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ABSTRACT. We prove that the mirror coupling is the unique maximal
Markovian coupling of two Euclidean Brownian motions starting from
single points and discuss the connection between the uniqueness prob-
lems of Brownian coupling and mass transportation.

1. INTRODUCTION

Let (E1, B1, µ1) and (E2, B2, µ2) be two probability spaces. A coupling of
the probability measures µ1 and µ2 is a probability measure µ on the prod-
uct measurable space (E1 × E2, B1 ×B1) whose marginal probabilities are
µ1 and µ2, respectively. We denote the set of coupling of µ1 and µ2 by
C (µ1, µ2). Thus, loosely speaking, a coupling of two Euclidean Brownian
motions on Rn starting from x1 and x2, respectively, is a C(R+, Rn ×Rn)-
valued random variable (X1, X2) on a probability space (Ω, F , P) such that
the components X1 and X2 have the law of Brownian motion starting from
x1 and x2, respectively. In this case, we say simply that (X1, X2) is a cou-
pling of Brownian motions from (x1, x2).

In the present work we discuss the uniqueness problem of maximal cou-
plings of Euclidean Brownian motion. As usual, the maximality of a cou-
pling is defined as a coupling for which the coupling inequality becomes
an equality. It is well known the mirror coupling is a maximal coupling. We
show by an example that in general a maximal coupling is not unique. To
prove a uniqueness result, we consider a more restricted class of couplings,
that of Markovian couplings. In this class we show that the mirror cou-
pling is the unique maximal coupling. This will be done by two methods.
The first method is a martingale argument, which depends on the linear
structure of the Euclidean state space. In the second method, we use the
Markovian hypothesis to reduce the problem to a mass transport problem
on the state space, whose solution is well known. This method is more
interesting because it has the potential of generalization to more general
settings (e.g., Brownian motion on a Riemannian manifold).
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2. MAXIMAL COUPLING

Let

p (t, x, y) =
(

1
2πt

)n/2

e−|x−y|2/2t

be the Gaussian heat kernel on Rn. Here |x| is the euclidean length of a
vector x ∈ Rn. Define the function

φt(r) =
2√
2πt

∫ r/2

0
e−ρ2/2t dρ.

When t = 0, we make the convention

φ0(r) =

{
0, r = 0,
1, r > 0.

For t > 0, this function is strictly concave. The probabilistic significance of
this function is that it is the tail distribution of the first passage time of a
one dimensional Brownian motion from 0 to r/2:

P {τr/2 ≥ t} = φt(r).

It is also easy to verify that

(2.1) φt(|x1 − x2|) =
1
2

∫
Rn
|p (t, x1, y)− p (t, x2, y)| dy.

Fix two distinct points x1 and x2 in Rn. Let X = (X1, X2) be a coupling
of Euclidean Brownian motions from (x1, x2). This simply means that the
laws of X1 = {X1(t)} and X2 = {X2(t)} are Brownian motions starting
from x1 and x2, respectively. The coupling time T(X1, X2) is the earliest
time at which the two Brownian motions coincide afterwards:

T(X1, X2) = inf {t > 0 : X1(s) = X2(s) for all s ≥ t} .

Note that T(X1, X2) in general is not the first time the two processes meet
and therefore is not a stopping time. The following well known coupling
inequality gives a lower bound for the tail probability of the coupling time.
Similar inequalities hold under more general settings (see Lindvall [5]).

Proposition 2.1. Let (X1, X2) be a coupling of Brownian motions from (x1, x2).
Then

P {T(X1, X2) ≥ t} ≥ φt(|x1 − x2|).
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Proof. For any A ∈ B(Rn), we have

P {T(X1, X2) > t} ≥ P {X1(t) 6= X2(t)}
≥ P {X1(t) ∈ A, X2(t) 6∈ A}
≥ P {X1(t) ∈ A} −P {X2(t) ∈ A} .

Hence,

P {T(X1, X2) > t} ≥ sup
A∈B(Rn)

∫
A
{p (t, x1, y)− p (t, x2, y} dy

=
1
2

∫
Rn
|p (t, x1, y)− p (t, x2, y)| dy

= φt(|x1 − x2|).

