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Abstract

We prove a generalization of the Cameron–Martin theorem for a geometrically and stochastically com-
plete Riemannian manifold; namely, the Wiener measure on the path space over such a manifold is quasi-
invariant under the flow generated by a Cameron–Martin vector field.
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1. Introduction

The Cameron–Martin theorem is a fundamental result in stochastic analysis. Let Po(R) =
Co([0,1];R) be the (pinned) path space over R, i.e., the space of continuous functions
w : [0,1] → R such that w0 = o, the origin. Let μ be the Wiener measure on Po(R). Denote
by w = {ws, 0 � s � 1} the canonical coordinate process on Po(R). Under μ, the process
w is a Brownian motion starting from the origin. Now consider the shifted Brownian motion
wh = w + h, where h ∈ Po(R) is a Cameron–Martin path, i.e., it has a distributional derivative ḣ

such that
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|h|2H =
1∫

0

|ḣs |2 ds < ∞. (1.1)

The Cameron–Martin theorem (Cameron and Martin [1]) asserts that the law μh of wh and
the Wiener measure μ are mutually absolutely continuous. Furthermore, the Radon–Nikodym
derivative is given by

dμh

dμ
= exp

[
〈h,w〉H − 1

2
|h|2H

]
,

where

〈h,w〉H =
1∫

0

ḣs dws

is the Itô stochastic integral of ḣ with respect to the Brownian motion w. It is in this sense we
say that the Wiener measure μ is quasi-invariant under a Cameron–Martin shift.

A more general form of the Cameron–Martin theorem is the Girsanov theorem (Girsanov [4]),
a simple formulation of which is as follows. Suppose that F∗ = {Fs , 0 � s � 1} is a fil-
tration of σ -algebras on a probability space (Ω,F ,P) and W an F∗-Brownian motion. Let
V = {Vs, 0 � s � 1} be an F∗-adapted and progressively measurable process such that

e(s) = exp

[ s∫
0

Vu dWu − 1

2

s∫
0

|Vu|2 du

]
, 0 � s � 1,

is a martingale. Let Q be a new probability measure defined by dQ/dP = e(1). Then the process

Xs = Ws −
s∫

0

Vu du, 0 � s � 1,

is a Brownian motion under Q.
The Cameron–Martin theorem has a generalization to the Wiener measure on the path space

Po(M) = Co([0,1],M) over a compact Riemannian manifold M . Driver [2] found the correct
analogue of the euclidean Cameron–Martin shift wh = w + h under which the Wiener measure
is quasi-invariant. The shift should be embedded in a flow generated by a vector field Dh defined
geometrically on the path space. In the euclidean case Dh is simply the constant vector field
Dh(γ ) = h and the flow is given by ζ tγ = γ + th. For a Riemannian manifold M we define the
vector field Dh as follows. Fix a point o ∈ M and an orthonormal frame uo ∈ O(M) at o. Let
U(γ ) be the horizontal lift from uo along a path γ ∈ Po(M). For each s ∈ [0,1],

U(γ )s : Rn → Tγs M
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is an isometry of the two indicated euclidean spaces. We define the vector field Dh on the path
space Po(M) by Dh(γ ) = U(γ )h. More precisely,

Dh(γ )s = U(γ )shs, 0 � s � 1.

In the above cited paper, Driver showed that when the manifold M is compact and h ∈ C1[0,1]
the vector field Dh indeed generates a flow {ζ t , t ∈ R} in the path space Po(M) and the Wiener
measure on Po(M) (the law of a Riemannian Brownian motion on M starting from o) is quasi-
invariant under the flow. Later in Hsu [5] and Enchev and Stroock [3], the existence of the flow
and the quasi-invariance of the Wiener measure were extended to all Cameron–Martin vector
fields Dh, h ∈ H . If we denote by μt the law of ζ t under the Wiener measure μ, then its
Radon–Nikodym derivative with respect to μ has the form

dμt

dμ
= exp

[ 1∫
0

〈
θ t
s , dws

〉 − 1

2

1∫
0

∣∣θ t
s

∣∣2
ds

]
def= et , (1.2)

where θ t can be expressed more or less explicitly in terms of the flow and the curvature tensor
of M and w ∈ Po(R

n) is the anti-development of γ ∈ Po(M). We have

dθt
s

dt

∣∣∣∣
t=0

= ḣs + 1

2
RicU(γ )s hs, (1.3)

where Ricu : Rn → Rn is the scalarized Ricci curvature tensor at an orthonormal frame
u ∈ O(M). This relation and the flow equation

dζ t

dt
= Dh

(
ζ t

)
, ζ 0(γ ) = γ (1.4)

gives an integration by parts formula for the vector field Dh

∫
Po(M)

