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ON EXCURSIONS OF REFLECTING BROWNIAN MOTION 

PEI HSU' 

ABSTRACT. We discuss the properties of excursions of reflecting Brownian 
motion on a bounded smooth domain in Rd and give a procedure for construct- 
ing the process from the excursions and the boundary process. Our method is 
computational and can be applied to general diffusion processes with reflecting 
type boundary conditions on compact manifolds. 

1. Introduction. We study the excursions of reflecting Brownian motion 
(RBM) X = {Xt, t > 0} on a bounded domain D in Rd with smooth boundary. 
The excursion structure of one-dimensional RBM has been studied by many authors 
([2, 6, 7, 9], to mention just a few). It is therefore interesting to see whether the 
elegant methods developed for this case can be generalized to higher-dimensional 
cases. The difficulties in doing this arise mainly from the fact that in the latter 
cases the excursion set is no longer a single point but the whole boundary; as a 
result we have to consider the so-called boundary process (t = X,(t), where r(t) 
is the right continuous inverse of the boundary local time of X. One immediately 
faces the problem of constructing sample paths of RBM by attaching the individual 
excursions to the boundary process. ?7 deals with this problem. The main idea, 
due to Ito, is to regard the excursions as a point process. Unlike the one reflecting 
barrier case, however, the point process of excursions is no longer Poisson. 

We will assume throughout that D is a bounded domain with C3 boundary. 
This strong regularity assumption enables us to keep the necessary estimates from 
analysis to a minimum and to study the excursion structure by explicit compu- 
tation, which is the main feature of the method adopted here. Although some of 
our results are known in more abstract terms in the general excursion theory of 
Markov processes ([4, 8, 12], etc.), our approach here is completely independent of 
this theory. 

Our method is perfectly generalizable to general diffusions on a compact Rie- 
mannian manifold with reflecting type boundary condition. We will make more 
comments on this point in ?9. We choose the RBM because, on the one hand, it is 
a typical case of diffusion revealing the general structure of excursions, and on the 
other hand, it is well adapted to explicit computation. 

We give a short outline of the contents of each section. The basic properties of 
RBM on a bounded domain are reviewed in ?2. In ?3-6 we study the excursion 
processes and the boundary process associated with the RBM. For each pair of 
distinct points a, b on the boundary, we introduce in ?3 a probability law pab 
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which governs the excursion process from a to b. The characterizing property of 
the law pa,b is given in Theorem 3.5. 

The boundary process { t, t > 0} is a OD-valued strong Markov process of jump 
type. The properties of the boundary process are studied in ?4. We limit ourselves 
to those properties which are needed in subsequent sections. In ?5, the point process 
of excursions of the RBM is defined and studied. We prove that this point process 
possesses a compensating measure of the form Q(t (de) dt, where Qa, called the 
excursion law from a, is a a-finite measure on the space of excursions starting from 
a E OD. The form of the compensating measure was known before, but it seems 
that a rigorous verification was never given. As an application of excursion laws, 
we prove in ?6 a theorem concerning the asymptotic number of excursions and the 
boundary local time, whose one-dimensional version is well known. 

?7 is the center of our discussion. To describe our result in a heuristic way, 
what we show is that one can construct the RBM paths by filling the jumps of 
the boundary process with excursion paths. The key to the construction is the ob- 
servation that, conditioned on the boundary process, the individual excursions are 
independent. We first construct a point process of excursions and show that it has 
the desired probabilistic structure. The sample paths of process to be constructed 
are defined by this excursion process in the usual way (see, for example, [6, pp. 
123-131]). The last step involves verifying that the process constructed is indeed 
the RBM. 

?8 contains a sketch of proofs of several estimates used in the previous sections 
and is included here for the sake of completeness. In ?9, we make some further 
remarks on the problem treated in this paper. 

ACKNOWLEDGMENT. The author wishes to thank Dr. Peter March for his 
interest in this work and for helpful discussions. 

2. Reflecting Brownian motion. Let D be a bounded domain in Rd (d > 2) 
with C3 boundary. The Laplace operator and the inward normal derivative at 
the boundary OD will be denoted by i\ and 9/On. Roughly speaking, the RBM 
on D is the diffusion process generated by the operator z\/2 with the Neumann 
(reflecting) boundary condition. We will give three equivalent definitions of this 
diffusion process. 

Consider first the heat equation with the Neumann boundary condition: 

0 p(t, x, Y) = A zXp(t, X y), x E D, y ED; 

(2.1) j 0 p(t,x,y)=0, x OD, y D; 

lirm p(t, x, y) = 8v(x), x E D, y E D. 

(Here the subscript x means the operation is performed on x variables.) If D 
has C3 boundary, this equation can be solved by the parametrix method. On the 
canonical path space based on D, we can construct a continuous strong Markov 
process (a diffusion process) {C([0, oo), D), i, Ft, P', Xt, t > O} whose transition 
density function is p(t, x, y), and we define this process to be the standard RBM on 
D. See [13] for details. 
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We can also define RBM by a stochastic differential equation with boundary 
condition. Consider the following equation with reflecting boundary condition: 

(2.2) dXt = dBt + r n(Xt) do(t), 

where B = {Bt, t > 0} is standard Brownian motion in Rd and n(a) denotes the 
inward unit normal vector at a E AD. The factor 1 is added for technical reasons. 2 
Now if the domain D is assumed to be C2, a solution to (2.2) exists and pathwise 
uniqueness holds [6]. The existence and pathwise uniqueness of the solution to (2.2) 
can be proved via the so-called deterministic Skorohod equation, without resorting 
to the general theory of stochastic differential equations [5]. 

The increasing process X in (2.2) is a continuous additive functional of X and 
is called the boundary local time of the RBM. It can also be characterized as the 
unique continuous additive functional satisfying 

ot 
(2.3) Ex[0(t)1 = j dsf p(s,x,b) a(db), 

O D 

where a denotes the (d- 1)-dimensional volume measure on AD. Using Ito's formula 
we can show that 

(2.4) 4t) = It D( S) ds. 

Here DE = {x E D: d(x, AD) < E}. The convergence is in the sense of L2 for each 
fixed t as well as almost surely uniform on bounded intervals of time. 

To show that the previous two definitions give the same process, we state yet a 
third definition a martingale characterization of RBM. Let (C([0, oo), D), i, Ft) be 
the usual continuous path space based on D equipped with the standard filtration. 
We say that a probability measure Px on this space is an RBM on D starting at 
x E D if Px [Xo = x] = 1 and it is a solution to the submartingale problem of 
(z, 0/an); namely, for any f E C2((D) with af/an > 0, the process 

(2.5) Mf (Xt) = f (Xt) - f (XO) - 2 f \f (Xs)ds 

is an Ft-submartingale. By general theory, the RBM in the sense exists, is unique 
and is a strong Markov process [6, pp. 203-218]. 

Now all three definitions are equivalent. This follows from the uniqueness of the 
martingale characterization. The processes in the first and second definitions can 
be shown easily (in the first case by direct computation, in the second case by Ito's 
formula) to be solutions of the submartingale problem. 

From the second definition above, we have the following extension of the one- 
dimensional Skorohod theorem [6]. In the one-dimensional case, we simply define 
RBM by Xt = IBtI for an ordinary Brownian motion B. This definition has no 
higher-dimensional analogue. 