In the last step we have used (2.1) �

In view of the coupling inequality, the following definition is natural. A
coupling (X1, X2) of Brownian motions from (x1, x2) is called maximal the
coupling inequality is an equality for all t > 0, i.e.,

P {T(X1, X2) ≥ t} = φt(|x1 − x2|).

It is a well known fact that the mirror coupling, which we will define
shortly, is a maximal coupling.

Let H be the hyperplane bisecting the segment [x1, x2]:

H = {x ∈ Rn : 〈x− x0, n〉 = 0} ,

where x0 = (x1 + x2)/2 is the middle point and n = (x1− x2)/|x1− x2| the
unit vector in the direction of the segment. Let R : Rn → Rn be the mirror
reflection with respect to the hyperplane H:

Rx = x− 2〈x− x0, n〉n.

We now describe the mirror coupling. Let

τ = inf {t ≥ 0 : X1(t) ∈ H}
be the first hitting time of H by X1. We know that

(2.2) P {τ ≥ t} = φt(|x1 − x2).

A coupling (X1, X2) of Brownian motions from (x1, x2) is a mirror coupling
(or X2 is the mirror coupling of X1) if X2 is the mirror reflection of X1 with
respect to H before time τ and coincides with X1 afterwards; namely,

X2(t) =

{
RX1(t), t ∈ [0, τ];
X1(t), t ∈ [τ, ∞).

In this case the coupling time T(X1, X2) = τ. From (2.2) the mirror cou-
pling is a maximal coupling by definition, a well known fact (see, e.g.,
Lindvall [5]).

It was believed that the mirror coupling is the unique maximal coupling
of euclidean Brownian motion. This, however, is not the case, as has been
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recently discovered by the authors and others (including Pat Fitzsimmons
and Wilfrid Kendall). We describe Fitzsimmons’ counterexample in dimen-
sion one1. Let

l = sup {t ≤ τ : X1(t) = x1}
be the last time the Brownian motion X1 is at x1 before it hits the middle
plane H (i.e., before time τ). We let X2 to be the time reversal of X1 before
time l, the mirror reflection of X1 between l and τ and X1 after τ; namely,

X2(t) =


x2 − x1 + X1(l − t), t ∈ [0, l];
x1 + x2 − X1(t), t ∈ [l, τ];
X1(t), t ∈ [τ, ∞).

Of course X2 is not the mirror coupling of X1. On the other hand, by
Williams’ decomposition of Brownian path {X1(t), 0 ≤ t ≤ τ} (see Revuz
and Yor[6], 244–245 and 304–305), X2 is a Brownian motion starting from
x2. The coupling time for (X1, X2) is again τ, which shows that the coupling
is indeed maximal.

In order to recover the uniqueness, we need to consider a smaller class
of couplings.

Definition 2.2. Let X = (X1, X2) be a coupling of Brownian motions. Let
F X
∗ =

{
F X

t
}

be the filtration of σ-algebras generated by X. We say that X is
a Markovian coupling if for each s ≥ 0, conditioned on the σ-algebra F X

s , the
shifted process

{(X1(t + s), X2(t + s)), t ≥ 0}
is still a coupling of Brownian motions (now from (X1(s), X2(s))).

A few comments about this definition is in order. The condition that
X = (X1, X2) is a Markovian coupling only requires that, conditioned on
F X

s , the law of each time-shifted component is that of a Brownian motion.
In particular, (X1, X2) is a Markovian coupling as soon as each component
is separately a Brownian motion with respect to a common filtration. This
is the case if for instance F X2∗ = F X1∗ , i.e., the second Brownian motion
is defined progressively (without looking forward) by the first Brownian
motion. It should be pointed out that the definition does not imply that
(X1, X2) is a Markov process. For the sake of comparison, we mention the
definition of efficient couplings in Burdzy and Kendall [1] and that of ρ-
optimal couplings in Chen [2].