F (DhG)dμ =
∫

Po(M)

G
(
D∗

hF
)
dμ (1.5)

on cylinder functions F and G on Po(M). The adjoint operator

D∗
h = −Dh + D∗

h1

of the vector field (first order differential operator) Dh with respect to the Wiener measure μ is
given by

D∗
h1 =

1∫
0

〈
ḣs + 1

2
RicU(γ )s hs, dws

〉
.
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The three objects crucial to our study of the Cameron–Martin theorem are the Radon–
Nikodym derivative, the flow, and the integration by parts (through the divergence D∗

h1). They
all appear in another representation of the Radon–Nikodym derivative

et = exp

[ t∫
0

D∗
h1

(
ζ−s

)
ds

]
. (1.6)

This formula can be verified directly from (1.2) and (1.3).
The question whether there is a complete generalization of the Cameron–Martin theorem

for a general complete but possibly noncompact Riemannian manifold has been open for quite
sometime. For this generalization we need to address two problems: the existence of the flow on
the path space in an appropriate sense and the quasi-invariance of the Wiener measure under this
flow. Since the vector field is Dh(γ ) = U(γ )h, the flow equation (1.4) involves the horizontal
lift {U(ζ t )s, 0 � s � 1} of the process ζ t = {ζ t

s , 0 � s � 1}, thus for each fixed t , the process
ζ t should be a semimartingale. In Hsu [6] the first author showed that if M is geometrically
complete and its Ricci curvature has at most a linear growth

|Ricx | � C
{
1 + r(x)

}
,

where r(x) = d(x, o), the Riemannian distance from o to x, then the flow {ζ t } generated by the
vector field Dh exists and the Wiener measure is quasi-invariant. It was also pointed out there
that the existence of the flow, if properly interpreted, can be proved for any geometrically and
stochastically complete Riemannian manifold. Note that a linear bound on the Ricci curvature
implies stochastic completeness. The question was left open whether the quasi-invariance is true
solely under the condition of geometric and stochastic completeness. These two completeness
conditions are natural for our problem: geometric completeness for the existence of the flow
and stochastic completeness for the Wiener measure to be a probability measure on the path
space Po(M).

The purpose of this paper is to prove this quasi-invariance. The results of this work represent
a complete generalization of the Cameron–Martin theorem to the Wiener measure on the path
space of a Riemannian manifold.

We will prove the existence of the flow in very much the same way as in Hsu [6], but with
more care of the details in view of later applications. The expression for the would-be Radon–
Nikodym derivative (1.2) or (1.6) still makes sense. The density formula (1.2) represents the
terminal value of a local exponential martingale on the time interval [0,1]. The Wiener measure
is quasi-invariant under the flow if we can show that the local exponential martingale is uniformly
integrable, or equivalently,

E exp

[ 1∫
0

〈
θ t
s , dws

〉 − 1

2

1∫
0

∣∣θ t
s

∣∣2
ds

]
= 1.

A sufficient condition for the uniform integrability is the Novikov criterion
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E exp

[
1

2

1∫
0

∣∣θ t
s

∣∣2
ds

]
< ∞.

In Hsu [6], this criterion was shown to hold for sufficiently small |t | under the above mentioned
linear growth restriction on the Ricci curvature. In the current paper, we avoid verifying the
uniform integrability; instead, we take advantage of the fact that by our construction, the flow
{ζ t } is the limit of a sequence of flows for which the Wiener measure is quasi-invariant. For our
argument to work, it is crucial that μ{0 < et < ∞} = 1, which indeed holds under the assumption
of stochastic completeness.

The rest of this paper has two sections. In Section 2 we show by an approximation argument
that the flow equation has a unique solution. In Section 3, we show that the Wiener measure is
quasi-invariant under the flow.