THEOREM 2. 1. Let {Xt, Bt, 4(t), t > 0} be three continuous, Ft-adapted sto- 
chastic processes on a certain probability space {fQ, i, Ft, P} such that the following 
conditions hold: (a) X = (Xt, t > 0) is D-valued and P[Xo E D] = 1; (b) B = 

{Bt, t > 0} is a standard Brownian motion in Rd with initial value D, and B and 
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Xo are independent; (c) almost surely, X is nondecreasing, X(0) = 0, and increases 
only when Xt E aD; (d) almost surely, the Skorohod equation holds: 

1 ~t 
(2.6) Xt = Xo + Bt + - n(X,)O(ds). 2 J 

Then X is a standard RBM on D. 

Now assume that X = {Xt, t > 0} is an RBM. Define the stopping time 

(2.7) rD = inf{t > 0: Xt E aD}. 

The killed Brownian motion XO = {Xt, t < TjD} is the RBM (also the ordinary 
Brownian motion) stopped at time TD. XO is sometimes called the minimal part 
of X on D. By the strong Markov property at TD, we find its transition density 
function to be 

(2.8) po(t, x, y) = p(t, x, y) - EX[p(t- TD, XD I Y); TD < t] 

The distribution of XTD is concentrated on AD and is absolutely continuous with 
respect to the volume measure a on the boundary. The Poisson kernel K(y, b) is 
defined by 

(2.9) PY[XTD E db] = K(y, b)oa(db). 

The transition density function (2.8) satisfies the heat equation with absorbing 
boundary condition: 

tPo (t, X, Y) = A.\Po (t, x, y), x E D, y E D) t > O; 
(2.10) po(t, x, y) = 0, x E AD, y E D, t >O; 

lim PO (t Xx, y) = 6y (x), xcED, ycED. t-*o 

As with equation (2.1), this equation has a unique solution which defines a contin- 
uous strong Markov process on D with finite lifetime TD. ?8 contains a sketch of 
the construction of po(t, x, y) by the parametrix method. 

In the next section, we need the joint distribution of (XTD , TD) 

THEOREM 2.2. We have for t > 0, x E D, and b E aD, 

(2.11) PX [XD E db,r j E dt] = g(t, x; b)oa(db) dt 

where 

(2.12) g(t,x;b)= 2aa po(t,x,b). 

A proof can be found in [1, p. 261]. 

3. Excursion processes. Let X = {Xt, t > 0} be the standard RBM on D 
with probabilities Px. Fix a time t > 0. Define two random variables -y(t) and d3(t) 
as follows: 

?y(t) = sup{s < t: X(s) E aDj) 

:(t) = inf{s > t: X(s) E AD}. 
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As usual, we set sup0 = -oo. Since PI[Xt c D] = 1, we have 

PX[Fy(t) < t < ,(t) < oc] = 1. 

Following [2], we call the random interval [-y(t), /(t)] an excursion interval and the 
process Z(u) = X(-y(t) + u), 0 < u < /B(t) - -y(t) the excursion process straddling 
t. The length of the excursion is l(t) = ,B(t) - -y(t). In this section we compute the 
law of this excursion process. Our method is an extension of the one used in [2] for 
one-dimensional Brownian motion. 

Given any two distinct points a, b on the boundary, let Wa,b be the space of all 
c,ontinuous excursions from a to b; namely, the space of continuous paths e: [0, 0o) 
D with the property thfat leG) = a andthere is an 1 > 0 such that e(t) E D if 
0 < t < 1 and e(t) = b if t > 1. The space Wa,b is equipped with a natural filtration 

Bt(Wa,b) = a{e(s), e E Wa,b, 0 < s < t}. 

We want to define a law pa,b on Wa'b, the law of the excursion process from a 
to b. pab can be described by the following characterizing property: The law of 
the excursion process Z(u) = X(-y(t) + u) straddling t conditioned by the event 
{ y(t) = s, X5(t) = a, X:(t) = b} is pab conditioned by 1 > t - s. It is not difficult 
to guess what pab should be. If e = {e(t), t > 0} is the corresponding process, 
then once e(t) is inside D, it behaves like an ordinary Brownian motion conditioned 
to exit at point b. Thus the transition density function of pab should be 

(3.1) pab(8) ,I t, y) = po (t - s,x, Y) K(zy b) 

Next, the absolute distribution pa,b[e(u) E dy, u < 1] is formally the limit of (3.1) 
as x -* a and s -- 0; thus we have 

(3.2) pa,b[e(u) E dy, u < 1] = 29(u, Y; a) K(y, b) 

The probability pab is uniquely determined by these two conditions. We can check 
easily that pab defines a homogeneous diffusion process with sample paths in Wa,b. 

Let us now show that the pab has the characterizing property described above. 
Introduce the notation 

(3.3) O(t, a, b) = 
(9 

O r p(t, a, b). 

It can be checked easily that for any 0 < s < t, 

(3.4) O(t, a, b) = J g(t - s, x; a)g(s, x; b) m(dx). 

From (2.9) and (2.11) we have 

(3.5) K(x, b) = j g(1, x; b)dl, 

and 

def 1 K( 
(3.6) N (a, b) = K(a, b) 0O(1 la, b)dl. 
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Now (3.1) and (3.2) become 

(37) pab(8 z, t, y) = po(t - s, x, Y) S (g(l, x; b)dl' 

and 

(3.8) pab[e(u) E dy, u < 1] = g(u,(y;la) 
fg (y b)dl m(dy) 

Integrating the last density over D and using (3.4), we have 

(3 9) pal b[U <11] = f0 0(1, a, b)dl 

Lj fooo 0(1, a, b)dl 

This gives the probabilistic meaning of 0(t, a, b). 

PROPOSITION 3.1. Let t be fixed. Let u < t < s, u < wl < w2 < * <Wn < 8 

and yi2D, i =I,...,n. We have 

PX[-y(t) c du, X,(t) c da, Xw, c dyi, i = 1,... ,rn, X,(t) c db, /(t) E ds] 
= dup(u, x, a)a(da)g(wj - u, yi; a)m(dyl) 

n 

x 11 po(Wi i- i- Yi- , Yi)m(dyj)u(db)g(s-Wn Yn; b)ds. 
i=2 

PROOF. We will prove this formula for n = 2 and w, < t < w2. By the Markov 
property, conditioned on X(t), the processes before t and after t are independent 
[3, p. 2]. Therefore, for any nonnegative bounded continuous functions 4)1, 42 on 
[0, X), q1, 02 on oD and 41, '2 on D, we have 

Ex [b1 (-y(t))01 (X^f(t) ) j (Xwl ) 42 (XW2 )42 (X3(t) )b2 (3(t))] 

(3.10) = I Ex [1 (-y(t))$1 (X5(t))l 4(Xwl ) Xt = y] 

x EX[b2(13(t))02(X:(t))W2(XW2)1Xt = y]p(t, x, y)m(dy). 

