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Flows and Quasi-invariance of the Wiener Measure
on Path Spaces

ELTON P. HSU

ABSTRACT. Let W (M) be the space of paths on a compact Riemannian
manifold M starting from o € M. The Wiener measure v on W (M)
is the law of Riemannian Brownian motion on M from o. Let H be
the R?-valued Cameron-Martin space with zero initial values, where d is
the dimension of M . Each h € H gives rise in a canonical way to a
vector field D, on W, (M). We give a new proof of the existence of the
flow on W, (M) induced by D, by Euler’s polygonal method. This proof is
technically simpler than the previous proofs using Picard’s iteration method,

1. Introduction

We assume throughout this paper that M is a d-dimensional compact
Riemannian manifold and O(M) its orthonormal frame bundle. We use H
to denote the canonical R%-valued Cameron-Martin space with zero initial
values. We fix a point 0 € M and use W, (M) to denote the set of M-valued

paths (of time length 1) starting from o. The symbol W, (Rd) has a similar

meaning with o taken to be the origin. Thus H C WO(Rd).

We choose a connection on M compatible with the Riemannian metric but
not necessarily torsion-free. This connection determines a Laplace-Beltrami
operator AY on the manifold M . We use v to denote the Wiener measure
on W (M). Tt is the diffusion measure on W, (M) generated by A¥ /2. For

M =R, we take the canonical euclidean connection and o the origin. The
corresponding Wiener measure is denoted by . We fix a frame u, € O(M)
such that 7(u,) = 0, where 7 : O(M) — M is the canonical projection. For
ayeW (M), weuse U(y):[0, 1] — O(M) to denote the horizontal lift of
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y such that U(y), = u,. By definition the horizontal lift U, = U(y), is the
solution of the stochastic differential equation

(L.1) dU, = H, U " ody,.

Let us first describe heuristically the flow on the path space W, (M) we
intend to study. Fix an h € H. We define a “vector field” D, on the
path space W (M) as follows. For each y € W (M), the tangent vector
Dy (y) € T,W,(M) is defined by

(1.2) D7), = U(),h,.

Our goal is to construct a flow ¢’ : W (M)W, (M), te R', generated by
the vector field D, and to show that the Wiener measure v is quasi-invariant
under this flow. In other words, we will solve the ordinary differential equa-
tion

(13) Lty = Dy,

—1
and we will show that the measure v = v o (Ct) , the law of (‘,”y, is

equivalent to ~. We will also give an intrinsic description of the Radon-
Nikodym derivative dv'/dv. We will see shortly that the existence of the
flow and the quasi-invariance of the Wiener measure are closely related and
have to be discussed together.

Equation (1.3) needs to be interpreted carefully. We will solve the equation
on the probability space (WO(M ), &, v), where .Z is the canonical Borel
o-field on the path space W, (M). We will prove that (i) there exists a family
of measurable maps (' : W.(M)— W, (M), te€ R!, such that for each fixed
t € R', the process § — (Cty)s is a semimartingale whose law is absolutely
continuous with respect to v ; thus the horizontal lift U({ ') is well defined;
(ii) for v-a.a. y, the functions ¢ — (C’y)s and ¢ — Dh(C’y)s = U(C‘y)shs
are smooth for each fixed s and satisfy the equation (1.3).

The above problem was motivated by the desire to establish an intrinsic
differential geometry on the path space W, (M) based on the Wiener measure.
For this purpose, we need a well-behaved gradient operator D, which is
determined from the directional derivative D, by the formula

(DF , hy,, = D,F.

In order that D, play the same role as its counterpart in the flat case M =
R? , we need a Cameron-Martin formula for the flow generated by D, . We
refer the reader to Driver [4], Fang-Malliavin [6], Hsu [7], and Malliavin [8]
for further discussions on stochastic analysis on path spaces.