2. Existence of the flow

In this section we show that the Cameron–Martin vector field Dh generates a flow {ζ t } in the
path space Po(M). We assume that M is a geometrically and stochastically complete Riemannian
manifold of dimension n. On a geometrically complete Riemannian manifold every bounded
closed subset of M is compact, which ensures that the flow will be defined for all t ∈ R. When
M is stochastically complete, we have∫

M

pM(s, x, y) dy = 1, (x, s) ∈ M × R+,

where pM(s, x, y) is the (minimal) heat kernel of M (the transition density function of Brownian
motion on M). Under this condition Brownian motion on M does not explode and the Wiener
measure μ is a probability measure. In particular, with probability 1 every Brownian path γ [0,1]
is a compact subset of M .

Remark 2.1. Let B∗ = {Bs , 0 � s � 1} be the standard filtration of σ -fields on the path space
Po(M). Then B1 = B(Po(M)), the Borel σ -field on Po(M) viewed as a metric space in the
usual way. Throughout this paper, we often speak of the composition F ◦ G (or F(G)) of two
measurable maps F,G : Po(M) → Po(M). For this composition to make sense, a measurable
map such as F is always meant to be so in the Borel sense F : (Po(M),B1) → (Po(M),B1),
i.e., F−1B1 ⊂ B1.

Remark 2.2. Throughout this paper, an almost sure statement always refers to the Wiener mea-
sure μ.

Let O(M) be the orthonormal frame bundle of M and π : O(M) → M the canonical projec-
tion. Let Hi , i = 1, . . . , n, be the canonical horizontal vector fields on O(M). Fix an orthonormal
frame uo ∈ Oo(M) at o. Let w be the euclidean Brownian motion given by the coordinate process
on the flat path space (Po(R

n),B∗, ν). Consider the following stochastic differential equation

dUs =
n∑

i=1

Hi(Us) ◦ dwi
s, U0 = uo (2.1)
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of a horizontal process U = U(w) on the orthonormal frame bundle O(M). The projection
γ = πU of its solution is the stochastic development of w. By the pathwise uniqueness of
the above stochastic differential equation, the relation Jw = γ defines the so-called Itô map
J : Po(R

n) → Po(M). The process U is the horizontal lift U(γ ) of γ to O(M) and at the same
time the stochastic development U(w) of w on the orthonormal frame bundle O(M). The result-
ing slight abuse of notation U(γ ) = U(w) should not cause any confusion. Note that U(γ ) is
also the solution of a stochastic differential equation on O(M) driven by the Brownian motion γ

on M . The line integral of the solder form θ on O(M) gives

ws =
s∫

0

θ(◦dUs).

This procedure gives the inverse map J−1 : Po(M) → Po(R
n) (see Hsu [7]).

Throughout the discussion we fix an Rn-valued Cameron–Martin path h. The Cameron–
Martin vector field on Po(M) is defined by Dh(γ ) = U(γ )h (see Driver [2]), where U(γ ) is
the horizontal lift of γ . The equation of the flow generated by Dh is

dζ t

dt
= U

(
ζ t

)
h, ζ 0(γ ) = γ. (2.2)

Here we assume that ζ t = {ζ t
s , 0 � s � 1} is an M-valued semimartingale under the Wiener

measure μ and U(ζ t ) is the horizontal lift of ζ t . Note that the notation ζ t plays the dual role
as a process {ζ t

s , 0 � s � 1} and as a map ζ t : Po(M) → Po(M). In the latter capacity it is a
Po(M)-valued random variable.

To prove the existence of the flow generated by Dh, we first convert the flow equation from
the curved path space Po(M) to the flat path space Po(R

n) by the Itô map J : Po(R
n) → Po(M).

This step has two purposes. First, we will introduce a cut-off function in the flow equation on the
flat path space to deal with possible unboundedness of the curvature tensor and its derivatives.
Doing so directly on the flow equation on the curved path space Po(M) will result in a much
more complicated vector field when the equation with the cut-off function is mapped to the flat
path space by the Itô map. Second, after introducing a cut-off function, we see easily that the
flow equation in the flat path space has globally Lipschitz coefficients so that Picard’s iteration
can be applied.