(Convention: b(-oo) = 0.) Let us compute the expectations under the integral 
sign. Using the Markov property at t and t - W2, and Theorem 2.2, we have 

Ex [02 (0(t))02 (X(t) ) W(XW2 ) |Xt = Y] 

= El [02(rD + t)12(XD,)2(XW2-t); W2 - t < TD] 

= EY [42(XW2-t)EX-2 t [0)2 (rD + W2)02 (XD)]; W2 - t < TD] 
(3.11) 

( )= ID 2(Y2)PO(W2 - ty, y2)m(dy2) 

xfD (?w)j2bosYb)(D 
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Next, under the probability Px[. IXt = y], the law of the reversed process 

Y = {Yu = Xt-u,0 < u < t} 

is equal to the law of RBM starting at y and conditioned by Yt = x. Denote this 
law by EY,x;t. We have by the Markov property at t - wl, 

(3.12) 

EX [f 1(-?(t))Ol (X^(t) ) 41(Xwil)|Xt = Y] 

- EYsX;t [4f - TD)01 (YrD>)1 (Yt-Wl);t - Wl < TD < t] 

= EY x;t- j(Yt-wT)EYt-f1 X;W1 [V1(Wl-rD)01(YTD ); TD <W1i]; t-w1 <TD] 

- f 4 (Y1i)p0 (t - w1, Y,1 )P(W1 Y1 x) m(dyi) 
JD p(~~~~~~t,y, x) 

x| 01(w - u)dul( D 1(a) g(u, yi;a) p(wi 'i x) a(da). 

It follows from (3.10) to (3.12) that 

EX [fb1 (y(t)) ' (Xt(t) ) j (Xw1 ) W2 (XW2 )02 (Xa(t) )b2 (0(t))] 
rwi 

- JWi ~i (u)du j 1 (a)p(u, x, a)oa(da) 
O A~D 

x I j (yl)g(w, - u, yi; a)m(dyl) 

x (Y2)PO(W2-wl,yl,y2)m(dy2) 

X 02(db) / f(2(s)g(S - W2, Y2; b)ds, 
AD w2 

which is equivalent to our assertion. 

PROPOSITION 3.2. Let t be fixed and Z(v) = X-(t)+v the excursion process 
straddling t. Let 0 < V1 < V2 < ... < Vn, S > t V (u + Vn) and yi E D, for 
i= 1,...,n. We have 

Px[L(t) c du, X,(t) E da, Z(vi) c dyi, i = 1,... ,n, X0(t) E db, /3(t) c ds] 
= dup(u, x, a)a(da)g(v1, Yi; a)m(dyl) 

n 
x J7po(Vi-Vi- 1,yi-1,Yil)m(dyi) a(db)g(s - u - vn, Yn; b)ds 

i=2 

PROOF. Again we assume n = 2. Let /i, ji, (i, i = 1, 2, be the same as before. 
Let tnk = k/2n and Ink = (tnk, tnk+.I]. By the preceding proposition and the 
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dominated convergence theorem, 
E' [01 (-y(t))?01 (X,-(t)) 4j (Z(Vd))42(Z(V2))02 (Xo(t)) *2 W(W()] 

00 

= lim EEn Z '[(?(t))1(X-y(t))vl(X(tnk+Vl)) 
k=O 

X 42(X(tnk + V2))02(Xfl(t))4'2(/(t)); 

^y(t) C Ink n [o, t], ,3(t) > t V (u + V2)] 

= lim [o / e(u)du / $ (a)p(u,x,a)a(da) n 
=0 J0Inkn [o,t] AD 

X I 1(Yl)g(tnk + Vl- u, Yi; a)m(dyl) J2(Y2)Po(V2 - vl,Y1,y2)m(dy2) 

J 2(b)a(db) JU+V) 2(s)( - tnk - V2, Y2; b)ds 
AD V(U+V2 ) 

ft f 

=10 f 1 (u)du $1 (a)p(u, x, a)u(da) Ij (yl)g(v1, yi; a)m(dyl) 
O A~DD 

x 62(y2)PO(V2 - V1,Y1,Y2)m(dy2) q52(b)u(db) 
D A~~~~~D 

x i 0U+V 2 (s)9(s - u - V2, Y2; b)ds, 
tV(U+V2 ) 

which is exactly what we want. 
Take n = 1 in the preceding proposition and integrate out y, and s. By (3.4), 

we have 

COROLLARY 3.3. Let O < u < t. Then 

PX[.y(t) E du, X,(t) e da, X3(t) E db] = dup(u, x, a)u(da) j O(s, a, b)ds a(db). 
tu 

As an immediate consequence, we have 

THEOREM 3.4. The excursion process straddling t 

Z = {Z(u) =X('Y(t) + u), 0 < u < l(t)} 
conditioned on the event {-y(t) = s, Xj(t) = a, X0(t) = b} is a nonhomogeneous 
Markov process with transition density function 

(3.13) po(v - u, XI,)vt_,- g(l, y; b)dl (3.13) ( )v~~~~~fv(t_.,)_u g(l, y;b)dl 

and absolute distribution 
Px[Z(u) c m(dy), u < l(t)J'y(t) = s, Xj(t) = a, Xfl(t) = b] 

(3.14) gv((t g (1, y; b)dl 
= (ul y V(t a) =g(u,y; a) ,ft- 0(1, a, b)dl 

The law in Theorem 3.4 depends on t because we have only included the excur- 
sions from a to b straddling a fixed time t. Thus we expect the "true" law pa,b 
should be the limit of the law in the theorem as t -* s. This agrees with our 
previous definition of pa,b. 
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THEOREM 3.5. Let pa,b be defined by (3.1) and (3.2). The law of the excursion 
process straddling t conditioned on the event {Jy(t) = s, Xq(t) = a, X:(t) = b} is 
equal to pa,b[. I 1 > t - s]. 

PROOF. By (3.8) to (3.9), 

m P(ay [e(u) C dy, u < 111 > t - s] 

= pa,b[e(u) c dy, u V (t - s) < 1]/Pab [I > t -s] 

f. g (1, y; b)dl fv(t g dl ff2 0(1, a, b)dl 
= g(u, y;a) 

10?? 0(1, a, b)dl fJo? g9(1, y; b)dl foJo 0(1, a, b)dl 

fuV(t-s)_- g(l, Y; ON 

y ft-s 0(1, a, b)dl 

This agrees with (3.14). A similar calculation shows that (3.13) is the transition 
density function of pa,b conditioned on I > t - s. 

Finally we remark that pa,b is completely determined by the minimal part of 
the RBM X and has nothing to do with the boundary condition. Using RBM to 
characterize this law is simply a matter of convenience. 

4. The boundary process. Loosely speaking, the boundary process is the 
trace of the RBM X on the boundary. Since X spends zero amount of time on 
the boundary, a time change is needed here. Recall that the boundary local time 
X (see (2.4)) is a continuous strong additive functional which increases only when 
Xt E AD. Let 

(4.1) r(t) = sup{s > 0: 4(s) < t} 

be the right continuous inverse of q. We have r(o(t)-) < t < r(q(t)) and q(r(t)) = 

t. For fixed t, each r(t) is a stopping time for X. The boundary process is defined 
by 

(4.2) = {et = X,.(t), t > 0}. 

It is routine to verify that ( is a AD-valued strong Markov process and the sample 
paths of ( are right continuous with left limits. In this section, we discuss a few 
properties of the boundary process needed later. 

Let us first describe the infinitesimal generator of (. Let f E C2'o(OD) and let 
Uf be the solution of the Dirichlet problem on D with boundary function f. Then 
by the boundary regularity theorem, we have Uf E C2o(TD). Define the operator 

Af (a) = af (a), a c 9D. 

Thus A is well defined on C2'o(OD) and is called the Dirichlet-Neumann operator 
of D (for the obvious reason). A is in general an integrodifferential operator on 
AD. 

PROPOSITION 4.1. The restriction to C2,o(OD) of the infinitesimal generator 
in C(OD) of the boundary process ( is 2A. 