The main result of this paper is the following.

Theorem 2.3. Let x1, x2 ∈ Rn. The mirror coupling is the only maximal Mar-
kovian coupling of n-dimensional Brownian motions starting from (x1, x2).

We will give two proofs of this theorem. The first one is based on the
fact that the Markovian condition implies that the joint process is a martin-
gale. The second method is to use the Markovian condition to reduce the
uniqueness problem of coupling of two process to the uniqueness of a mass
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transportation problem, whose solution is well known. This proof is more
interesting from an analytic point of view. From the second proof it will be
clear that that a stronger result holds, namely if a Markovian coupling is
maximal at one fixed time t then it must be the mirror coupling up to time
t.

3. PROOF OF THE UNIQUENESS USING MARTINGALES

Without loss of generality we assume that the space dimension is one.
Let F∗ = F X

∗ be the filtration generated by the joint process X = (X1, X2).
The maximality hypothesis implies that each component is a Brownian mo-
tion with respect to F∗. Therefore X is a continuous F∗-martingale and so
is the X1 − X2. Let

σt =
1
4
〈X1 − X2〉(t).

By Lévy’s criterion there is a Brownian motion W such that

X1(t)− X2(t) = 2W(σt).

Since both X1 and X2 are Brownian motion, by the Kunita-Watanabe in-
equality,

(3.1) |〈X1, X2〉t| ≤
∫ t

0

√
d〈X1〉sd〈X2〉s = t.

Hence,

σt =
〈X1〉t + 〈X2〉t − 2〈X1, X2〉t

4
≤ t.

Now let

τ1 = inf {t ≥ 0 : X1(t) = X2(t)} and τ2 = inf {t ≥ 0 : W(t) = 0} .

It is clear that T(X1, X2) ≥ τ1 and τ2 is the first passage time of Brownian
motion W from |x1 − x2|/2 to 0. The maximality of the coupling (X1, X2)
means that T(X1, X2) and τ2 have the same distribution. On the other hand,
by definition στ1 = τ2, hence

T(X1, X2) ≥ τ1 ≥ στ1 = τ2.

Since T(X1, X2) and τ2 have the same distribution, we must have

T(X1, X2) = τ2 = στ1 = τ1.

Therefore the coupling time coincides with the first meeting time of X1 and
X2, and before they meet the equality must hold in the Kunita-Watanabe
inequality (3.1), i.e., 〈X1, X2〉t = t. It follows that for 0 ≤ t ≤ τ1,

X2(t) = X2(0) + X1(0)− X1(t) = 2x0 − X1(t),

which simply means that X2 is the mirror coupling of X1.



6 ELTON P. HSU AND KARL-THEODOR STURM

4. OPTIMAL COUPLING OF GAUSSIAN DISTRIBUTIONS

The second proof we give in the next section, although a bit longer than
the first one, has potentially wider applications to a general state space
without a liner structure (a Riemannian manifold, for example). The basic
idea is to use the maximal and the Markovian hypothesis to reduce the
problem to the uniqueness of a very special mass transportation problem
on the state space with a cost function determined by the transition density
function. In this section we discuss this mass transportation problem. For
general theory, see , THEOREM 1.4 in Gangbo and McCann [3] and SECTION
4.3, THEOREM 3 in Villani [8].

Given t ≥ 0 and x ∈ R we use N(x, t) to denote the Gaussian distribu-
tion of mean x and variance t. The density function is p (t, x, z). A proba-
bility measure µ on R2 is called a coupling of N(x1, t) and N(x2, t) if they
are the marginal distributions of µ. We use C (x,x2; t) to denote the set of
such couplings. The mirror coupling m(x1, x2; t), which we define shortly,
is a distinguished member of C (x1, x2; t).

