Heat Kernel on
Noncomplete Manzifolds

PEI Hsu

ABSTRACT. Let M be a smooth manifolds and L a second
order, nondegenerate elliptic operator on M. Let p(t,z,y) be
the heat kernel on M associated with the operator L. The
basic asymptotic relation lim;_q t log p(t,z,y) = —d(z,y)2/2
(d is the Riemannian distance on M determined by L) may fail
for noncomplete manifolds. We prove that the best condition
under which this relation holds is d(z,y) < d(z,00) + d(y,00).

1. Introduction. Let M be a smooth manifold and L a second order, non-
degenerate elliptic operator on M. The operator L determines a Riemannian
metric d on M. Let A be the Laplace-Beltrami operator determined by the Rie-
mannian metric. Then L can be written in the form L = %A + F with a smooth
vector field F. The minimal heat kernel on M associated with the elliptic opera-
tor L is denoted by p(t,x,y). Take any two points x, y on M. We are concerned

with the behavior of p(t,z,y) as ¢ — 0. The basic asymptotic result was proved
by Varadhan [6]:

(1.1) lim ¢ log p(t,z,y) = —%d(w,y)z~

This result and the subsequent extension to hypoelliptic operators (Léandre [5])
holds under the assumption that manifold M is complete in the Riemannian
metric determined by the operator. The completeness of M is often implied by
assumptions on the operators involved. However, it is sometimes neglected by
some authors. It was first observed in Azencott et al [1] that the basic asymptotic
relation (1.1) may fail for noncomplete manifolds. In the same work it was proved
that (1.1) does hold if the condition

(1.2) d(z,y) < max{d(z,00),d(y,00)}
is satisfied. Here d(z,00) is the distance of z to the “infinity” defined by

(1.3) d(z,00) = sup d(z,K°).
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Contrary to what was believed ([1], p. 149), (1.2) is not the best condition for
(1.1). We prove in the present work that (1.1) holds under the weaker condition

(1.4) d(z,y) < d(z,00) + d(y,0).

In fact we have the following upper bound:

(1.5) lim ¢ log p(t,2,y) < —% min{d(z,y)* [d(z,00) + d(y,00)]"}.
Since the lower bound

. 1 2
(1.6) lim ¢ log p(t,2,y) 2 —5 d(z,y)

always holds whether M is complete or not (Azencott et al [1], p. 155), (1.1)
follows from (1.5) and (1.6) under condition (1.4).

Condition (1.4) is the best condition of its kind. We take M to be the upper
half-plane R? = {(z',2?) : 22 > 0} with the usual Euclidean metric. We choose
the vector field

F(z!,2?) = ((xz)_"’/z,O).

Notice that F' blows up along the boundary. We will show that with this choice
of F, for each pair of points z, y such that (1.4) is violated, (1.1) does note hold.

Our approach to the problem is probabilistic; namely we think of the heat
kernel p(t,z,y) as the transition density function of the diffusion process deter-
mined by the elliptic operator L. We will use the fact that (1.1) is always true
locally; i.e., for each compact subset K of M, there exists a positive constant rx
such that (1.1) holds uniformly whenever z, y lie in K and d(z,y) < rx. This
local result can be proved by various methods, both probabilistic and differentio-
geometric (see Chavel [2], or Azencott et al [1]). We pass from local results to
global results by repeatedly using the strong Markov property of the diffusion
process at judiciously chosen stopping times from both z and y.

Using Brownian motion, we can give an intuitive explantion of the coun-
terexample mentioned above. Brownian motion particles traveling from z to y
tend to follow paths ¢ whose action functional

¢ ¢
% /0 |p(s)|? ds — /0 (@().F (¢(s))) ds

is as small as possible (Hsu [3] contains a more precise statement to this effect).
Assume that (1.4) does not hold. Since the drift near the boundary is very
large along the direction of the boundary, the preferred paths for the diffusion
particles are not those whose action functional is close to d(z,y)?/2t, but rather
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those paths which start from z, reach the neighborhood of the boundary as soon
as possible, travel along the boundary in no time (because of the large drift),
and then head for point y at an optimal moment. The calculations in Section 3
put this intuitive reasoning in evidence.