The formal calculation of the pullback vector field p = J−1∗ Dh is well known (see Driver [2]
and Hsu [5]) and will not be repeated here. The result is

p(w)s = hs −
s∫

0

K(w)τ ◦ dwτ ,

where

K(w)s =
s∫

0

ΩU(Jw)τ (◦dwτ ,hτ ).
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Here Ω is the curvature form, which is by definition a o(n)-valued horizontal 2-form on O(M),
and ◦dw denotes Stratonovich stochastic integration. To alleviate the notation, for a, b ∈ Rn we
have written Ωu(a, b) instead of more precise Ωu(Ha,Hb) with Ha = ∑n

i=1 Hiai . Under the
Wiener measure μ on Po(M), the anti-development w = J−1γ is a euclidean Brownian motion
starting from the origin whose law is the Wiener measure ν on Po(R

n). Conversely, under ν on
Po(R

n), the development γ = Jw is a Brownian motion on M from o whose law is μ. Therefore
studying the flow equation (2.2) under the measure μ is equivalent to that of the flow equation

dξ t

dt
= p

(
ξ t

)
, ξ0(w) = w (2.3)

on Po(R
n) under the measure ν. Once {ξ t } is found, the desired flow on Po(M) is simply ζ t =

J ◦ ξ t ◦ J−1.
In terms of Itô integrals the vector field on Po(R

n) is given by

p(z)s = hs + 1

2

s∫
0

RicU(Jz)τ hτ dτ −
s∫

0

〈
K(z)τ , dzτ

〉
,

K(z)s =
s∫

0

ΩU(Jz)τ (dzτ , hτ ) + 1

2

s∫
0

HiΩU(Jz)τ (ej , hτ ) d
〈
zi, zj

〉
τ
. (2.4)

Here {ei} is the canonical orthonormal basis of Rn.
In order that the switch between the path spaces Po(M) and Po(R

n) work properly it is crucial
that all stochastic processes involved are semimartingales with respect to the Wiener measures ν

or μ. It turns out sufficient to seek solutions in the space of semimartingales of the special form

zs =
s∫

0

Aτ dτ +
s∫

0

Oτ dwτ , 0 � s � 1, (2.5)

where A and O are, respectively, Rn- and O(n)-valued processes, both being adapted to the
canonical Borel filtration B∗ on Po(R

n). Suppose that

ξ t
s =

s∫
0

At
τ dτ +

s∫
0

Ot
τ dwτ . (2.6)

Then the flow equation (2.3) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ot = I −
t∫

0

K
(
ξλ

)
Oλ dλ,

At = Ot

t∫
0

Oλ∗
[
ḣ + 1

2
RicU(Jξλ)h

]
dλ.

(2.7)
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In order to solve these equations by Picard’s iteration we need to introduce an appropriate norm
on a semimartingale of the form (2.5) (see Hsu [5]):

‖z‖2 = E

1∫
0

|As |2 ds + E sup
0�s�1

|Os |2. (2.8)

If the manifold M is compact, the components of the curvature tensor Ω and their derivatives
are uniformly bounded, hence the coefficients of (2.7) are globally Lipschitz with respect to the
above norm. In this case one can directly apply Picard’s iteration.

For a geometrically and stochastically complete Riemannian manifold M , we will use a cut-
off function defined on M to truncate the curvature tensor. Let φ : M → R be a smooth function
with compact support. We define a new vector field on Po(R

n):

pφ(z)s = hs + 1

2

s∫
0

φ
(
(J z)τ

)
RicU(Jz)τ hτ dτ −

s∫
0

〈
Kφ(z)τ , dzτ

〉
,

Kφ(z)s =
s∫

0

φ
(
(J z)τ

)
ΩU(Jz)τ (dzτ , hτ ) + 1

2

s∫
0

φ
(
(J z)τ

)
HiΩU(Jz)τ (ej , hτ ) d

〈
zi, zj

〉
τ
.

This definition should be compared with (2.4). The new vector field uses only the values of the
curvature tensor components and their derivatives on a fixed compact region, namely, on the
support of the cut-off function φ. We also note that K

φ,t
s ∈ o(n). Consider the flow equation

dξφ,t

dt
= pφ

(
ξφ,t

)
, ξφ,0(w) = w,

or equivalently, consider the integral equation

ξφ,t = w +
t∫

0

pφ
(
ξφ,λ

)
dλ. (2.9)

We write as before

ξφ,t
s =

s∫
0

Aφ,t
u du +

s∫
0

Oφ,t
u dwu. (2.10)

In terms of the pair {Aφ,t ,Oφ,t } the flow equation becomes
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Oφ,t = I −
t∫

0

Kφ
(
ξφ,λ

)
Oφ,λ dλ,

Aφ,t = Oφ,t

t∫
0

Oφ,λ∗
[
ḣ + 1

2
φ
(
Jξφ,λ

)
RicU(Jξφ,λ)h

]
dλ.