We may regard a coupling µ ∈ C (x1, x2; t) as the joint distribution of a
R2-valued random variable Z = (Z1, Z2). Intuitively, in the mirror cou-
pling Z2 coincides with Z1 as much as possible, and if this cannot be done
then Z2 = RZ1, the mirror image of Z1. Thus the mirror coupling m(x1, x2; t)
can be described as follows:

P {Z2 = Z1||Z1 = z1} =
p (t, x1, z1) ∧ p (t, x2, z)

p (t, x1, z1)
,

P {Z2 = x1 + x2 − Z1|Z1 = z1} = 1− p (t, x1, z1) ∧ p (t, x2, z)
p (t, x1, z1)

.

Equivalently we can also write

m(x1, x2, t)(dy1, dy2) = δy1(dy2)h0(y1)dy1 + δRy1(dy2)h1(y1)dy1

where
h0(z) = p (t, x1, z) ∧ p (t, x2, z),

and
h1(z) = p (t, x1, z)− h0(z).

It is clear that m(x1, x2; t) is concentrated on the union of the two sets

D = {(z, z) : z ∈ R} , L = {(z, Rz) : z ∈ R} ,

on which it has the one dimensional densities h0(z) and h1(z), respectively.
Let φ be a nonnegative function on [0, ∞) such that φ(0) = 0. The trans-

portation cost of a coupling µ ∈ C (x1, x2; t) with the cost function φ is
defined by

Cφ(µ) =
∫

R2
φ(|x− y|)µ(dy1dy2).

The results we will need for studying couplings of euclidean Brownian mo-
tion are contained in the following two theorems.
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Theorem 4.1. Let φ be a strictly increasing strictly concave cost function. Let
m = m(x1, x2; t) be the mirror coupling. Then Cφ(µ) ≥ Cφ(m) for all µ ∈
C (x1, x2; t) and the equality holds if and only if µ = m.

Proof. Let
µ1 = p (t, x1, z) dz, µ2 = p (t, x2, z) dz

be the probability measures for Z1 and Z2. Suppose that µ is a probability
measure on R2 at which the minimum is attained. Let

D = {(x, x) : x ∈ R}
be the diagonal in R×R. We first show that the restriction of µ to D is

(4.1) µ
∣∣

D(dz) = ν0(dz) := h0(z)dz,

where h0(z) := p (t, x1, z) ∧ p (t, x2, z) as before. First of all, since the mar-
ginal distributions of µ are p (t, x1, z)dz and p (t, x2, z)dz, we must have
µ|D ≤ ν0. We need to show that equality holds.

We first explain the argument intuitively. We regard µ as a transport
from the mass µ1 to the mass µ2. Suppose that the strict inequality holds
at a point (y0, y0). From the fact that the first marginal distribution of µ is
p (t, x1, z)dz > h0(z) we see that there must be a point y2 6= y0 such that
(y0, y2) is in the support of µ. Similarly there must be a point y1 6= y0 such
that (y1, y0) is in the support of µ. This means that a positive mass is moved
from y1 to y0 and then from y0 to y2. But then µ cannot be optimal because
from the inequality

φ(|y1 − y0|) + φ(|y0 − y2|) > φ(|y1 − y2|)
it is more efficient to transport the mass directly from y1 to y2.

To proceed rigorously, we write µ in the following forms:

(4.2) µ(dy1dy2) = k1(y1, dy2)µ1(dy1) = k2(y2, dy1)µ2(dy2)

where k1 and k2 are appropriate Markov kernels on R. Let

ν1 = µ1 − ν0, ν2 = µ2 − ν0

and

ν(dy1dy2) =
1
2

δy1(dy2)ν0(dy1) +
1
2

∫
R

k2(y0, dy1) k1(y0, dy2) ν0(dy0)

+
1
2

k1(y1, dy2) ν1(dy1) +
1
2

k2(y2, dy1) ν2(dy2).