Let us briefly review the history of the quasi-invariance problem discussed
here. The case M = R? goes back to the early days of probability theory
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and has been discussed by, among others, Cameron and Martin, Maruyama,
Segal, Gross, Kuo, Girsanov, Ramer, and Kusuoka. Cruzeiro [3] studied the
problem with a more general vector field on euclidean space and used finite-
dimensional approximations in the Wiener space. The case where M isa Lie
group was mentioned first in Albeverio and Hoegh-Krohn [1] and a detailed
proof was given in Shigekawa [10]. See also the discussion in Malliavin-
Malliavin [9]. For general compact Riemannian manifolds, the breakthrough
was made by Driver [4], who observed that it is necessary to assume that the
torsion of the manifold satisfies an antisymmetry condition. This condition
on the torsion is automatically satisfied by all natural connections on Lie
groups. Under this antisymmetry condition on the torsion and the extra
condition that 7 € C 1([0, 1], Rd) , Driver [4] showed that the flow generated
by D, exists and that the Wiener measure is quasi-invariant under this flow.
As was noted in the same work, these results for D, with smooth A are
already sufficient for defining directional derivatives D, forall 4 € H by an
approximation argument and hence are sufficient for establishing the gradient
operator. In Hsu [7], I succeeded in removing the unnatural restriction & €
C 1[0, 1] and proved the existence of the flow and the quasi-invariance of
the Wiener measure for the full Cameron-Martin space H .

There are two classical methods for solving a nonlinear ordinary differen-
tial equation like (1.3), namely, Picard’s iteration method and Euler’s polyg-
onal method. Both Driver [4] and Hsu [7] used Picard’s method. In this
paper we will use Euler’s polygonal method. With this new approach we are
able to greatly simplify the proofs.

By analogy with the classical Euler’s method, the first step is to linearize
(1.3). We will see later that the quasi-invariance property of the linearized
equation is similar to the infinitesimal quasi-invariance proved in Bismut [2]
and Cruzeiro [3]. The possibility of deriving the global quasi-invariance from
the infinitesimal quasi-invariance was suggested by P. Malliavin.

Acknowledgment. I thank the anonymous referee who helped me clarify
several points in the history of the problem.

2. Ité map and the image of the flow on R?

The It6 map J : W;(Rd) — W (M) is defined as follows. Let w € W;(Rd)
and let U € W (O(M)) be the solution of the stochastic differential equation

(2.1) dU; = Hy odw, Uy=1u,.

Here H = {Hf, i=1,...,d } are the canonical horizontal vector fields
on O(M). Let y, = n(U,) be the projection of U in W, (M). Then we set

Jw = . Itis well known that J carries the Wiener measure x on Wo(]Rd) to
the Wiener measure v on W (M). Of course as a map between path spaces,
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J is defined only g-a.a. There is an inverse J ' : W (M) — Wo(Rd) , called
the stochastic development map and defined by

(2.2) w, = f 9,
v, 1]

where U = U(y) is the horizontal lift of y in O(M) determined by the
stochastic differential equation (1.1) and # is the canonical R?-valued 1-
form on the frame bundle O(M).

We will translate the main equation (1.3) from W (M) to W;(Rd) by
the It6 map J. This step cannot be justified before the quasi-invariance of
the Wiener measure v under the flow ¢’ is proved. Thus we compute the
image of (1.3) on WO(]Rd) (see {2.3) below) heuristically. Once this equation
is solved and the quasi-invariance of the Wiener measure g is proved on
W;(]Rd) , it is not difficult to come back to W (M) by the It6 map.

We fix an £ € H throughout the rest of this paper. We need to compute
J:th , the pullback of the vector field D, . We use ﬁh to denote the usual

directional derivative operator on %(Rd) ; Le

mF(w+tht)—F(w)‘

DyF (@) =1

The pullback J:le is of the form f)p . Because of the curvature of M,
in general p is no longer an H-valued function, but a semimartingale of
a certain restricted type, see Lemma 2.1 below. The interpretation of Dp

for an R?-valued semimartingale p is as follows. Let F be a function on
W,(R?) for which the gradient DF is defined. By definition DF isan H-
valued function on W;(]Rd) such that (DF, h) = DhF forall he H. Let
(DF), be its derivative with respect to s. We define

F(w) = f (DF).. dp) = D,.F / (. dp,),

where {h“} is an orthonormal basis of the Cameron-Martin space H and
(-, -) denotes the usual euclidean inner product. We point out that the above
definition coincides with the definition of anticipative stochastic integrals
developed by Skorokhod, Nualart, and Pardoux.

In the following lemma, the equality J, ’Dh = Dp should be understood in
the following sense. For any smooth cylindrical function F on W (M), we
have D,(F o J) = D,F oJ, or more explicitly, D,F(w) = D,F(y), u-as.,
where F(w)=F(Jw) and y = Jw.