(2.11)

These equations can be solved by Picard’s iteration as if the manifold is compact. The crucial step
is to show that in the norm ‖z‖ defined in (2.8) the vector field is globally Lipschitz continuous.

Proposition 2.3. There is a constant C such that for any semimartingales zi of the form (2.5)
with the norm defined in (2.8), we have

∥∥pφ(z1) − pφ(z2)
∥∥ � C‖z1 − z2‖.

Let ξ t
i and ηt

i be semimartingales of the form (2.5) such that

ξ t
i = ξ0

i +
t∫

0

pφ
(
ηλ

i

)
dλ.

Then

∥∥ξ t
1 − ξ t

2

∥∥ �
∥∥ξ0

1 − ξ0
2

∥∥ + C

t∫
0

∥∥ηλ
1 − ηλ

2

∥∥dλ.

Proof. Since the vector field pφ only uses the components of the curvature tensor and their
derivatives on a compact subset of the manifold, the Lipschitz continuity of pφ can be proved in
exactly the same way as in the case of a compact manifold, which involves nothing more than
routine bounds of stochastic integrals with respect to dwτ by Doob’s inequality and those with
respect to dτ by taking absolute value under the integrals. The details can be found in Hsu [5]
and will not be repeated here, but we point out an important fact, namely, even after introducing
the cut-off function, the new Kφ still takes values in the space o(n) of anti-symmetric matrices
and the corresponding Oφ,t takes values in the space O(n) of orthogonal matrices O(n) (see the
first equation in (2.11)). As a consequence, Oφ,t is always uniformly bounded. �
Proposition 2.4. There exists a unique family of semimartingales {ξφ,t , t ∈ R} of the form (2.5)
such that with probability 1:

(a) ξφ,0(w) = w;
(b) pφ(ξφ,t )s is jointly continuous in (t, s) ∈ R × [0,1];
(c) ξ

φ,t
s is jointly C1 in t ∈ R and continuous in s ∈ [0,1];

(d) (d/dt)ξ
φ,t
s = pφ(ξφ,t )s .
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Proof. We only outline the proof here, the technical details being mostly contained in Hsu [5].
The cut-off function φ is fixed in the course of this proof. For simplicity, we drop the superscript
φ wherever no confusion is likely to occur.

Let ξ t,0(w) = w and

ξ t,n = ξ t,0 +
t∫

0

p
(
ξλ,n−1)dλ.

From Proposition 2.3 we have

∥∥ξ t,n − ξ t,n−1
∥∥ � C

t∫
0

∥∥ξλ,n−1 − ξλ,n−2
∥∥dλ.

This inequality implies that the limit ξ t = limn→∞ ξ t,n exists and is the solution to (2.11). The
uniqueness is clear because we are dealing with a Volterra type integral equation. This shows the
existence and uniqueness of the solution of the flow equation (2.9) in the class of semimartingales
of the form (2.5).

From (2.9) we have (a) immediately. The joint continuity claimed in (b) follows from Kol-
mogorov’s sample path continuity criterion (for processes with two time parameters). Using this
we see that (c) and (d) follow again from (2.9). �
Proposition 2.5. Let {ξφ,t } be the flow in Proposition 2.4.

(a) For each fixed t the law νφ,t of ξφ,t and the Wiener measure ν on Po(R
n) are mutually

absolutely continuous. The Radon–Nikodym derivative is given by

dνφ,t

dν
= exp

[ 1∫
0

Oφ,t∗
s Aφ,t

s dws − 1

2

1∫
0

∣∣Aφ,t
s

∣∣2
ds

]
. (2.12)

We have

dνφ,t

dν
= exp

t∫
0

l
φ
h

(
ξφ,−λ

)
dλ,

where

l
φ
h (w) =

1∫
0

〈
ḣs + 1

2
φ
(
(Jw)s

)
RicU(Jw)s hs, dws

〉
.