Then a straightforward calculation shows that ν is a coupling of a coupling
of µ1 and µ2 and the following equality holds:∫

R×R
φ(|y1 − y2|)ν(dy1dy2)−

∫
R×R

φ(|y1 − y2|)µ(dy1dy2)

=
1
2

∫
R

∫
R

∫
R
{φ(|y1 − y2|)− φ(|y1 − y0|)− φ(|y2 − y0|)} ×

k2(y0, dy2) k1(y0, dy1) ν0(dy0).
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Since φ is strictly concave and strictly increasing, the right side is always
nonpositive and is equal to zero only if y0 is equal to either y1 or y2 almost
surely with respect to the measure in the last line of the above display. Thus
with respect to the measure ν0, either k1(y, cot) is concentrated on {y} or
k2(y, ·) is concentrated on {y}. Let A be the subset of R on which the former
holds. Then we have from (4.2) that

µ|D∩A ≥ µ1 ≥ ν0 and µ|D∩Ac ≥ µ2 ≥ ν0.

It follows that µ|D ≥ ν0 and therefore µ|D = ν0, which is what we wanted
to prove.

We now investigate µ off diagonal. Recall that

µ1 = ν0 + ν1, µ2 = ν0 + ν2.

It is known from what we have shown that an optimal µ always leaves
the part ν0 unchanged. Moreover, the measures ν1 and ν2 are supported,
respectively, on the two half intervals S1 and S2 separated by the point
(x1 + x2)/2. In this case the intuitive idea of the proof is that transporting
a mass from a point y1 ∈ S1 to y2 ∈ S2 costs the same as transporting
the same mass from Ry1 to Ry2, but the two transports together are more
expensive than the the two transports of y1 to Ry1 and of y2 to Ry2.

To make this argument rigorous, we first note that with the notation es-
tablished in the first part of the proof µ can be written as

µ(dy1, dy2) = δy1(dy2)ν0(dy1) + k3(y1, dy2) ν1(dy1).

Here y2 ∈ S2 almost surely with respect to k1(y1, .) whenever y1 ∈ S1.
Comparing the transportation costs of µ with that of the mirror coupling m
yields the equality∫

R×R
φ(|y1 − y2|)m(dy1dy2)−

∫
R×R

φ(|y1 − y2|)µ(dy1dy2)

=
1
2

∫
R

∫
R
{φ(|y1 + Ry1|) + φ(|y2 + Ry2|)− 2φ(|y1 + y2|)} ×

k3(y1, dy2)ν1(dy1).

Again, by the strict concavity of φ, the right side is always nonpositive and
vanishes only if y2 = Ry1 almost surely with respect to the measure in the
last line of the above display. This means that almost surely with respect to
ν1, the measure k3(y, ·) is concentrated on {Ry}. Combining the two parts,
we see that the optimal coupling µ must be the mirror coupling. �

Theorem 4.2. If the cost function is φs, then the cost of the mirror coupling
m(x1, x2; t) is φs+t(|x1 − x2|). Thus

Cφs(µ) ≥ φs+t(|x1 − x2|)
and

Cφs(m(x1, x2; t)) = φs+t(|x1 − x2|).
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Proof. Let (Z1, Z2) be mirror coupled, i.e, they have the law m(x1, x2; t). Let
x0 = (x1 + x2)/2 and r = (x1 − x2)/2. Let

q(t, z1, z) = p (t, z1, z)− p (t, z1,−z− 2x0).

It is the density function of a Brownian motion Bt on (x0, ∞) killed at the
boundary. A straightforward computation shows that the random variable
|Z1 − Z2|/2 has the density q(t, r, z) on (x0, ∞) and has a point mass at 0 of
the size

1−
∫

R
q(t, r, z) dz.

Therefore |Z1 − Z2|I{|Z1−Z2|>0} and 2Bt I{τ>t} have the same law. On the
other hand, φs(ρ) = Pρ/2 {τ ≥ s} for a positive ρ, where τ is the first time of
reaching 0 of the Brownian motion B starting from ρ/2. Using the Markov
property of Brownian motion we have

φs+t(2r) = Pr {τ ≥ s + t} = Er {PBt [τ ≥ s] ; τ > t} .

We have PBt [τ ≥ s] = φs(2Bt). Therefore,

φs+t(2r) = Er {φs(2Bt); τ > t} = Erφs(|Z1 − Z2|).

�

For calculations related to the above proof, see Sturm[7], EXAMPLE 4.6.