We will use ® and Q to denote the torsion form and the curvature form
of the connection on M , respectively, Note that @ is an R? -valued 2-form
on O(M) and, since the connection is assumed to be compatible with the
Riemannian metric, Q is an o(d)-valued 2-form on O(M). The values
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of these two forms at a frame u € O(M) are denoted by ©, and Q,,
respectively.

LEMMA 2.1. We have J'D, = D, ; namely the pullback of the vector
Dy (y) by the Ito map J is given by D (w), where w = J7 'y and

5 5
P(w)szhs—/o GUT(HodwT,HhT)nfO K(0), o daw.,

K(a))S:/ Q, (Hodw_, Hh).
0 T

Here U = U(y), the horizontal lift of y with initial value Uy = u,, .

For a proof of this lemma, see Driver [4], Fang-Malliavin [6], or Hsu [7].
Compare with Bismut [2, p. 62].

We can regard p in Lemma 2.1 as a map from WO(JRd) to itself. For any
R -valued semimartingale z (under the Wiener measure u), its value p(z)
is again an R9-valued semimartingale.

Now let {é't, te ]Rl} be the flow on W;(Rd) obtained from the flow

{Cr, te Rl} on W (M) via the It6 map, i.e.,
Ew=T0"Taw.

This flow is determined by the ordinary differential equation
d 1
Eét‘” =D, (o).

By the canonical identification of Dp with p in Wo(]Rd) , we can write the
above equation as

(2.3) %é‘w =p(¢w).

By writing (2.3), we implicitly assume that a solution {é‘w, te R]} is to

be sought such that &' is a semimartingale (under the measure y) for each
fixed te R . Only then can p(ftw) be interpreted properly. Compare with
Cruzeiro [3], where equations of the form (2.3) were discussed under the
assumption that p is an H-valued function. We have seen from Lemma 2.1
that this hypothesis does not hold in our situation.

It turns out that we only need to deal with a very restricted class of semi-
martingales, namely semimartingales z whose Doob-Meyer decompositions
under the Wiener measure 4 have the form

5 5
(2.4) ), = [ Adc+ ] O.do.,
0 0
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where O is uniformly bounded process and there exists a constant K (in-
dependent of ) such that

(2.5) (@), < K {Ih) +1}.

We will denote this class of semimartingales by SM (k). The semimartin-
gales in SM(h) for which (2.5) is satisfied is denoted by SM(4; K). For
simplicity, we will always assume without loss of generality that K > 1, We
will abbreviate (2.4) as z = {4, O}. On SM(h) we introduce a norm || - ||
as follows. Let z = {4, O}; then

1 1
ElE =E/ ]Aslzds+E[ 0,%ds.
0 0

Thesetof z = {4, O} € SM(h) for which O is not only uniformly bounded
but also an O(d)-valued process is denoted by SM,(h). The set of semi-
martingales in SM,(h) satisfying (2.5) is denoted by SM,(h; K).

Assuming that z = {4, O}, we rewrite p(z) in terms of Itd integrals.
After a simple computation we have

(2.6) plz), = h, - /0 a(z).dv - fo b(z).dz,,
where

@.7) a(z2), = 3 Hy (H,, Hh,) + 3Ricy (Hh,),
and

(2.8) b(2), = Oy, (H, Hh) +K(2),.

Here Ric, is the Ricci curvature transform at u € O(M) and U = I(z)
the stochastic development of z in O(M), i.e., the solution of (2.1) with w
there replaced by z. Equation (2.8) can be further rewritten as

(29)  b(z), = Oy (H, Hh) + 5 fo HQ (H,, Hh)dt

5 S
+ / Q, (HA dt, Hh,) + f Q, (HO.dw, Hh,).
0 T 0 3
If z € SMy(h; K) satisfies (2.5), then by a simple computation we have
(2.10) E{ sup [b(z)s|2} T )
0<s<1

with a constant C independent of z.

We follow Driver [4] and say that the torsion is antisymmetric if the matrix
{G(Hi, Z )‘i } is antisymmetric for all Z € O(M). It is clear from (2.8) that
this assumption implies that b(z) is antisymmetric; i.e., it is an o(d)-valued
process.
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3. Euclidean motions in path space

Let z € SM(h). Following the terminology of Fang-Malliavin [6] we
define a euclidean motion ¢ : WO(Rd) — W,(R?) by
(3.1) $ix =t [h - fo .a(z)tdt] + /0 P
If x={A4, O}, then
(3.2) qf»fx = {t[ﬁz —a(z)]+ e_tb(z)A, e_rb(z)O}.

