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SMOOTHNESS OF THE CONVEX HULL OF PLANAR
BROWNIAN MOTION
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University of Rochester, University of Illinois at Chicago
and Carleton University

In this article we prove that for each ¢> 0, almost surely dC(¢), the
boundary of the convex hull of two dimensional Brownian motion up to time
t,is a C' curve in the plane. We also prove that if % is a modulus of
continuity such that xn(x) is convex and [!n(x)dx/x < co then for each
t > 0, almost surely dC() is not a C*" curve in the plane.

1. Introduction. Let B = {B(t), %, P;t > 0} be a standard Brownian mo-
tion in R? starting from the origin and let C(¢) = conv{B(s);0 < s < t} be the
closed convex hull of B up to time . Recent results of Shimura (1984, 1985) and
Burdzy (1985) imply that for any angle a € (7/2, ), there are random times =
such that C(7) has corners of opening a. In fact, from the work of Le Gall (1987)
and Evans (1985) the Hausdorff dimension of the set of time points ¢ such that
B(t) visits a corner of C(t) of opening a is known to be 1 — 7/2a almost surely.
Some results by Varadhan-Williams (1985) and Williams (1985a, b, 1986) on
reflected Brownian motion in wedges are also relevant to this topic. While they
do not directly concern the so-called cone points, some of these results have been
used by Le Gall in his work cited above.

All this is in contrast with the observation of Lévy (1948) that for each fixed ¢,
almost surely C(¢) has no corners at all, and so dC(¢) is a C* curve in the plane.
A proof of this fact has been supplied in El Bachir (1983). In this article we prove
this fact anew, namely

Vi>0, P[GC’(t) isa C* curve| = 1.

In the negative direction, we will prove that if 5 is a modulus of continuity
(defined below) such that xn(x) is convex then

dx
Vi>o0, P[&C(t) isa Cl" curve] =0 if fln(x)7 < .
0

In particular, the slope of the tangent to dC(¢) almost surely does not vary in a
Holder continuous fashion. Our method is to consider curves based at certain
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extreme points of C(t) which are not hit immediately by excursions of the
Brownian path away from its convex hull.

2. Main result. Fix ¢ > 0 and for each angle § € [0,27] let B? and B? be
the components of the planar Brownian motion B in the directions § and
0’ =0 + w/2. It is clear that B® and B? are independent one dimensional
Brownian motions. Let

MO(t) = sup BY(s)

O<s<t
and define
o = sup{s < t: B%s) = M(¢)}.

Let D(0) be the support line to C(¢) which is perpendicular to the ray {re;
r > 0}. Then dC(t) N D(8) contains at least one and at most two extreme points
of the convex set C(t). By Rockefellar [(1970), Corollary 18.3.1] the point B(o) is
one of them. We denote this point by Q(8).

Consider processes in R? defined as follows:

W*(s) = {B%(0c) - B¥(0 +s),B%o0) — B%o +s)}, 0<s<t-o;
W (s) = {B%(0) - B’(0c — s), B%(0c) - B%(s —s)}, O0<s<o.

Evidently W * are the excursions of B away from C(¢) at () as viewed in the
coordinate system in which C(¢) lies in the upper-half plane and Q(8) is at the
origin. Finally introduce the process

Z(s) = {-B"(s),1B(s)l}, s=0,
and the time S = sup{s < #: |B%s)| = 0}. Then
e(s)=2(S+s)—2(S), 0<s<t-=S8,

is the initial fragment of the excursion of Z above the abscissa which straddles ¢.

REMARK. Itd and McKean [(1965), Problem 2, page 44] say there are at most
two time points in [0, ¢] such that B? attains its maximum M?(¢). Using the fact
that P[B®(¢) = M%t)] = 0, the same argument there shows that for fixed t > 0,

almost surely there is only one such point. This remark will be used in Lemma 1
and Lemma 2 below.

LEMMA 1. For fixed t > 0, the processes W*, W~ and e, are identical in
distribution.