We note that operators of the form % + F cover all second order nondegen-
erate elliptic operators on smooth manifolds. In our counterexample, the vector
field F' plays an essential part. F' = 0 is a geometrically more interesting case.
Our results do not exclude the possibility that (1.1) holds for the heat kernel
associated with the Laplace-Beltrami operator and for all z, y regardless of the
noncompleteness of M. It is believed that this is not the case, but so far we are
unable to produce a counterexample.

2. Proof of the main result. Let L = £ A+ F and p(t,z,y) be as before.
Let {X:, t > 0} be the diffusion process on M determined by L and P, the
probability measure of the process starting at . The goal of this section is to
prove inequality (1.5).

Our starting point is the following two local results about the heat kernel.
Let K be any compact set on M. There exists a positive constant rx such that:

(L1) Uniformly on (z,y) € K x K and d(z,y) < rg, we have

. 1 2

lim ¢ log p(t,2,y) = — d(z,y)".
(L2) Define the stopping time

7 = inf{t > 0: d(X;,Xo) =7}.

Uniformly on z € K, r € [0,rk], we have

. 1 o
}Lr{(l)tlog P {r <t} = 5T

For the proof of (L1) and (L2) see Azencott et al [1], p. 173 and p. 185. Since
our proof is solely based on these two properties of the heat kernel, the results of
this section apply to more general situations in which a distance function d( -, -)
can be found such that the heat kernel (with respect to some smooth measure)
satisfies (L1) and (L2). In particular, our results apply to heat kernels associated
with hypoelliptic operators (see Léandre [5]).

We will need two simple lemmas.
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Lemma 2.1. Let 7 be a nonnegative random variable such that
P{r<t} < e’ /2

for some positive constant a and allt < ty. Then for any positive b and € € (0,1),
there exists t1 = t1(to,b,e) such that for all t < t;

E{e—b2/2(t—'r); < t} < e—(l—E)(a'H’)z/?i.

Proof. Integrating by parts, we have

¢
E{e™?/2t=7); 1 <4} = / eV /2t=9) 4p(r < s}
0

= /t P{r< s}—bz— e~ /2(1=9) g
2(t — )2

0

c(e) [* 1—¢ (a? b2
<& - . . .
< 32 /Oexp{ 5 (3 +t—s ds

Since

a2 B _ (a+b)?

42 >

st ¢
the last integral is bounded by exp{—(1—¢)(a+b)%/2} if t < min{b?/c(¢),to}.
This proves the Lemma. O

Lemma 2.2. Let K be a compact set on M. For each r > 0, there exists
a positive number to, depending on K and r, such that p(t,z,y) <1 fory € K,
z € M7 d(Z,y) 2 T, t S. tO-

Proof. Fix r > 0. Let U be a relatively compact open set which contains
K. Let ro = min{d(K,U®)/2,rg}. Without loss of generality, we may assume
that r < ro. If d(2,y) = 7, then p(¢,2,y) < 1 follows from (L1) (with K there
replaced by U), because z € U, y € U, d(z,y) < rg. If d(z,y) > r, then

p(t,z,y) = Ez[p(t_ T’XT’y); T< t]

<
< bax p(8,91,y)

d(y1,y)=r

<1

Here 7 = Typ, () = inf{t > 0: X; € 0B,(y)}. O
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The distance of point z to the “infinity” is defined as in (1.3). It is not
difficult to show that there are only two possibilities: either d(-,00) = 0, in
which case M is complete (Hopf-Rinow Theorem), or d(-,00) is an everywhere
finite, continuous function on M, in which case M is not complete. We assume
the latter case.

Let U be an open set with compact closure and r < rg. Define a sequence
of stopping times:

so=0
s1 =7, = inf{t > 0: d(X,Xo) =r}
Sp = 8p—1+ 7,00, , =inf{t > sp—1:d(Xe, X, ,) =7}
Consider the probability
L(tyx) = Pp{Xs, €U, k<n—1; s, < t}.