When z = x we write ¢,x = qbf x. The following lemma can be proved by a
simple computation.

LEMMA 3.1. We have
X ;X
QSI].HZ)C = ¢tl (b,] ,tzx -
where
(3.3) Qbf] ’fzx = {tzetlb(Z)[k _ a(Z)] + e—fzb(z)A , eitzb{z)o} '

The main result of this section is Proposition 3.9, an estimate on composi-
tions of two euclidean motions, which will be needed to show the convergence
of Euler’s polygonal method for the flow equation (2.3).

Let |z| = supy,., |z,|. Thus (2.10) can be written as E|b(:/:)[2 < CK>.

LeEMMA 3.2. There exists a constant C such that for all x, = {4,, 0,} €
SMy(h; K),i=1,2, we have,

Ela(x,) - a(x,)|" < Cllx, - x|,
and
Elb(x,) - b(x,)I* < CK’||x, - x,].
Note that we always assume that K > 1.

ProoF, This follows from I’-estimates for stochastic integrals. O
LeMMA 3.3. There exist two positive constants L, and L such that for all
z={4, O} € SMy(h; K), we have for all N > L K,

P{b(z)| > Ny <e ™.

Proor. From (2.9), the sum of the first three terms in the definition of
b(z) is bounded by a C,K for some C,. The last term is an o(d)-valued
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martingale with uniformly bounded quadratic variations, say C,, for each
component. It follows that

PﬂmmzAdi?P{sm|wq>N CK}
0<s<C,
_2d’
Va2 Jc
where W is a 1-dimensional Brownian motion and
N-CK

WV,

eéx fza’x,

Cy y=
The lemma follows immediately. O

Lemma 3.4. For all x,

= {4,,0},i= 1,2, and z = {4, 0} in
SMy(h; K), we have, for N > L K,

2
ll¢;x, — 7%, || < {1+ Nt}lx, — x| + e Bl
Proor. We have
(34) ¢f _ szxz _ ( _ xz)
={[ - - [0 1] 0 - o).

Since b(z) is antisymmetric, we have |eilb(z) — 1| < t|b(z)|. Hence the
square of the norm of the first component is bounded by 21 , where

1 2 a
I:EfLMﬂJM”—AMd&
0

Let S, = {|b(z)| > N}. We split the expectation / into two parts /| and
I, , the first being over the set S, and the second over Sf\,. Clearly

2 2
Iy N [y =ds s
For I,, we have
I, < CKE [Ib(2); 53]

Since by Lemma 3.3

B [Joa's 5] < PRIV < e

2
we see that [, < C,K 2e7LN'/2 " The second term on the right-hand side of
(3.4) can be estimated similarly. The lemma follows. O



FLOWS ON PATH SPACES 273

LEMMA 3.5. For all z; = {4;,0},i = 1,2, and x = {4, O} in
SMy(h; K) we have
2
7' x — ¢72x| < (CK|z, = z,).
Proor. We have
b X — ¢2x

= {~tlatz) - atz)] + [o - ] 4, [ :0) o).

By Lemma 3.2, the norm of the first term of the first component is bounded
by tC, ||z, — z,|| . Using the inequality

~th(z,)

le™") — e < fp(z,) - b(z,)]

and the assumption that |4 | < K {lhs| + 1} , wWe can estimate the norm
of the second term of the first component. The square of this norm is
bounded by #*C,K’E|b(z,) — b(z,)|*. By Lemma 3.2, this is bounded by
t2C3K4||:~:1 — Z,||. Thus the norm of the first component is bounded by

tC,K + |z, — z,|| . Similarly, using the fact that O is orthogonal, the norm of
the second component is bounded by tC,K||z, — z,||. The lemma follows at
once. 0O

LeMMA 3.6. There exists a constant L, such that, for all x; = {4;, O} ,
i=1,2, in SMy(h; K), we have for all N > LK’

6%, — 5,01 < [1+ 2N1] ||x, — x,|| + tCK 1e ¥ 1",

Proor. We have

b, — 6yl < g%, — 67 X5l + 1167 %, — 677, .