ProoF. Define

X(s) = {X'(s), X%(s)} = {B"'(t’— s) — B%(¢), B%(t —s) — B(¢)},

0<s<lt.
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Then X is a standard Brownian motion up to time ¢. Let
T= sup{s < t: X*(s) = max Xz(u)}.
O<u<t
Then it is clear that
{BY(s), B%s);0<s<o}={X(s);0<s<r).

(Here = means “equivalent in law”.)
For a continuous path w = (o, ©?): R*— R?, let

T(w) = {s < t: 6*(s) = max
<u<t

w2(s)}.
Then we have ¢ = t — min 7(X) and 7 = max 7(X). But by the remark preced-
ing this lemma,
P{T(X) is asingleton set} = 1,
so that o = ¢ — 7 almost surely. Using this fact we have
{(W=(s); 0 <s <o}
={X(r) - X(r—-s);0<s<7)
= {B%(t-7)—B%(t-r+s),B%(t—7)—B(t—1+5);0<s <7}
= {B%(0) - B*(0 +s),B%0) — B0 +5);0<s<t—o}
={W'(s);0<s<t—o}.
On the other hand, it is well known that
{Z(s);s 20} = {B%(s), M%(s) — B%s); s > 0}.
Thus we have '
{(W*(s);0<s<t—o}
= {B%(o) - BY(o +s), M®(c) — B0 +5);0<s<t— o}
={Z(S+s)—-2(S);0<s<t—- S}
={e(s);0<s<t—- 8},
and the lemma is proved. O
LEMMA 2. Fix t > 0 and 0 € [0,27]. For each & > 0 the following event

occurs with probability 1: There exists a neighborhood U C R? of Q(0) such that
if 0<s<tand B(s) € U then |oc — s| <e.

Proor. Let .
8(o) = int_1Q(0) - B(s)I.

N -0<s<t

By the remark before Lemma 1, ¢ is the unique point s € [0, ¢] such that
B(s) = M®(t). This implies that (¢) is strictly positive for positive &, since B(s)
is continuous. We can take U to be the ball of radius 8(¢) centered at @(8). O
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LEmMMA 3. Let f,, f, and f; be finite, positive convex functions such that
f{0) =0, i =1,2,3 and f(x) < fy(x) < fy(x) on |x| <R for some R > 0. If
0 < |x| < R/2, then we have

fi(x/2) fx(2x)

X

< |ID*fy(x) <

’

where D* denote one-sided derivatives.

Proor. First consider the case x > 0. By convexity we have

0 <D*f(x) < inf fou) = fx) < fo(2x) = fo(x) < f3(2x) .
x<u<R u—x x "

Similarly one proves D *f,(x/2) < 2f,(x)/x. On the other hand, for any positive
convex function f vanishing at 0, one has f(x)/x < D*f(x). It follows that

(x/2) 1 f (2
f(z/)SEDifl(-;f)s 25;’5) < D*f(x) < 3(xx).

The case x < 0 can be argued symmetrically. The lemma is proved. O

We now turn to the proof of the main result. Consider the rectangular
coordinate system (x, y) in which C(t) lies in the upper half plane and Q(9) is at
the origin. Since C(¢) is almost surely not a line segment, it is not difficult to see
that we can choose the coordinates (x, y) suitably so that dC(¢) lies on the
upper-half plane, Q() is at the origin and the boundary dC(¢) is locally the
graph of some function, say f,. Thus f;: R — R is a random, positive convex
function with fy(0) = 0 whose graph, as a subset of R? coincides near 0 with a
portion of dC(¢). Now let n be a modulus of continuity, that is, 7(0) = 0 and 7 is
. increasing.

THEOREM 1. Fix t > 0. Then:
(a) We have
P[l lim D*f(x) = D*£,(0) = 0 for all rationals 6 < [0,27r]] -1

(b) If xn(x) is convex, then

P[lim ing P Hol2) o)
[x] =0 7(|%|)

if and only if [}n(x) dx/x converges.