PROOF. Assume that {It, t > 0} is the natural filtration associated with the 
RBM X. Let f E C2'a(OD), and Uf as before. By the Skorohod equation (2.6), we 
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have 

Uf(Xt) -1Uf(Xo) Vuf(Xs) dBs + - VUf .n(X,)dq(s). 

We assume that Xo E AD. Since r(t) is a stopping time, we can replace t in the 
above relation by r(t) and obtain 

Jr(t) j At 
f (t) - f(o) = Vuf(Xs) . dBs + 2 ? Af(t,)ds 

The first term on the right side is obviously uniformly bounded for fixed t; hence 
it is a r(t)-martingale. The assertion follows by taking the expectation. 

Let us now obtain a more explicit description of the Dirichlet-Neumann operator 
A. For each b EE D, let Vb be a C2 vector field on AD with the following properties: 
(i) for any fixed a E AD and f E C2(OD), we have 

(4.3) f(b) - f(a) - Vbf(a) = O(jlb - al12) 

as b -+ a. (ii) If Vf(a) = 0, then Vbf(a) = 0 for all b. It is not difficult to verify 
the existence of Vb. For example, in a coordinate neighborhood b = (b1,... ,bd-1), 
one may take 

d-1 f 
Vbf(a) - (a)(bi - ai), 

and then obtain Vb globally by a partition of unity. 
Now outside a neighborhood of a, the Poisson kernel K(x, a) is well-behaved. 

Thus if f E C2 (OD) vanishes in a neighborhood of a, then we can write 

(4.4) Af (a) = a| j K(a, b)f(b)a(db) = 2 f(b)N(a, b)oa(db). 

On the other hand, by (8.2), we have N(a,b) = O(jla - blI-d); hence (4.3), the 
operator 

(4.5) Aof(a) = 2 j [f(b) - f(a) - Vbf(a)]N(a, b) a(db) 
..D 

is well defined on C2(OD). The operator D1 = A - Ao is a local operator in the 
sense that if f vanishes in a neighborhood of a, then D1 f(a) = 0. This is true 
because for such f, the right side of (4.5) reduces to that of (4.4). By a theorem 
in analysis, a local operator is a differential operator. Hence D1 is a differential 
operator. D1 is even a vector field, since Dif(a) = 0 if f(a) = 0 and Vf(a) = 0. 
Therefore we have shown 

PROPOSITION 4.2. The Dirichlet-Neumann operator has the form 

(4.6) A = Ao + Di, 

where D1 is a vector field on AD and Ao is given as in (4.5). 

It follows that A is an integrodifferential operator without diffusion part, and ( is 
the process of jump type generated by the operator 2 A. The existence of processes 
generated by integrodifferential operators is discussed in [10]. 



REFLECTING BROWNIAN MOTION 249 

Let us look more closely at the jumps of (. Let J be the set of times when ( has 
a jump: 

(4.7) J > O: 

We also set 
Jt = Jn(o, t] and Jt- = J n (o, t) 

to simplify notation. 
An immediate consequence of Proposition 4.2 is 

PROPOSITION 4.3. Let ( be the process on AD generated by the operator 'A. 
Then the Levy system of ( is (N(a, b)u(db), dt). Namely, for any nonnegative mea- 
surable function f on AD x AD and any stopping time r of (, we have 

(4.8) Ea [ f(S-) ]S) = Ea [jTdsj f(sb)N(tslb)a(db)] 

See [10] for a proof of (4.8). 
For later discussion, we also need 

PROPOSITION 4.4. (a) Almost surely, the random set J is dense on R+ = 

(0, oo). (b) There exists a constant E > 0 depending only on AD, such that almost 

surely, 

limsup||(t - > E. 
t-oo 
tEJ 

PROOF. (a) Let 
Tt = inf{s > t: $ }. 

Clearly, Tt is a stopping time of (. Letting f 1 and r = ro in (4.8) and using 

L D N(a, b)u(db) = oo, we obtain 1 = oo Ea[ro]. Hence ro = 0 a.s. It follows 
from the Markov property that we have Tt = 0 a.s. simultaneously for all rational 

t, which implies that J is dense in R+. 

(b) The proof is similar. Let us choose E > 0 such that for any a E AD, we have 

a(B,(a)c) > 0, where B,(a) = {b E AD: Ila - bll < E}. Such E obviously exists. 

Now let 

at = inf{s > t: 11jS - .S-11 > El. 

(inf 0 = oo) Let T = ao and f (a, b) = I[,,) (Ila - b Il) in (4.8), we have 

1 > Ea [/ N(8, B,(c,)C)ds] 

Since N(a, b) is bounded uniformly away from zero, by the choice of E, there exists 

6 > 0 such that N(a, Be(a)c) > 6 for any a E AD. It follows from the above 

equality that 1 > 6Ea[[o]; hence ao < oo a.s. Again by the Markov property, we 

have a,, < 00, n = 0,1, ..., which implies part (b). 

5. Point process of excursions. RBM gives rise to a point process taking 

values in the space of excursions. The idea of regarding excursions of a Markov 

process from a set in the state space as a point process is due to Ito. Let us 

begin with a brief review of some basic notions of point processes. We follow the 

exposition of [6]. Suppose (E, E) is a measurable space and Ea = E U {a}, where 
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0 is a fictitious point attached to E. An E-valued point function is a measurable 
function e: [0, oo) - ELa such that the set J(e) = {s > 0: e, c E} is countable. For 
each point function e, the counting measure ne is defined by 

ne(C) = {(s, x) c C: e, = x} 

for C C (0, oo) x E. We denote the set of E-valued point functions by F(E). 
Now let (Q, Y, Yt, P) be a probability space equipped with a filtration of a- 

algebras. A function e: Q |-* F(E) is called an 2t-adapted point process if for each 
set C c 6, the increasing process t ?-4 ne((O,t] x C) is Tt-adapted. 

One of the important characterizations of a point process is its so-called com- 
pensating measure. 

DEFINITION. A a-finite random measure 'e on the measurable space ((O, oo) x 
E, B(0, oo) x E) is called a compensating measure of e if there is a sequence of sets 
{Un} C E exhausting E with the following properties: 

(a) For each n, the function t e ((0, t) x Un) is continuous; 
(b) for each n, we have E[e ((0,t) x Un)] < 00; 
(c) for any set V E E contained in some Un, the process 

t H+* i,e((0,t) X V) = ne((0,t) X V) - ne((0,t) X V) 

is an st-martingale. 

A point process possessing a compensating measure is said to be of class (QL) 
(quasi-left continuous). The compensating measure, if it exists, is unique. As an 
example, it is a well-known result that if 'e(dxdt) = m(dx)dt for some a-finite 
measure m on E, then e is a Poisson point process whose law can be written down 
explicitly in terms of m [6, pp. 43-44]. 

For each point process of class (QL), there is a corresponding stocchastic in- 
tegration theory. We say that a real-valued measurable function f(t, x, w) on 
[0, oo) x E x Q is 2t-predictable if for each fixed t, f(t, x, w) is E x Gt measurable, 
and for each fixed x, (t, w) ~-4 f(t, x, w) is an 2t-predictable process. 

Let e be a point process of class (QL). Define 

Ie = { t-predictable f: Vt > , j f (s, x, w)rne (dx ds) < co a.s.}; 

IC' = {t-predictable f:Vt > 0, ? [t Xf(x w)I e(dx ds)] < oo}; 

Ie2= {t-predictable f:Vt > 0, E [ft (f S, 27ne(dx ds)] < oo}. 