5. SECOND PROOF OF THE UNIQUENESS

Let s and t be positive and assume that the coupling X = (X1, X2) is
maximal at time s + t. This means that

φs+t (|x1 − x2|) = P {T(X1, X2) > s + t} .

If X1(s + t) 6= X2(t + s), certainly the coupling time T(X1, X2) > s + t,
hence

φs+t (|x1 − x2|) ≥ P {X1(s + t) 6= X2(t + s)} .
Since the coupling is Markovian, conditioned on Fs the random variables
X1(s + t) and X2(s + t) have the Gaussian distribution of the variance t
and means X1(s) and X2(s). Therefore there probability of not coincide is
at least 1/2 of the total variation of the difference of their distributions (see
the proof of PROPOSITION 2.1, hence

P {X1(s + t) 6= X2(t + s)|Fs} ≥
1
2

∫
R
|p (t, X1(s), z)− p (t, X2(s), z)| dz

= φt (|X1(s)− X2(s)|) .

It follows that

(5.1) φs+t(|x1 − x2|) ≥ E φt(|X1(s)− X2(s)|).

We recognize that the right side is precisely cost of coupling of two Gauss-
ian random variables with the same variance s and means x1 and x2 with
the strictly concave cost function φt. By PROPOSITIONS 4.1 and 4.2, the
minimum of this cost is attained only when X1(s) and X2(s) are mirrored
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coupled and in this case the total cost is equal to φs+t(|x1 − x2|). It follows
that

φs+t(|x1 − x2|) = Eφt (|X1(s)− X2(s)|)

and X1(s) and X2(s) must be mirror coupled. To sum up, we have shown
that if the coupling X = (X1, X2) is maximal at a time t, then X1(s) and
X2(s) must be mirror coupled Gaussian random variables for all 0 ≤ s ≤ t.

Now suppose that X = (X1, X2) is a maximal Markov coupling (for all
time). Then by what we have proved, at any time t, we must have either
X2(t) = X1(t) or X2(t) = RX1(t) = x1 + x2 − X1(t). Therefore before
the first time they meet, we must always have the second alternative. It
follows that the first time they meet must be the first passage time of X1 to
the middle point (x1 + x2)/2 and, by the maximality, they must coincide
afterwards. This means exactly that X2 is the mirror coupling of X1, and
the proof of the main THEOREM 2.3 is completed.

6. CONCLUDING REMARKS

Given two probability measures µ1, µ2 on Rn, it is not clear if a maxi-
mal Markovian coupling always exists. It may happen that the probability
P {T(X1, X2) ≥ t} can be minimized for each fixed t but not at the same
coupling for all t. In this respect, we can obtain some positive results by
taking advantage of certain situations in which the unique minimizers are
independent of the choice of strictly concave function φ. This is the case, for
example, if (µ1− µ2)+ is supported on a half space and (µ1− µ2)− is the re-
flection of (µ1 − µ2)+ in the other half space, or if (µ1 − µ2)+ is supported
on an open ball and (µ1 − µ2)− is the spherical image of (µ1 − µ2)− (see
EXAMPLE 1.5 in Gangbo and McCann [3]). Suppose that there is a measure
m which uniquely minimizes the cost Cφ(µ) for µ ∈ C (µ1, µ2). It can be
shown that the unique maximal Markovian coupling of Brownian motions
starting from the initial distributions (µ1, µ2) and it is given by∫

R
N x1,x2 m(dx1dx2),

where N x1,x2 denotes the law of the mirror coupling of Brownian motions
from (x1, x2).

The second proof can be generalized to certain Riemannian manifolds
with symmetry such as complete simply connected manifold of constant
curvature (space forms). However, it is known whether a maximal cou-
pling exists for Brownian motion on a general Riemannian manifold. The
results Griffeath[4] on couplings of Markov chains seems to indicate that a
maximal coupling always exists but may not be Markovian but we do not
believe a proof of this statement exists in the literature. The body of works
on couplings so far seems to point to the belief that a maximal coupling is
in general non-Markovian.
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