(b) For all (t1, t2) ∈ R × R we have almost surely,

ξφ,t1 ◦ ξφ,t2 = ξφ,t1+t2 . (2.13)
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Proof. From (2.6) and the fact that O
φ,t
s ∈ O(n) the assertion in (a) and (2.12) immediately from

Girsanov’s theorem. The second formula for the Radon–Nikodym derivative can be obtained
from differentiating (2.9) with respect to t and use the flow equation (2.11). For (b), both sides
of (2.13) (with t1 as time variable) are the solution of the flow equation with initial value ξφ,t2

at t1 = 0, hence the equality holds by the uniqueness of solutions of the flow equation (see
Proposition 2.3). �

For each fixed t we define the semimartingale ζφ,t on the probability space (Po(M),B∗,μ)

by

ζφ,t = J ◦ ξφ,t ◦ J−1. (2.14)

The maps J and J−1 send semimartingales to semimartingales, therefore ζφ,t = {ζφ,t
s ,0 � s � 1}

is an M-valued semimartingale for each fixed t .

Proposition 2.6. Let ζφ,t = J ◦ ξφ,t ◦ J−1. The following assertions hold.

(a) For each fixed t the law μφ,t of ζφ,t and the Wiener measure μ are mutually absolutely
continuous and the Radon–Nikodym derivative is give by

dμφ,t

dμ
= dνφ,t

dν
◦ J−1.

(b) For all fixed (t1, t2) ∈ R × R we have almost surely,

ζφ,t1 ◦ ζφ,t2 = ζφ,t1+t2 . (2.15)

Proof. These properties are inherited from the corresponding properties of ξφ,t proved in Propo-
sition 2.5. �

Now we come to the main result of this section. Since the manifold is assumed to be geomet-
rically complete, we can gradually remove the effect of the cut-off function and construct a flow
for the Cameron–Martin vector field Dh.

Theorem 2.7. Let M be a geometrically and stochastically complete Riemannian manifold. There
exists a family of semimartingales {ζ t , t ∈ R} such that with probability 1:

(a) ζ 0(γ ) = γ ;
(b) U(ζ t )s is jointly continuous in (t, s) ∈ R × [0,1];
(c) ζ t

s is jointly C1 in t ∈ R and continuous in s ∈ [0,1];
(d) dζ t

s /dt = U(ζ t )shs ;
(e) For all fixed (t1, t2) ∈ R × R, we have almost surely

ζ t1 ◦ ζ t2 = ζ t1+t2 .

Proof. Without loss of generality we assume that ‖h‖∞ � 1. We choose a sequence of cut-off
functions {φN } as follows. Denote by BR the geodesic ball of radius R centered at o. For a
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positive integer N , we let φN be a bounded (uniformly in N ) smooth function on M such that
φN(x) = 1 for x ∈ B2N and φN(x) = 0 for x /∈ B3N (see Remark 2.8 below). Consider the flow
ζN,t = ζφN ,t in Proposition 2.6. These flows will not feel the presence of the cut-off function as
long as they stay within the geodesic ball B2N . More precisely, define an increasing sequence of
stopping times

σN = inf
{
s � 1: r(γs) = N

}
(with the convention that inf∅ = 1) and let CN = {σN = 1}. Then

CN = {
γ ∈ Po(M): γs ∈ BN for all s ∈ [0,1]}.

If s � σN , then the initial path ζN,0 = {γs, 0 � s � 1} of the flow {ζN,t } lies within the geodesic
ball BN . Since φN = 1 on B2N , from (2.2) and

∣∣U(
ζ λ

)
s
hs

∣∣ � |hs | � 1

we have d(ζ
N,t
s , γs) � |t | for small time t and

r
(
ζN,t
s

)
� d

(
ζN,t
s , γs

) + r(γs) � |t | + N.

By a routine open-closed argument with the above inequality we see that the above inequalities
will hold for all s � σN and |t | � N . As a consequence, for M � N , the flows ζ

M,t
s and ζ

N,t
s

satisfy the same equation for all |t | � N and s � σN . By uniqueness we must have the consistency

ζM,t (γ )s = ζN,t (γ )s, M � N, s � σN, |t | � N.

Note that since CN = {σN = 1}, the above equality also holds for 0 � s � 1 if γ ∈ CN . We can
now define

ζ t (γ )s = ζN,t (γ )s, 0 � s � σN, |t | � N. (2.16)

This defines ζ t = {ζ t
s , 0 � s � 1} for all γ ∈ CN . By stochastic completeness Brownian motion

on M does not explode. With probability one the path γ [0,1] is a compact subset of M , hence
μ{CN } ↑ 1. This shows that (2.16) defines a family {ζ t } of semimartingales such that

ζ t (γ ) = ζN,t (γ ), γ ∈ CN, |t | � N.