Then for each f E 0 n Ie2 C Ie, we can define the stochastic integrals 

(5.1) n(f)t = f(s, x, w)ne (dx ds) = , f (s, e, Lw), 
o~~~~~~~~~~~~ E sJt 

rt+r 

(5.2) ne (f)t = J J f(s, x,W)e (dx ds), 

and 
(t+ d 

(5.3) he (Af) f(sIx x)ha)e (dx ds) = ne( ()- ne(f)t 
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Here Jt = J n (0, t]. The process t H-4 i4(f)t is a square integrable 2t-martingale 
whose quadratic variation process is t 1-_ ine(f2)t. 

Let us now return to the RBM {Xt, Yt, PI, t > 0} and define the point process 
associated with it. 

Recall that Wa,b is the space of continuous excursions from a to b. Let us set 

wa = u 
wa,b 

bEaD, b#a 

(the space of excursions from a) and 

w= U W 

(the space of all excursions). As with Wa,b, the spaces Wa and W are equipped with 
natural filtrations Bt(Wa) and Bt(W). As before, let 4(t) be the boundary local 
time of X and r(t) be its right continuous inverse. The point process of excursions 
of X is a W-valued point process defined as follows. We set 

(5.5) J = {s E (0, oo): r(s-) < r(s)}. 

For each s E J, define l(s) = (s) - r(s-) and 

(5.6) e 
f 

(t) X(t + r(s-)), if t < l(s); 
(5.6) e8(t) = ~~~~ X(,r(s)), if t > i (s).- 

If s V J, define es = 0. It is clear that the point process e thus defined is 9t-adapted 
with g9t = Y,(t). We call this e the point process of excursions of X. 

THEOREM 5. 1. The point process of excursions of RBM X is of class (QL), 
and its compensating measure is given by 

rt 

(5.7) n((O, t) x C) = WQs (c n {e: e(O) = J8})ds. 

where ( is the boundary process, and the a-finite measure Qa on Wa, called the 
excursion law from a, has transition density function po(t, x, y) and absolute distri- 
bution 

(5.8) Qa[e(t) c dy;t < I] = g(t,y;a)m(dy). 

PROOF. There is no question about the existence of Qa. In fact, Qa can be 
defined by 

(5.9) Qa[A] = / Pab[A n {e: e(l) = b}]N(a, b)a(db) 
D 

for a measurable A C Wa. 
For the sequence of sets {U,} in the definition of compensating measure, we take 

Un = {e E W: l(e) > 1/n}. 

Since the function l(e) is positive on W by definition, we have U" T W. The 
increasing process t |-4 n'((O, t) x Un) is obviously continuous and 9t-adapted. It is 
integrable because by (5.10) below we have 

Qa[Un] = fg(n-1, y; a)m(dy), 



252 PEI HSU 

and the right side of this equality is bounded uniformly in a EE D. 
We claim that for any fixed t and any nonnegative measurable function f on W, 

(5.10) Ex [ f(es)] = Ex [ (f)ds, 

where for any measurable function f on W, 

Qa(f) = I f(e)Qa (de). 
Wa 

Let us prove (5.10). Set I = {t > 0: Xt # AD}. Since I is open, we have I = UW, I,, 
where I,> = (1,,, r,,) are the maximal open intervals contained in I. For each a, the 
path eck defined by 

(t)\ X(t+la), if 0<t<rc-lla) 
IX(r,,), if t > r,> - l,> 

is an element in W. Let 
At(f)= f(e). 

la? <t 

We compute the expectation of At (f). Denote the excursion process of X straddling 
t by Zt. Recall Theorem 3.4, which says that under the probability Px, the law of Zt 
conditioned on the event {5y(t) = s, X5(t) = a, X:(t) = b} is just pa,b conditioned 
by I > t-s. Set tn,k = k/2n and In,k = (tn,k, tn,k+l]. By the monotone convergence 
theorem, we have 

EX[At(f)] = lim Z Ex[f(Ztfnk+2);v(tlnk+2) E In,k] 
k<2nt 

ino J LD LD Eab [f (e)1k > tn,k+2 - s] 

X PxLh(tn,k+2) E ds, X,(tfnk+2) E da, X (tn,k+2) E db] 

(5.11) - lim j dsj p(u, x, a) a(da) j Eab [f(e)11 > tn,k+2 - s] 

r00 

x 0(1, a, b)dla(db) 
tn,k+2 

rtl 
- / ds p(u, x, a) a(da) E Ea,b[f(e)]N(a, b)a(db) 

JOJ AD JD 
ftp 

- / ds/ p(u,x,a)Qa(f) a(da). 
JOJ AD 

Here we have used Theorem 3.3, Corollary 3.4 and (5.9) exactly in this order. It 
follows from this and the identity 

j ds p(s, u, a)g(a)a(da) = Ex [ft g(X7)$(d8)] O DO 
which can be proved by (2.4) via an approximation argument, that 

(5.12) Ex [At (f)] = EX [jtQxs (f ) ,(d6)] 
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(5.12) implies in particular that the process fot QXs (f) (ds) is the dual predictable 
projection of the increasing process At (f ) (with respect to the filtration { t, t > 0}). 
It follows that for any nonnegative predictable process Zt, we have 

(5.13) Ex Zi"' f(ece)] Ex[f ZQxs (f])$(ds) 

In particular, we can let Z = I(O,,(t)], because r(t) is a stopping time. Making a 
change of variable on the right side of (5.13), we obtain (5.10). 

To finish the proof of the theorem, let V be a measurable subset of W contained 
in some U,. Then t n-* n'((O, t) x V) is gt-adapted and integrable; and so is t + 
ii((0, t) x V) = n((O, t) x V) - ni((O, t) x V), and we have Ex[n((0, t) x V)] = 0 by 
(5.10). From the strong Markov property and the easily verified identity 

ii((s, t) x V) = in((O, t - s) x V) o 0 (s) 

for s < t (0 is the shifting operator of X), we obtain 

EX[1i((O,t) x V)198] = ii((0,s) x V) +Ex[ii((O,t -s) x V) 0Or(s)lyr(s)] 

= ii((0, s) x V) + EXT(s) [ii((0, t - s) x V)] 
= in((O,s) x V). 

Theorem 5.1 is proved. 

6. An application of the excursion law. Recall that l(e) is the length of 
the excursion e. Let A be a measurable subset of AD and lA(t) be the number of 
excursions of length not less than E and that start from A and occur before time t. 

As an application of the excursion laws Qa of the last section, we prove the 
following theorem whose one-dimensional version is well-known. 

THEOREM 6. 1. With probability one, we have for all t > 0, 

(6.1) lim W/El(t) = | IA(Xs )I(ds). 

PROOF. The key to the proof is the asymptotic formula (8.1). Let fA(e) = 

I{1>?}(e)IA(e(O)). By definition, we have 

rtr 
1A[T(t= l J fA(e)n(de ds). 

Since fA E I,' n I2, the process 

(6.2) / AA(t) = 1A(r(t)) - j J fA(e)Q 8 (de)ds = j J fA(e)i(de ds) 

is a square integrable martingale with quadratic variation process 

rt r t 
j ds [fA]2(e)Q(s (de) = QQs [e: 1(e) > c] . IA((s)ds. 