The lemma follows immediately from Lemmas 3.4 and 3.5. O

LeMMA 3.7. For all x = {4, O} in SMy(h; K) we have

g x — x|| < tCK>.
Proor. The estimate follows from the identity
$x —x = {r[iz —a(x)]+ [e_tb(x) - 1] A, [e_tb(x) - 1] O}

and the inequality [ — 1| < 7]b(x)|. O

LEMMA 3.8. For all x = {4, O} in SMy(h) we have

X
||r;b,1 L%~ c,f)tzx[l SHeCK,
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Proor. The estimate follows from the identity
x —1,b(x) i
¢:l X ¢12x =1, { [e R l] [h - a(x)] , 0}

and the inequality [¢~"?™) _ 1| < tb(x)]. O

We are ready for the main estimate of this section. From (2.7) we see that
a is uniformly bounded. In the following proposition we assume without
loss of generality that K > max{1, |a|_}.

ProposITION 3.9. Suppose that x,, x, € SMy(h; K). Then for all N >
9.1511(2 and [t,|, |t,] <1, we have

3
]|¢t1¢12‘x1 - ¢tl+!2x2” S{LH2N( + 1) X, — x|l + £,2,CK
2
+ELCKN + (8, + t,)CK e~ 4,
ProoF. From Lemma 3.6, we have

(3.5) 1640 = b e Xl < {14 2N(2, + )} x, - )
H(t, + 1) C K eV,

Let x = x,. From Lemma 3.1 we have

||¢fl¢t2x - ¢11+,'2x” = ||¢"f] (}5sz - ¢fl¢i ’,sz.

From (3.2) and (3.3) we see that rgﬁlzx and qﬁtl,tzx are in SM,(h; 3K).
Hence using Lemmas 3.4 and 3.8 we have

(3.6) 165 6, %~ &, 4. X1

2 —LN*/4
<{1+Nt}lo x -4, x| +1,CK"e

2
< {1+ Nt }t,,CK +1,CK e

From Lemmas 3.5 and 3.7 and the fact that qﬁizx is in SMy(h; 3K), we
have

BT N9, 6,x — 5, x| = 16,76, x — 6} &, x|
<1,CK’ i[qbtzx — x| € 1,5,CK’.

Combining (3.5)-(3.7) we obtain the desired inequality. O



FLOWS ON PATH SPACES 275

4. Existence of the flow and the quasi-invariance

The euclidean motions {qﬁ’ , L€ R'} are constructed so that they satisfy
the equation

d
—¢w =pw),

dt’t

which is the linearized (infinitesimal) version of the flow equation (2.3). The
idea now is to use ¢’ to construct the solution of (2.3) by Euler’s polygonal

method.
We now write down the appropriate polygonal approximations. Let n be
a fixed positive integer. For each nonnegative ¢ let £, =27 "[2"¢]. We define

O,n —n
"w=wandfor telt,, 1, +27"]
él,nw — ¢t7tn£tn,nw.
E-" is defined similarly for negative values of . We now use the basic
estimate in Proposition 3.9 to prove the convergence of this sequence of

flows.
Let

ét,n _ {At,n’ Ot'n}.

Let 5, =27 "k for an integer k. Then &% "w = qﬁ(z’i),,cu , where ¢ means
the k-time composition of ¢ . Explicitly,

sk,n_k_l 1 kol —b(&% ") /2" i 5,0
(4.1) A=Y 4 T]e [h a(é w)]

=0 j=l
and
k—1 i
@2) P T
=0

Note that we use the left multiplication. From (4.1) the following estimate
is clear.

LeEMMA 4.1. For all positive n and all k we have
43" < Isg {1A] + lal, } -

Assume that T > |a|_ . Then &% "w € SMy(h; 2T) for all n and k such
that |s, | < T.
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We have by definition
&0 = by y-wnEt "o,
and
Eely = qbz-nés“*‘ g,

Fix a positive T > |a|oo. By Proposition 3.9, there exists a constant Cy
depending on T such that, for all |s,| < T and all N > 36L,T,

“ésk,nﬂw _ fs"’an < [1 + é_ly] Hésk_l,nﬂw _ésk_l,nw”
CT CTN C. —LN?/4
Zﬁ + —23" Enle -

0,n+1

Using this estimate repeatedly and the fact that & w=""0w=0w we

have, for all |s, | < T,

k—1 I}
N _LN? N
jE% " — &% w)| < SL {1 55 +2"e Y /4} {1 + 2”—1}
1=0

!