We now prove the properties of the flow {ζ t } listed in the statement of the theorem. To start
with, (a) follows from the fact that ζN,0(γ ) = γ . The joint continuity of U(ζN,t )s can be proved
again by Kolmogorov’s sample path continuity criterion for processes with two time parameters.
The assumption of geometric completeness is needed for this step of the proof; see Remark 2.8
below. From ζ t

s = J (ξ t )s and the definition of the Itô map J (see (2.1)) we have (d) as the
equality of two semimartingales for each fixed t . This together with (b) implies (c) and also (d)
for all s and t .



Author's personal copy

E.P. Hsu, C. Ouyang / Journal of Functional Analysis 257 (2009) 1379–1395 1391

For the composition property (e), by (2.15) we have first

ζ 2N,t1
(
ζ 2N,t2γ

) = ζ 2N,t1+t2γ.

If |t1| + |t2| � N , then

ζ 2N,t2γ = ζ t2γ and ζ 2N,t1+t2γ = ζ t1+t2γ

for all γ ∈ CN . But it is clear that ζ t2γ ∈ C2N , hence

ζ 2N,t1
(
ζ 2N,t2γ

) = ζ t1
(
ζ t2γ

)
.

It follows that ζ t1(ζ t2γ ) = ζ t1+t2γ for all γ ∈ CN , hence for almost all γ ∈ Po(M) because
μ{CN } ↑ 1. �
Remark 2.8. The cut-off functions used in the proof of Theorem 2.7 exist by the assumption that
M is geometrically complete. However, even without the geometric completeness (but retaining
the stochastic completeness), we can construct a sequence of cut-off functions {φN } such that the
curvature tensor and its derivatives are uniformly bounded on {φN > 0} for each fixed N and that
the sequence of increasing interiors {φN = 1}◦ exhausts M . Using such a sequence of the cut-off
functions, we can show by properly modifying the proof given above that a jointly continuous
flow {ζ t

s (γ ), e−(γ, s) < t < e+(γ, s)} can be constructed up to its natural lifetime in t . This
means that limt→e±(γ,s) ζ

t (γ, s) = ∂M in the one-point compactification M∂ = M ∪ {∂M }. There
are also manifolds not geometrically complete which nevertheless has a sequence of cut-off func-
tions having all the properties used in the proof of Theorem 2.7. In this case we can construct a
global measurable flow {ζ t , t ∈ R} as the solution of the corresponding integral equation in the
space of Po(M)-valued random variables. However, this flow may not have a version jointly con-
tinuous in the two parameters t and s, for Kolmogorov’s sample path continuity theorem requires
that the state space M be a complete metric space (see, e.g., Kallenberg [8, p. 313]). A case in
point is M = R2 with a single point removed and hs = (0, s). While the removed point is not
needed for the existence of the measurable flow ζ t (γ ) = γs + ts (for each fixed t), it is needed if
we want to have a version of the flow that is jointly continuous in t and s.

Finally we show that the flow {ζ t } is infinitely differentiable in the t-direction.

Proposition 2.9. There is a version of the flow {ζ t , t ∈ R} such that with probability one the path
t �→ ζ t

s (γ ) is smooth for every s ∈ [0,1]. More precisely,

P
{
γ ∈ Po(M): ζ(γ ) ∈ C∞,0(R × [0,1];M)} = 1.

Proof. The proof involves repeatedly use of Kolmogorov’s sample path continuity criterion. To
start with, we have shown in Theorem 2.7 that U(ζ t )s has a version jointly continuous in t and s,
the flow ζ t

s has a version jointly C1 in t and continuous in s, and the identity dζ t
s /dt = U(ζ t )shs

holds. Once we know that ζ t is C1 in t , we can differentiate the stochastic differential equation
(in the s-direction) satisfied by U(ζ t )shs with respect to t and use Kolmogorov’s criterion to
conclude that U(ζ t )shs has a version jointly C1 in t and continuous in s. The identity dζ t

s /dt =
U(ζ t )shs then shows that ζ t

s has a version jointly C2 in t and continuous in s. This argument
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can be repeated indefinitely and shows that ζ t
s has a version jointly Cm in t and continuous in s

for any positive integer m. For each m, there is an exceptional set Ωm of probability zero of the
path space Po(M) on which the assertion does not hold. By excluding from the path space the
union

⋃∞
m=1 Ωm, which still has probability zero, we see that there is version of the flow jointly

continuous in s and infinitely differentiable in t . �
3. Quasi-invariance of the Wiener measure

Let M be a geometrically and stochastic complete Riemannian manifold and {ζ t } the flow
of the Cameron–Martin vector field Dh on the path space Po(M) constructed in the preceding
section. In this section we show that for each t ∈ R, the law μt of the semimartingale ζ t is
mutually absolutely continuous with respect to the Wiener measure μ.