Therefore by (8.1), we have 

El\AA(t)12 = (te-1/2 
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It follows from Doob's inequality that for fixed T, 

-f SUP n< 
0 

E2 [4 C<t<T n logn] ? o2 n 

where 7n = n-4. By the Borel-Cantelli lemma, we have 

(6.3) PnVt?:Ai i\(t) =01= 1. (6.3) [ _ ~~~~n--oo En() ] 

Again by (8.1), 
{t t 

(6.4) li m VFJJ fA (e)Q s(de)ds = limJ ,J Q S[l > ElIA(ts)d8 

- -j IA (s)dS. 

Hence, from (6.2) to (6.4), 

(6.5) P [Vt > 0: lim el (Tr(t)) = f( IA(Xs)'(ds) 1. 

Now for any E choose n = [1/E]. We have 

[1 + 1/n] 21A (T(t)) < V/E,1A((t)) < [1 + 1/nI]21ey?1(T(t)). 

This and (6.5) imply 

P Vt,> 0: lim \/IlA(T(t)) = IA(X8)q(dS)j = 1, 

which is equivalent to (6.1). 

7. Construction of the RBM. Since the RBM spends zero amount of time 
on the boundary, one may think of it intuitively as obtained by piecing together its 
excursions. In the one-dimensional case, this procedure was carried out in various 
forms (see [6, 7, 9]). One of the approaches is to start with the point process of 
excursions. 

Our intention in this section is to carry out the same procedure for higher- 
dimensional RBM. This case is more interesting because of the presence of the 
boundary process. Observing that, conditioned by the boundary process, the indi- 
vidual excursion processes are independent and depend only on the endpoints [8], 
we naturally start with a collection of independent copies of excursion processes 

{Wab, etb, ia,b pab}, and a jump process ( on the boundary generated by the 
Dirichlet-Neumann operator 'A. We have shown that the Levy system of ( is 
(N(a, b)o(db), dt). Since the Levy system describes the jumps of the process and 
these jumps come from the excursions, there must be a consistency condition which 
involves both the Levy kernel and the excursion laws. This is exactly the meaning 
of identity (5.9). 

The first step in our construction is to obtain a point process of excursions with 
the expected compensating measure (5.7). Let us first define a probability space on 
which our processes are based. Let (s1, )1, ),t, (t, Pla) be the jump process on AD 
generated by the operator 2A, as described in ?4. We may assume )lt = o{, s < t} 
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and Al = Vt>0 )lt, appropriately completed if necessary. Let (p2, M, P2) be another 
probability space on which are defined, for each triple (a, b, i) E AD x 3D x N+, a :& 
b, an excursion process ea,b;i with the law pa,b and we require further that these 
excursion processes are mutually independent. Finally let 

(7.1) (Ql .9 pa) = (Ql x Q2,4 XJ xM, Pla x P2). 

A typical element in Q has the form w = (Wi, W2). 

After these preparations, we now define the point process of excursions. Suppose 
w c Q. Let 

(7.2) J(w) = {s > 0: - $ 

We know that almost surely J is a dense countable subset of R+. We will call a 
point s E J(w) a jump time of size (_, (). Define a map e: R+ x Q - W U 3 as 
follows: 

(7 3) e (w) { -si(w),if s E J(w) is the ith jump time of size ((, (); 
if s VJ(W). 

Let 9t be the a-field generated by the random variables ,, e, s < t. Then the 
point process e defined above is st-adapted. 

PROPOSITION 7. 1. The 9t -adapted point process e defined above is of class 
(QL) with the compensating measure QG (de)ds. 

PROOF. For {U,} in the definition of compensating measure we can still take 
U,1 = {e E W: 1(e) > 1/n}. Let f be a nonnegative measurable function on W so 
that for any t > 0, 

Ea [ Q,(I(fI)ds] < o. 

We have to show that 
rt r t 

(7.4) ni(f)t = j J f (e)n(de ds) - j Q- (f)ds 

is a gt-martingale. Let us check that ?(f)t is integrable. We have by (7.3) and 
(4.8) that 

Ea iEf (eu ) = Ea E2 (f (eu )) ]=Ea E~S E 4 9 u)) 
LUC-t _UEJt _UEJt 

= Ea [ftdsf Et '8b( f (e)) N&s,b)a(db)] 
LJoJ D 

Hence by the consistency condition (5.9), 

(7.5) Ea [z f(eu) = LE [j Q(f)ds] 

We now show that for any bounded g(w) E 98 and t > s, 

(7.6) E[(ii(f)t - ni(f).q)g(w)] = 0. 
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By definition, for fixed w1, under probability P2, the collection of excursion pro- 
cesses {eu, u E J,} is independent of {eu,u E Jt - J,}. Hence for fixed w, the 
random variable g(w) is independent of 

t 
i(f)t - n(f) = Z f(eu) - Q(s (f)ds. 

ucTt-Js 

Consequently, we have 

Ea[(ii(f)t - ii(f)3)g(w)] 

E 
{ 

E2 
[g(A)]E2 

KE 

f (eu) - QEu(f)ds] 
} 

Ea {E2 [9(W)] [ZE -u f (e) - jQs(f)ds]}. 

But E2[g(w)] as a function of wl, is measurable with respect to )1. Hence by the 
Markov property of ( and (7.5), we obtain 

Ea[(q(f)t - i(f)S)g(w)] 

I15 uE2[g(w)]EJ E Elu [f(e)] Q(u(f)duj , 

=0. 

The next step is to get the boundary local time. Recall that 1 is the lifetime 
function on Q. Let 

(7.7) T(t) = E l(e,). 
s8Jt 

By definition, T is right continuous increasing and T(0) = 0. To ensure that T(t) 
has a continuous inverse, we need 

LEMMA 7.2. With probability one, the function T defined above is finite, strictly 
increasing and tends to infinity as t -+ oo. 

PROOF. By Proposition 4.4(a), the set J is dense on (0, oo) . Hence T is 
strictly increasing because 1 is strictly positive on W. Next, we show that T(00) = 
limt,O T(t) = oo a.s. The function f(a, b) = Ea,b[l(e)] is positive and continuous 
on O9D x O9D with the diagonal deleted. Thus for any E > 0, there is 6 > 0 such 
that f(a, b) > 6 if d(a, b) > e. It follows by the construction of the point process 
and Proposition 4.4(b) that for a fixed w1, under the probability P2, the random 
variable T(oo) is no less than a sum of independent positive random variables with 
expectations greater than or equal to 8. Hence T(oo) = oo, P2-a.s. and therefore 
also Pa-a.s. 

The assertion T(t) < oo, a.s. for each fixed t is implied by E[T(t)] < 00, which 
we are about to show. From (7.17) below, we have 

Qa[l(e)] = _ E& [TD] < C 
2 9a 
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with C independent of a. Consequently, by (7.5), 

E a[T(t)] = E [j/ Qs [j(e)]ds] < Ct < oo. 

The lemma is proved. 
It follows from the lemma that T has a finite, continuous, increasing inverse qb 

with q$(O) = 0. This qb will be the boundary local time of the process X. 
Now we are ready to define the process X. Let w C Q and t > 0. Define 

f $(w), if t=O, 
Xt (w) = e+(t) (t - T(IJ(t-))), if q$(t) c J(w), 

t (+(t) if 4(t) Xz J(w). 