Lemma 2.3. Fizn. For any € > 0, there exists to = to(e,r,n) such that
for anyz € U and t < tg,

I, (t,.’l,‘) < e—(l—e)(nr)2/2t .

Proof. We prove by induction. Since U is assumed to be compact, the case
n =1 is just (L2). For n > 1, we have by the Markov property,

Li(t,x) = Ex{In—1(t = 7,X..); X, €U, 1 < t}.

Thus the induction step follows by using Lemma 2.1 and (L2). O

We now prove inequality (1.5). Let K be a fixed compact set on M and ¢
a given small positive number. Let U be a relatively compact open set con-
taining K, which will be fixed later and will be dependent on . Let r <
min{rg,d(K,U¢)}/4. Let z, y be two points in K. We need only consider those
z, y for which the local result (L1) does not apply. So we assume d(z,y) > 4r.
Define

v=inf{n:X, ¢U}.

(22

T

Let [d( Uc)}

r

Clearly

{(Xe=y, 5o 2t} C{Xs=y; Xo, €U, k<ny—2; 8p,—1 < t}.
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By considering two possibilities s, > ¢t and s,, < t, and using the Markov property

at times s,, and s, respectively, we see that
(2'1) p(t,a:,y) < Ea:{p(t - Snl—laXsnl—lay)§ Xsk € f], k<mny—2 Spp—-1 < t}

+ Ew{p(t - 31/7Xa.,ay); Sn, < t}

©f T tay) + Jo(t,2,y).

Note that we have used s, > sp,.
By the definition of ny, we have d(X,, —1,y) > r. Hence according to Lemma
2.2, we have p(t — Sny—1:Xs,, -1,y) < 1. Tt follows from Lemma 2.1 that

(2'2) Jl(t’w»y) < Inl"‘l(t’m) < exp {_%[d(x,y) - 27‘]2} .

We now estimate Ja(t,z,y). The adjoint operator of L (with respect to
the Riemannian volume measure) is L* —divF = %A —F—divF. Let X* =

{X, t > 0} be the diffusion associated with the operator L* = %A — F. By the
Feynman-Kac formula we have

t
p(t,2,y) = Ey [exp{—/ div F(X;)ds}; X, € dz] /dz.
0

Let 2 ¢ U and o = inf{t > 0: d(X*,U¢) = r}. Then using the strong Markov
property at o, we have

p(t,2,y) = Ey [p(t—a,z,X;‘)exp{—/ divF(Xs*)ds}; o< t] .
0

Now it is clear that X} € U and d(2,X}) > r. Hence by Lemma 2.2 (with K
there replaced by U), we see that p(t —0,2,X*) < 1. Now we have

p(t,z,y) < e°°th[0 <t < et . (ty),

'n3—1

where IX(t,y) is defined for the process X* in the same way as I,(t,y) for the
process X, and

_ [dy,U°) _ .
ng = [ " ] , co = r:leagcldlvF(:v)I.

It follows now from Lemma 2.3 that if z ¢ U, then

p(t,2,y) < 2exp {— 1 2_; [d(y,U°) — 2?]2} .
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In the above inequality, we can take z = X,, ¢ U and replace t by t — s,,. Noting
that s, > sn,, we obtain

(2.3) p(t — s,,Xs,,y) < 2exp {_2(_151—:;_)[{1(?/’(]6) — 2r]2} .

Substitute (2.3) into the definition of Jo(¢,z,y). Using Lemma 2.3 and a proof
similar to that of Lemma 2.1 we obtain

1-—2¢
2t

(2.4) Ja(t,z,y) < 2exp{— [d(y,U°) +d(z,U°) —3T]2}~

It now follows from (2.1) and the estimates (2.2) and (2.4) that
1-3e, . c c 2
(2.5) t log p(t,z,y) < ————[min{d(z,y),d(z,U°) +d(y,U°)} ~ 3r]

for any (z,y) € K x K, d(z,y) > 4r, r < ro(K,U) and t < t1(e,r,K,U).
Finally, let g = min{d(K,00) +d(K,00),rx}/5. For any € < €, we can
find an open set U containing K with compact closure such that

d(z,U°) > d(z,00) — €

for all z € K. The existence of such U follows from the uniform continuity
of the family of functions {d(-,U¢), U D K} on the compact set K. Letting
r < min{ro(K,u),e} in (2.5), we obtain for all (z,y) € K x K, d(z,y) > 5e,
t < ta(e,K),

-2 fmin{d(a.9),d(z,U°) + dy,U)} ~ 5]

tlog p(t,z,y) < —

The case d(z,y) < 5e being taken care of by the local result (L1), we therefore
have proved the following result.