= oo for all rationals € [O,2w]} =1

ProoF. Introduce the notation
- 75(V) = inf{s > 0: V(s) € A}

for the first passage time of a process V to a set A. Let h: R,—> R, be a
nonnegative, increasing function such that A(0) = 0 and A(x)/x decreases to 0
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as x | 0. Consider the sets
A,={x € R*:0 < |xy| < h(lx,])}.
By Lemma 1 we have
{"'A,,(W+) = } {"'A,,(et) = 0}

and this latter probability is, by Corollary 3.1 of Burdzy (1986a), elther Oorl
according as

dx converges or diverges.

fl h(x)
0 x

This test can be applied to the functions 2(x) = Axn(x), A > 0 to the effect that
if [¢n(x)dx/x < oo then almost surely the processes W * do not hit the set A,
until some strictly positive time. Now, assume % is convex. By Lemma 2, the
above fact implies that fy(x) > Alx|n(|x|) over some open interval containing
x = 0. It is also clear from the same integral test (as applied, say, to A(x) =
px/log x~', p > 0) that if A(x) = px for some p > 0 then P[7, (W*) =0] =1,
i.e., there are times ¢ | 0 such that Wi(t,,i) € A;. In turn this implies there
exist sequences of points x! |0 and x210 such that f,(x}) < p|xi|, i=1,2.
Because A(x) = px is hnear it must be true that fy(x) < p|x| for all x in a
neighborhood of the origin. Thus for some positive R, we have

Ax|n(x]) < fo(x) < plx| for |x| < R ass.

By Lemma 3 ‘we have
A (|« '
5"(?) < |D*fy(x) <2p for0 < |x| <R/2as.

In particular, by taking pu |0 through rational values, one sees that f, is
differentiable at 0 almost surely and D *f,(0) = 0. Moreover, by taking A oo
through integers, one sees that | D *fy(x)| must vanish more slowly than 7(|x|) as
|| 4 0. Thus part (a) and the sufficiency of part (b) have been proved. To see the
necessity, note that if

lim ing 21l |D *fy(x)| _
|x| >0 "I(|x|)
almost surely then for all sufficiently small x, > 0, we have
D=fy(x) > q(x), 0<x<x,
which implies

g(x) = ["n(s)ds <filx).

Now

€
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In our present situation, P{frAg(et) =0} =0 so by the above integral test,
JFog(u) du/u® converges as ¢|0. Thus by the above equality, [*n(u)du/u
converges as ¢ 0. This finishes the proof. O

THEOREM 2. Fix t > 0. Then
(a) We have
P[AC(¢) is a C" curve in R?] = 1.
(b) If xn(x) is convex and [jn(x) dx/x < oo, then
P[3C(¢) is a C>7 curve in R?] = 0.

PROOF. Since C(t) is convex, dC(¢) can fail to be C! only if it has a corner at
some extreme point @. However any such point has the form @(8) for all ¢ in
some subinterval of [0, 27 ]. Because this possibility is ruled out by Theorem 1(a),
there can be no such Q. Part (a) follows. Part (b) is easily implied by Theorem
1(b).

3. Miscellaneous remarks. We have noticed some interesting results on
the convex hull of Brownian motion, and we wish to note them briefly here.

(a) Let p(t) be the perimeter of C(¢) and let a(t) be its area. Then E[ p(t)] =
V8wt [Takacs (1980)] and E[a(t)] = wt/2 [El Bachir (1983)].

(b) A remarkable paper of Lévy (1955) contains a functional law of the
iterated logarithm of which

ol a(t) 1 )
tsup 2tloglogt 27|

is a special case. We want to thank F. Knight for pointing out this reference
to us.

(c) Let e(t) be the set of extreme points of C(¢). Then almost surely, e(¢) is a
closed set of Hausdorff dimension 0 and dC(¢) \ e(¢) is a countable union of
straight line segments [Evans (1985)].

(d) Burdzy (1986b) has recently announced interesting results about the
geometry of the complement of the Brownian path which are closely related to
the present work.

Acknowledgment. Thanks are due to an unnamed referee whose sugges-
tions improved both the content and presentation of our work.
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