We see immediately that the process X has continuous sample paths; 0(t) increases 
only when Xt c AD and X,(t) = (t. We can check directly that the amount of time 
X spends on the boundary is zero. Indeed, for any T > 0, 

m{t C (0, T]: Xt c M} = E 1(e,) + T- T(q(T)-) = T 
SEJO(T)- 

by the definition of T(t). 
Let us now define the filtration with respect to which the constructed process 

X is adapted. Recall that {9t, t > 0} is the filtration associated with the point 
process of excursions e = {eu, u > 0}. If e c W is an excursion path, let eu denote 
the path e stopped at u, namely 

eu = {e(t Au), t > 0}. 

Now define 

(7.8) Yt = 90(t)- V l{e7t;(t) -) }. 

Since q$(t) is a 9t-stopping time, the above definition has a meaning. Clearly, Xt 
is Ft-adapted. Note that we also have 

(7.9) 9k(t)- C gt C 

Now we can state and prove our main theorem. 

THEOREM 7.3. The process X defined above is an Ft-adapted RBM on D. 

PROOF. Let f E C2(D). We show that the process 

(7.10) B(f)t = f(Xt) - f(Xo) - 4 \Af(Xu)du - 4 J af (Xu)$(du) 

is an Ft-local martingale. 
By the definition of Xt, we have for 4(t) c J, 

f(Xt) = f(ed,(t)(1)) - [f(eo,(t)(1)) - f(e,(t)(t - 7(?(t)-)))]. 

Let 

(7.11) ft(u, e, w) = [f(e(l)) - f(e(t - T(u-)))] * 

Then we can write 

(7.12) f (Xt) = f ((,*(t)) - ft (4(t), e+(t), w) 
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This obviously also holds for q$(t) ? J if we make the convention that ft (u, 0, w) = 0. 
Let us rewrite the terms on the right side of (7.12). First of all, since ( is the 

process generated by ' A, the process 

M(f)t = f(Wt) - f(Wo) - 2 Af(4u)du 

is an M1t-martingale. Because the a-field 9t is generated by M4t and other events 
independent of Vt>o M(t, the process M(f) is also a 9t-martingale. Now q$(t) is 
9t-stopping time for fixed t and t 4 q$(t) is increasing. Therefore we have 

(7.13) f( (t)) = f(Wo) + M(f)+(t) + 2 j Af(-)du 

and t ~-4 M(f)o(t) is a 90(t)-local martingale. To rewrite the last term in (7.13), 
we show first 

(7.14) Af(a) =9 (a) + Qa[J Af(e(u))duj 

We have 

(7.15) Af(a) = '3 uf(a) = ,) (uf(a) - f(a)) + (a). 

In the following Eo will denote the expectation with respect to the ordinary d- 
dimensional Brownian motion. We have 

(7.16) Uf(x) - f(x) = E& [f(BrD) - f(Bo)] = Eox [J Af(Bu)dU]. 

On the other hand, we can verify easily that for any g C C(D), 

(7.17) Qa [ g(e(u))du] = limQ [Ia g(e(u))du; 1 > ] 

= lim g(e, y; a)E (JT g(Bu)du) 

10 [(TD~~~T = imOE Po p(E,y, a) EOY J: g(Bu)du] du 

=lim - E& Il g(Bu)du; TD > ] e-O2 D9na Li 

20 E& [jE Dg(Bu)du]. 

The last step can be justified. Equation (7.14) follows from (7.15) to (7.17). 
On the other hand, since the process X spends zero amount of time on the 

boundary, we have by Proposition 7.1, 

rT(W() Rl(eu) 
Af (Xu)du = E j Af(eu(T))dT 

UCJk(t) 

() a aringle +(t) Q I[J(e) 
= g0(t)-local martingale + WU Afu ; (e(,r))dr du. 
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Therefore, by (7.13), (7.14) we get 

(7.18) f((O(t)) = f(Xo) + 90(t)-martingale + j >"(Xu)O(du) 

I TWO()) 
+ 2 \Af(Xu)du. 

To rewrite the second term on the right side of (7.12), let us set 

(7.19) gt(u,e,w) = ft(u,e,w) - 
I 

f (e(v))dv '{1>t-r(u-)}. (7-19) 9t (U) 1 2 - I1> -,(u-j 

We claim that for any bounded function G(e) c B_T(U_)(Wa) and any t > s, 

(7.20) I gM(u,e,w)G(e)Qa(de) = 0. 
Wa 

Indeed, since the measure Qa has the transition density function po(t, x, y), and w 
and u are regarded as constant in the integration in (7.20), if we replace t - T(u-) 

by t and s - T(u-) by s, the left side of (7.20) becomes 

Qa [G(e) 
. 

Eo) (f(BTD) 
- f(Bt-s) - Af 

L 
f(Bu)du;TD > t - I > s] =, 

which indeed holds because E = 0. 
We have 

ft (+(t), e+(t),w) = (A ft (u, eu, w) 
uG Jo(t) 

I1 r(eo(t) ) 

(7.21) t g(u,eu,w) ? ! f z(f(e (t) (u))du 
UCJk(t) 2 1 t-(())-) 

- jy(t)+ f qt(u,e,w)n(de du) + - J Af(Xu)du. 

Note that in the summations, only the last term is not zero. Finally, by (7.10) and 
(7.12), (7.18) and (7.21), we obtain 

(7.22) B(f)t = 9,(t)-local martingale - / f gt(u,e,w)i(de du). 

It follows from the above relation and (7.9) that to show B(f) is an 2Tt-local mar- 
tingale, it suffices to prove the last term in (7.22) is 2t-local martingale, namely for 
any bounded measurable H(w) c 7, and any t > s, we have 
(7.23) 

E gt(u, e, w)h(de du)H(w)] =E [I f g8(u,e, w)(dedu)H(w)] 

We will now show in fact that both sides reduce to zero. The idea of the fol- 
lowing proof is in [6]. By (7.8) and the usual argument, we may assume that 

H(w) = K(w)L(w), where K(w) E , and L(w) = G(e',(0(t)-)) for a bounded 
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measurable function G on W. For K(w), there exists a gt-predictable process Kt 
such that K(w) = Ko(,). Using (7.20) we have 

E [ J 9t (u , e, w)ni(de du))H(w)1 - E [ J 9t (U , e, w)ni(de du)H (w)1 

= ?E ( E t(u,eu,w)Ku(w)G(e T(u())] 

= E [j KU(w)du 9t (u, e, w)G(e8T(u) )Q(u (de] 

=0. 

The same proof applies to the right side of (7.23). Strictly speaking, we have to 
replace s and t by s A T(T) and t A T(T) respectively in the above argument to 
ensure that the proper integrability conditions are satisfied. 

We have proved for any f E C2(D), B(f) defined in (7.14) is a Ft-local martin- 
gale. By the martingale characterization, we conclude that X is indeed an RBM. 
We may also start from the fact that B(f) is an Ft-local martingale and prove that 
there exists an Ft-Brownian motion Bt so that the Skorohod equation (2.6) holds 
for the triple (X, B, /), thus proving that X is an RBM. 

REMARK. We have only considered RBM starting from a point on the boundary. 
Using an independent copy of killed Brownian motion on D, we can construct RBM 
starting from any point in D. We omit the details. 

8. Some asymptotic estimates. In this section we verify the following asymp- 
totic formulas used in the preceding sections: 

(8.1) Qa[e: l(e) > t] - .2/i 

(8.2) N(a, b) ?F(d/2) | -bll|d 
27rd/2 ~~~d 

For d > 3, 

(8.3) Ea,b[l(e)] - (1/d) Ila - bl 12. 