Theorem 2.4. For any compact K, we have uniformly on (z,y) € K x K,
1
%III(l) t log p(tax’y) S _5 min{d(x,y)z,[d(:c,oo) + d(y,oo)]2}.

As mentioned in Section 1, the lower bound (1.6) always holds. The follow-
ing result is then immediate.
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Theorem 2.5. If K is a compact subset of M and for any x, y € K we

have d(z,y) < d(z,00) + d(y,00), then uniformly on (z,y) € K X K,
. 1
lim ¢ log p(t,z,y) = - d(z.9)".

Corollary 2.6. Letz,y be two points on M such that d(z,y) < d(z,00) +
d(y,00), then there exist constants c1, ca, to such that for any t < ty, we have
(2.6) clt—d/2e—d(w,y)2/2t < pltz,y) < CZt—(2d+1)/2e—d(z,y)2/2t.

Proof. Compare with [1], pp. 156-157. Take any

1
r< E[d(«’lf,OO) + d(y,oo) - d(x’y)]
There exists an open set U with compact closure such that
(2.7 d(z,y) < d(z,U°) +d(y,U°) — 2r.

Let py(t,z,y) denote the heat kernel on U with Dirichlet boundary condition,
then the Markov property implies

(28) p(tﬂ:,y) = pU(taway) + E:c{p(t - tUaXTu ay); v < t}»

where 7y = inf{t > 0 : X; € U°}. Since min{d(y,X,),d(y,00) +d(X,,00)} >
d(y,U¢) we have by Theorem 2.4

(2‘9) Ea:{p(t - TUaX'rU 7'!/); v < t}

1—-¢
< —— )25 .
< Ew{exp{ 3 —0) d(y,U°®) }, Ty < t}
On the other hand, by Lemma 2.3,
1

(2.10) P {ry <t} < I, (t,x) < exp{— 2—t€ [d(z,U°) — r]z}.

It follows from (2.7), (2.9), (2.10) and Lemma 2.1 that
1—
(2.11) Ex{p(t—10,Xr, y); v <t} < exp{—z—te[d(x,y) +7"]2}‘

Since € can be arbitrarily small, we conclude from (2.8), (2.11), and the lower
bound (1.6) that

p(tz,y)

t—0 pU(taxay) -

Next, we can modify the metric outside U so that the resulting manifold
under the new metric is complete. Let p(t,z,y) be the new heat kernel. Then
the same argument as above leads to

p t, b
G

t—0 pU(t,iE,y)
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It follows that for the purpose of proving (2.6), we can assume that M is com-

plete. We may then proceed as in Azencott et al [1], p. 178, to complete the
proof. O

3. Optimality of the condition. We show in this section that the condition
d(z,y) < d(z,00) + d(y,00) is the best possible for the relation

_d(zy)®

lim ¢ log p(t,z,y) = 2

Let M be the upper-half plane R? = {(z!,2%) : 22 > 0} with the usual
Euclidean metric. Let F(z',z?) = ((z2)7%/2,0). Thus our diffusion process

{X: = (X}, X2), t > 0} is determined by the following stochastic differential
equation:

dX} = dB}! + (X2) 5% dt,
(3.1)
dX? =dB?,

where B; = (B},B?2) is a standard two-dimensional Brownian motion.
This diffusion provides a counterexample to the basic asymptotic relation
whenever d(z,y) > d(z,00) + d(y,00).