We have shown in Proposition 2.6 that the law μN,t of ζN,t and μ are mutually absolutely
continuous and the density function is

eN
t = exp

t∫
0

lNh
(
ζN,−λ

)
dλ,

where

lNh (γ ) =
1∫

0

〈
ḣs + 1

2
φN(γs)RicU(γ )s hs, dws

〉
.

Here w is the stochastic anti-development of γ . Recall that

CN =
{
γ ∈ Po(M): max

0�s�1
r(γs) � N

}
.

For γ ∈ CN and |λ| � N we have

lNh (γ ) =
1∫

0

〈
ḣs + 1

2
RicU(γ )s hs, dw

〉
def= lh

and ζN,−λ = ζ−λ, hence for |t | � N

eN
t = exp

t∫
0

lh
(
ζ−λ

)
dλ

def= et on CN. (3.1)

Since M is geometrically and stochastically complete, the flow does not explode and

μ{0 < et < ∞} = 1.

Now we prove the main result of this section.
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Theorem 3.1. The laws μt of ζ t and the Wiener measure μ are mutually absolutely continuous
and the Radon–Nikodym derivative is given by

dμt

dμ
= exp

t∫
0

lh
(
ζ−λ

)
dλ.

Proof. Write X = Po(M) for simplicity. Fix N � |t |. Then ζ t (γ ) = ζN,t (γ ) and et (γ ) = eN
t (γ )

for γ ∈ CN . For a nonnegative bounded measurable function F on Po(M) we have

∫
X

F
(
ζ t

)
dμ �

∫
CN

F
(
ζN,t

)
dμ

�
∫
X

F
(
ζN,t

)
dμ − ‖F‖∞ μ(X\CN)

=
∫
X

FeN
t dμ − ‖F‖∞μ(X\CN)

�
∫

CN

Fet dμ − ‖F‖∞μ(X\CN)

→
∫
X

Fet dμ.

Therefore we have

∫
X

Fet dμ �
∫
X

F
(
ζ t

)
dμ. (3.2)

By the monotone convergence theorem, the above inequality holds for all nonnegative measur-
able F . From Theorem 2.6 we have ζN,t (ζN,−t γ ) = γ . Let G = F(ζN,t )et (ζ

N,t ). Then

∫
X

Fet dμ =
∫
X

G
(
ζN,−t

)
dμ

=
∫
X

GeN−t dμ

�
∫

CN

F
(
ζ t

)
et

(
ζ t

)
e−t dμ

→
∫
X

F
(
ζ t

)
et

(
ζ t

)
e−t dμ.
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Therefore ∫
X

Fet dμ �
∫
X

F
(
ζ t

)
et

(
ζ t

)
e−t dμ. (3.3)

On the other hand, from the definition (3.1) of et and the identity ζ−λ ◦ ζ t = ζ t−λ it is easy to
verify that

et

(
ζ t

)
e−t = 1.

This identity together with (3.2) and (3.3) implies

∫
X

Fet dμ =
∫
X

F
(
ζ t

)
dμ =

∫
X

F dμt .

In view of μ{0 < et < ∞} = 1 this shows that μ and μt are mutually absolutely continuous and
dμt/dμ = et . �
Remark 3.2. We have restricted our discussion in this work to the Wiener measure on the path
space over a geometrically and stochastically complete Riemannian manifold equipped with the
Levi-Civita connection. Our methods and the results remain valid for a general non-degenerate
diffusion measure on a differentiable manifold provided that (1) the diffusion process is stochas-
tically complete (i.e., with probability 1 it has infinite lifetime); (2) the manifold is geometrically
complete under the Riemannian metric defined by the diffusion measure; (3) the connection
(needed for defining the Cameron–Martin vector fields) is compatible with the Riemannian
metric and has an anti-symmetric torsion. In particular, our results remain valid for canonical
Brownian motions on Lie groups equipped with the Cartan connections.
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