Space prohibits us to give complete proofs and we are content with indicating 
the major steps and leave the interested reader to fill out the details. The appendix 
in [13] is a good reference. Although it only deals with the RBM transition density, 
the method and most of the estimates there are valid for the killed Brownian motion 
transition density. 

Let D be a bounded domain in Rd (d > 2) with C3 boundary. The fundamental 
solution po(t, x, y) of the heat equation (2.10) can be constructed by the parametrix 
method. Let 

17(t,x,y) = (27rt)-d/2e-IIx-yII2/2t 

be the transition density of the free Brownian motion in Rd. Let qb be a C3 function 
on D such that 0 < qb < 1 and q$(x) = 0 if d(x,DaD) > 2E, and q$(x) = 1 if 
d(x, 9D) < E, for a small but fixed positive E. For a point x E D close to the 
boundary, let xa denote the unique point on DD such that d(x, DD) = IIx - xaII. 
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Let x* = 2xa - x. Thus x* is a point outside of D symmetric to x with respect to 
the boundary. 

As a first approximation of the solution po (t, x, y), we set 

(8.4) q(t, x, y) = r(t, x, y) - (x)r(t, x*, y). 

Obviously the boundary condition is satisfied, namely q(t, x, y) = 0 if x e 9D. The 
parametrix method is to seek a solution po(t, x, y) of the following form: 

(8.5) po(t, x, y) = q(t, x, y) + j ds J q(t - s, x, z)f(s z, y)m(dz). 

It is not difficult to write down an integral equation for f(t, x, y): 

f(t, x, y) Ax[ - aq(t, X y) - j ds J [- a 
q(t - s, x, z)f(s, z, y)m(dz). 

This equation can be solved by the iteration method, and we express f(t, x, y) as 
an absolutely convergent series 

00 

(8.6) f(t, x,y) = Zf (t, x,y), 
n=o 

where 

fo(t,x, Y) = [Ax- q(t,x,y), 

fn(t, x, y) = f dsf fo (t- s, x, z)fn- (s, z, y)m(dz). 

Differentiating (8.5) with respect to x, we have 

(8.7) 2g(t, y; a) = aa po (t, a, y) 

Jq(t,a,y)+ d d q(t - s, a, z)f(s, z, y)m(dz) 

=-gs q(t,a,y) + I,(t,a,y). aria 

For the last term we have the estimate 

(8.8) II (t, a, y) Im(dy) < const. 

for a constant independent of t and a. A straightforward calculation shows that 

(8.9) a, q(t,a,y)m(dy)=2 r(t,fa,ay)m(dy)- IDaria''= aDnJa 2 2 

It follows from (8.7) to (8.9) that 

J (t, Y; a)m(dy) - . 

This proves (8.1). 
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Differentiating (8.7) with respect to y, we obtain 

40(t, a, b) = a 
(t, a, b) a9naa9nbP 

a2 a t ra 
(8.10) = q(t,a,b) + J ds] a q(t - s, a, z)f(s, z, b)m(dz) 

a9naa9nb aunb 0 9n 

= q(t, a, b) + I2 (t, a, b). a9naa9nb 
For I2 (t, a, b), the following estimate holds: 

(8.12) j It2(t, a, b) dt = O(I la - bl I-(d-3)) 

(8.12) t I I I2 (t, a, b) II dt = ?(I Ila - bl I -(d- 3). 

Again by straightforward computations, we have when a and b are close, 

(8.13) j a 2 
q(t,a,b)dt 2 (d/2) la - bl1 d 

(8.14) j0t a2q(t,a,b)dt 2(d/2) a - bl -(d-2) 

(8.12) and (8.14) hold if d > 3. It follows from (8.9)-(8.14) that 

N(a, b) = 0(t, a, b)dt (d/2) la - bl -d j b)dt ~~27rd/2 
and if d > 3 

Eab[l(e)] -foootO(t,a,b)dt 1 l- bl 2 

(8.2) and (8.3) are proved. 

9. Concluding remarks. (a) Sato [12] proved that under certain conditions, 
a time homogeneous Markov process is completely determined by its minimal part 
and its boundary process provided that the process does not spend time on the 
boundary. In view of Sato's result, it is quite natural to construct a process from a 
minimal process and a process on the boundary. As we have mentioned earlier, our 
method can be applied to general diffusions on a compact Riemannian manifold 
with boundary. Thus at least in this special case we have succeeded in carrying out 
such a construction. (Recall that the excursion process pab in our case depends 
only on the minimal process.) In contrast to the method in [15], the shape of the 
domain under discussion does not play any role in our approach. This makes it 
possible to generalize our construction to processes of nondiffusion type with zero 
sojourn time on the boundary. In the general case, however, the resolvent theory 
should take the place of the martingale theory used here. This topic will be dealt 
with in a future publication. 

(b) In our construction, we have started with a minimal process XO (killed 
Brownian motion) and a process ( on the boundary (the boundary process) which 
are known to be the corresponding parts of a process X. Thus the data we started 
with is consistent at the beginning. In the case of diffusions, consistency simply 
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means that the Levy measure of the boundary process must be related to the 
minimal process in a certain way. Let us be more precise. Assume L is a smooth 
elliptic differential operator on D which generates a minimal diffusion XO on D. 
Let KL (x, b) be the Poisson kernel of L and 

NL (a,b) = 2 KL (a,b). 

Now let ( be a process on the boundary generated by an integrodifferential operator 
L. Then a necessary and sufficient condition for XO and ( to be the minimal 
process and boundary process of some diffusion process on D is that the Levy 
system of ( have the form (,u(a)(a/Dna)NL(a,b),ds), where iu is a finite strictly 
positive function on AD. The function ,i is immaterial since it can be set to 1 by 
an equivalent choice of the boundary local time 

t 
01 (t) = (X) 0, (d) 

Now suppose we are given a minimal process XO and we want to characterize 
all possible boundary processes ( associated with XO. The answer is that the 
Levy kernel, which can be read off from the generator of (, must be of the form 
described above. For example, all oblique RBMs on D will have the same minimal 
part, and hence their boundary processes have the identical (up to a function ,i on 
the boundary) Levy system, but the generators of the boundary processes differ 
one from another by a vector field on AD. More precisely, let v be a smooth vector 
field on AD such that v * n > ae > 0, and let A, be the infinitesimal generator of 
the boundary process of the oblique RBM with reflecting direction v. Then 

A,,(a) = v (a) n(a)A, + v+(a). 

Here v+ = VJ- (vz n)n is the projection of v on the tangent plane of the boundary. 
(c) The so-called inverse problem is much more difficult to answer. In this 

problem, we assume that a process on the boundary is given and ask for conditions 
on minimal processes which can be associated with it. We can ask the following 
more restricted question: Given a pure jump process ( on the boundary, is there a 
minimal process X? consistent with ( so that the resulting diffusion process X is a 
diffusion with normal reflecting boundary condition? If such XO exists, is it unique? 
The problem of uniqueness among diffusions with generators of the form V . -YV is 
equivalent to the physical problem of determining the interior conductivity (-Y) of 
a body by measuring temperature and heat flow at the boundary. Although there 
are some recent results by analysts towards an affirmative answer to the uniqueness 
[14], the problem as we just stated remains open. 
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