Proposition 3.1. Let p(t,x,y) be the transition density function of the

diffusion (3.1). Then for any x = (z*,2%) and y = (y',y?) such that z' < y*', we
have

1
}in(l) tlog p(t,z,y) > —5[332 +y%°

Proof. We define three rectangles near points (z!,0), (y,0) and y = (y*,5?),
respectively:

S; = the rectangle centered at (z!,v/t) with horizontal length
2(C +1)t'/2 and vertical length 2¢3/4,

S, = the rectangle centered at (y',v/f) with horizontal length
4(C +1)t'/* and vertical length 4¢3/4,

S35 = the rectangle centered at y = (y!,y?) with horizontal length
6(C +1)t'/* and vertical length 6t3/4;

C is a constant depending on z, y which will be determined in the course of the
proof.
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Let

t = t— At,
1 z2+y2

2

Y
to = :c2+y2t At.

For two paths ¢, ¥ we set

llo = 9lle = max |o(s) —3(s)].

0<s<t

We compute three probabilities: Pp[X: € Si], P,[Xa: € Sq] (2 € S1), and
Pz[Xt2 € Sg] (Z (S Sg)

(a) Let

z2—

ty

S

w(s) = s, 0<s<t.

If || B2 + ¢||;, < t3/4, then there is a constant C' depending on , y such that

t1 t1 2 _ _5/2
/ [X2]75/%ds < / [:cz _r v . ﬁs—t3/4] ds < Ct'/4,
0 0 1

Thus ||B2 + ¢, < t¥* and |B}| < t'/* imply X;, € S1. We have then by
the independence of B! and B2,

Py[X,, € S1] > P[|B* +¢lls, < ¢*/4]P[|B}| < t7/4].

The second factor tends to 1 as ¢ — 0. To compute the first factor we use
the Girsanov transform:

3.1) P[||B* + olls, < t3/4]

t1 t—1
=E[exp{ | esraz-3 | |¢<s)|2ds}; 182, 5t3/4].
0 0
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If || B?||;, <t%%, then

(3.2) / “pla)dB2~ 1 /0 (s ds =

o

1
5[

We also have
(3.3) P[“leltl < t3/4] ~ crexp[—cat ™1/,

See Ikeda-Watanabe [4], p. 432. From (3.1) and (3.3) we conclude that

P[X;, € 5] > exp{—(l +E)(—x2—+-—232)£2}.

(b) Let z be any point in the rectangle S;. If | B2||a; < t3/4, then | X2 — V/t| <

2t3/4 for all 0 < s < At. Thus there is a constant C depending on z, y such
that

At
/ (X272 ds = (y! —ah)| < CtV/2,
0

If we assume further that |B},| < t!/4, then the above inequality implies
IXA, -y < 2(C+ 1)t

Therefore we have shown that |B},| < t'/* and || B?||a¢ < t3/* imply Xa; €
Ss. It follows that for some constant cg depending on z, y,

P,[Xa: € S5] > P[||B?||a: < t*/4]P[|BA,| < t/%] > exp{—cst™"/*}.

(c) A similar argument as in (a) gives the following estimate: For any z € Sy,

2 .2Y,2
P,[X;, € S3] > exp{—-(1+5)(_x+2+)y_}.

Now using (a), (b) and (c) and the Markov property at time ¢;, ¢; + At
respectively, we have
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P,[X:_at € S3] > Py[X:, € S1]- min P,[Xa¢ € S2]- min P,[X;, € S3]
2€5; z€ES,

2 ,2)2
> exp{—(1+6)(£——;ti)— —-crt"l/"}.

Finally, by a precise local asymptotic formula for the heat kernel, we have for
any z € S3,

p(At,z,y) > exp{—cst—%/4}.

It follows that

p(tvl‘?y) = / p(t - At,x,z)p(At,z,y) dz
n:

> Py[Xi-at € S3]- ;Ielisr;p(At,z,y)

2 ,2)2
> exp{—(l +€)(—$—;til— —cst“1/4}.

The desired result follows immediately. a

Remark. The idea of using shrinking rectangles to estimate the probability
as above is due to Azencott et al [1]. Note that in the above diffusion, we have
d(z,00) +d(y,00) = z2 + 2.

(1]
(2
(3]
4]
(5]
(6]
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