[y

Cr 1 N  n —LN'/4 N \f
Cr 1 N n —LN'j4) 21N

Now we choose N = [#/4T]. For sufficiently large n, dependingon T, we
have for all |5, |< T andall n> n,

e o - e "o < { L

From this inequality it can be shown after some technical routines that the
limit

Ew=lim &"w
hR—00

exists and defines a flow {éf, te Rl} which solves (2.3) in the sense we
stated in Section 2. Furthermore, for each fixed ¢, the semimartingale
o e SMy(h). It follows from the usual Cameron-Martin theorem that
the measure uo (&)™ is equivalent to the Wiener measure 1. We refer the
reader to Hsu [7] for details.

Having proved the existence of the flow {ét, re ]R]} and the quasi-
invariance of the Wiener measure g under this flow, we can now translate
these properties from WG(]Rd) to W, (M) by the Itd map. The details of this
step are the same as those in Hsu [7] and are omitted here. We summarize
the results in the following theorem.
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THEOREM 4.2. Let h € H. There is a family of measurable maps
' W (M)— W,(M), teR'

with the following properties:

(i) Forall t € R', the process t'y is a M-valued semimartingale
whose law is equivalent to the Wiener measure v ;
(ii) There exist C*° versions of t — 'y and t — U(L'y) such
that
d t
oy VI )
775 V= Du(C)

forall teR' and v-aa. y.

5. The Radon-Nikodym derivative

-1
Let v/ = vo (Q’) . Then Theorem 4.2 shows that v’ is absolutely

continuous with respect to ~. We give two formulas for the Radon-Nikodym
derivative dv'/dv .
We start with the Radon-Nikodym derivative du'/du on the path space

-1
W, (RY), where #' = po (c’) . Letting n — oc in (4.1) and (4.2) we see
that

ét,nz {At,n’ Ot,n} —){A, O} )

where O' is the unique solution of the equation

(5.1) OI:I—fOtboésOSds,
and
(5.2) A'=0 /OI [0’]‘l [h —ao&’] ds.

It follows that

‘;—‘::(w) = exp {/01 A (570 do, - % /01 iG] |2ds} .

Translating this to the path space W, (M) we have

THEOREM 5,1. Let {Z_,'I, te ]Ri} be the flow on W (M) in Theorem 4.2
induced by h € H. The Radon-Nikodym derivative of v' = v o ({'Y™' with
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respect to v is given by

dv' dy'

)
i) = E’E(J

s

namely,

dv' b oed 2
(5.3) H;(y)—exp{/oA(f w dcuk—flA dsy,
where @ = J 'y is the stochastic development of y in R® and A' is defined
by (5.2).

Another formula for the Radon-Nikodym derivative is given in Cruzeiro
[3] and Driver [5]. Let D be the formal adjoint of D, on the set ¥ of
cylindrical functions on W (M) . It is shown (see Drwer [4] and Hsu [7])
that, at y € W (M),

D, =-D, +1(3),

where the divergence /(y) = —divD, is given by
(5.4) l(y) = f (h ;> dw)
; |
- /0 (h,~ 5 H©y (H,, Hh,) - 1Ric(Hh), do,)

where w = J _ly and U is the horizontal lift of y.

THEOREM 5.2. Let {CI, te R[} be the flow on W (M) in Theorem 4.2

induced by h € H. The Radon-Nikodym derivative of v' = v o ({ ‘)'I with
respect to v is given by

(5.5 2= [1c s},

where [(y) = —div D, is given by (5.4).

PROOF. Set N, = dv'/dv to simplify the notation. Let F : W (M) — R
be a cylindrical function. We have

[ Fewan=[  FoN@maEn.
W, (M) (M)
Differentiate both sides with respect to ¢. On the left-hand side we have

/ D,F(('y)w(dy) = ] D,F()N,(7)w(dy)
W, (M) W, (M)

[

= [ FoDNGWE.
W.(M)

o
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Hence we have an equation for N(7),

dN(y) .
ﬂ;t = 'Dh ]Vt(y) »
or equivalently
dN,(7)
—a7 = ~DNO) +I)N().
Using this equation we have
d

Zi VN = 1 DN).

The formula for N,(y) follows from solving this equation,
Of course we can also obtain (5.5) by directly differentiating (5.3) and
simplifying the resulting derivative.
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