one to both
endpoints.
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§6. Probabilistic proof of the index theorem

There are several probabilistic proofs of the Atiyah-Singer index theorem (Bismut[4], Azen-
cott[2], Tkeda-Watanabe[13], Hsu[11]). In this section, we briefly describe the main idea of
the proof in Hsu[11]. Since probabilistically there is not much difference between the general
case of Dirac operator acting the bundle of spinors and the simpler case of the Gauss-Bonnet-
Chern formula, we will describe the latter to exemplify the general idea.

Assume M 1s a closed compact manifold and EP is the bundle of p-forms on M and
E = Ep @FP. The Kodaira-De Rham laplacian acts on the sections of E. The Euler
characteristic x(M ) is given via the De Rham theory and the Hodge theory by

x(M) = ié(—l)’J dimKer (A|Hp)

where H? is the space of harmonic p-forms on M. Now let e!4/2(z, y) : E, — E; be the
heat kernel for A on E. The eigenexpansion of the heat kernel gives the formula

x(M) = [ 5 (#4/7(e,2)) da

where p is called supertrace and is defined by

p(S) = (~1F 1t (S|gs)-

p=0

The probability theory comes in at this point to show that the limit
T tA/2
(6.1) e(z) = limp (e (z,m))

exists and identify the limit. Once this is done, we have

x() = | ee)is

which is the Gauss-Bonnet-Chern formula for the Euler characteristic.
From the solution of the heat equation on differential forms (2.4) and the definition of
Brownian bridge, we obtain after proper scaling

(¢, z) = E [M'rl]) pt, z, )

where {7},0 < s < 1} is the stochastic parallel transport along the Brownian bridge X, =
bl ! and

M = %T,S(X, )ro1Mids, Mb=1

(S = A~ AF is determined by Weitzenbock formula). Using the relation plt,z,z) ~
(27rt)7m/2 we obtain

(¥ ~ (o) Bloweir.



BROWNIAN MOTION AND RIEMANNIAN GEOMETRY 103

By iterating the equation for M} and by the exponential expansion of 7! in the Lie group
O(E: ) we observe that M} and 7} have the following expansion

N N
M=) MYE o) =) ot

1=0 i=0

with Mi” — 2778% and T]t" — T; ast — 0. Operator T} can be expressed in terms of a
stochastic integral involving the curvature tensor at z and standard Brownian bridge in R™.
For our purpose, the actual form of T; is not important. We stress at this point the crucial
fact that the expansion of 7{ is in the powers of ¢ rather than 4/ . It follows from a careful
analysis of the equation for stochastic paralle transport on Brownian bridge.

Now it is a purely algebraic fact that

p(MYY=0 i i+2%<m

It now follows easily that the limit in (6.1) exists and is equal to

(o) = (4—1)“"’2;» (ser)

if m is even and is equal to 0 if m is odd. Tt remains to use some differential geometry to
express the last expression in terms of the curvature tensor at z and to identify it with the
Euler characterstic.

It seems interesting to produce a parallel proof when M has a boundary.

References

[1] Azencott, R., Grandes deviation et applications, Lecture Notes in Math., No.744. Spring-
er-Verlag, New York, 1-177.

[2] Azencott, R., Une approache probabiliste du théoréme d’Atiyah-Singer, d’apres J.M.
Bismut, Séminaire Bourbaki(1984-1985). Astérisque, 133-134(1986), 7-18.

[3] Azencott, R. et al., Géodesiques et Diffusions en Temps Petit, Astérisque, No.84-
85(1981). Soc. Math. France.

[4] Bismut, J-M., The Atiyah-Singer Theorems: a Probabilistic Approach, J. Func. Anal,,
I 57(1984), 56-99; II. 57 (1984), 329-348.

[5] Buslaev, V.8., Continuum integrals and the asymptotic behavior of the solutions of
parabolic equations as ¢ — 0, applications to diffraction, in Topics in Math. Physics,
2(1968), ed. by M. Sh. Birman.

[6] Debiard, A., Gaveau, B., and Mazet, E., Théorémes de comparaison en géométrie rie-
mannienne, Publ. RIMS, Kyoto Univ., Vol. 12, 391-425(1976).

[7] Elworthy, K.D., Stochastic Differential Equations on Manifolds, London Math. Soc.
Lect. Notes Series, No.70 (1982), Cambridge Univ. Press.

(8] Hsu, Pei, Brownian bridges on Riemannian manifolds, preprint.

[9] Hsu, Pei, and March, P., Limiting angles of certain Riemannian Brownian motions,

Comm. on Pure and Appl. Math., vol. XXXVIII, 755-786 (1985).
[10] Hsu, Pei, Short-time asymptotics of the heat kernel on concave boundary, to appear.

[11] Hsu, Pei, Brownian motion and the Atiyah-Singer index theorem, to appear.



104
[12]

[13]

[14]

(15]

[16]
[17]

(18]

PEI H5U

lkeda, N. and Watanabe, S., Stochastic Differential Equations and diffusion Processes,
North-Holland, Amsterdam, 1981.

Tkeda, N. and Watanabe, S., Malliavin calculus and its applications, in From Local
Times to Global Geometry, Control and Physics, Pitman Res. Notes in Math. Sdi.
n0.150(1986), ed. by K.D. Elworthy, Longman Sci. and Tech.

Kendall, W.S., Brownian motion on a surface of negative curvature, Lect. Notes in
Math., no.1059(1984), Springer-Verlag, New York.

Kifer, Y., Brownian motion and positive harmonic functions on complete manifolds of
nonpositive curvature, in From Local Times to Global geometry, Conirol and Physics,
Pitman Res. Notes in Math. Sci. No.150(1986). ed. by K.D. Elworthy, Longman Sci.
and Tech.

March, P., Brownian motion on radially symmetric manifold, Ann. of Prob., vol.14,
no.3(1986), 793-801.

Molchanov, 5.A., Diffusion processes and Riemanian geoemtry, Russian Math. Surveys,

30(1075), 1-63.

Varadhan, S.R.S., Stochastic differential equations: Large Deviation, in Critical Phe-
nomenoa, Random Systems, Gauge Theories, Les Houches, Session XLITI(1984), ed. by
Osterwalder and R. Stora.

DEPARTMENT OF MATH. STAT. AND COMP. SCIL
UNIVERSITY OF ILLINOIS AT CHICAGO

BOX 4348

CHICAGO, IL 60680.



