Progress in Probability and Statistics mmgsmH on

Volume 13 .
| Stochastic Processes,
Series Editor M@%@

Murray Rosenblatt

E. Cinlar,
K.L. Chung,
R.K. Getoor,
Editors

J. Glover,
Managing Editor

1987 Birkhauser
Boston - Basel - Stuttgart



Branching Brownian Motion and the Dirichlet

Problem of a Nonlinear Equation

Pei Hsu*

§1. Introduction

We consider a simple case of Markov branching processes. Suppose we are
given the following data:

(i) A probability vector F' = {pa,ps,.. Dhpi>0and L2 pi =1

(i) A nonnegative measurable function b on R%.
Then a (b, F')-branching Brownian motion on R% can be described as follows.
At a point z € R?, start an ordinary Brownian motion B. Choose a random

time T' obeying the law

(1.1) PIT > t|B]=e(t) & ¢ JACCALY

and zn integral random variable M obeying the law
(1.2) PM = iﬁ B] = pq.

At time T, the Brownian particle splits into M independent particles and these
particles start their own lives according to the law we have just described. The
stochastic process (stochastic shower) X = {X:;t > 0} thus obtained has the
strong Markov property interpreted in the obvious way. Note that X; now

stands for a finite or infinite particles moving randomly in R% and we write
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- 1 2 m
X = AN.A v. NM v. ceny NM ) v. where m(t) is the number of particles at time

t. Given a function f on R? and a finite set § € RY, the symbol f*(8) stands
for the product of the values of f on S. Thus if m(t) is finite,

m(t)

) =11 £ (x)

=1

Now suppose ||f|lco < 1, we consider the expression
(1.3) u(t, ) = E% [f*(X;);m(t) < o0].

It can be shown easily by the Markov property that function u(¢,z) is the

solution of the nonlinear parabolic equation:

(1.4) gu _1

37 = pAutbF(u) v,  w0,)=f

where

o

F(u) = MU pau™.

i=2
Thus it is natural to use the (b, F)-branching Brownian motion to discuss the
corresponding Dirichlet problem:
ws) 1Au+b[F(u)~u]=0, on 0

u=f, on 8}
where 1 is a bounded domain in R¢. To explore this connection is the main
purpose of the present note. We will denote the boundary value problem (1.5)
by D(Q, F\b; ).
The existence of solution depends on the magnitude of the boundary

function. Probabilistically it depends on the speed the Brownian particles
accumulate on the boundary. Our discussion centers on the problem of validity

of the expression

(1.6) uy(z) = Ez[f*(X;5); N < 0]

as a solution to'the problem {1.5). Let us explain the notation used in (1.6). A

particle of the branching Brownian motion will almost surely hit the boundary.
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We imagine that each particle is stopped at the first time it hits the boundary.
Thus eventually either the process of branching inside {} ceases at a finite time
or this process will go on forever. In the former case there are only finitely
many particles ending up on the boundary, whereas in the latter case the
number of points on the boundary goes to infinity with time. For a fixed time,
let N; be the number of particles which have already reached the boundary
before time ¢ and let N = lim;_, o N;. The symbol X, denotes the set of
positions of the particles which eventually reach the boundary. Thus X,
is finite set on {N < oo} and (1.6) has a meaning (See [2] for an extensive

discussion of Markov branching processes).

>movmmw<oamn£.mol_\=8mH.suo?nnzou:mmmuommuﬁ.@vmmmg%‘m
a solution of D(Q, F,b; f). We will show that u; may represent a solution
to the boundary value problem even when ||f|lc > 1. How large boundary
functions can be allowed depends on the domain 2 and the branching rate b.
The smaller the domain in area and the smaller the function b (the slower the
branching speed), the larger the boundary function can be allowed (Theorem
3.2). The existence depends essentially on the convergence of the expression
(1.6). Let gn(z) = P [N =n]. Then the problem can be solved for large
boundary functions if the probabilities g,(z) decreases to zero at least as fast
as a geometric progression with a small ratio. In the reverse direction, we show
that for any domain, the problem cannot be solved if the boundary function

is too large. This requires to show that gn(z) no faster than a geometric

progression.

In §4, we deal with the case ||f|lo < 1. In this case the uniqueness
problem can be completely settled. [5] contains a discussion of this case for
constant branching rate b. Our argument based on the martingale theory is
more probabilistic.

Now a few words about basic assumptions in this note. We always assume

1 is a2 domain with finite area. To simplify the discussion we assume that the

radius of convergence of F is infinite. We assume there exist two constants c;
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and ¢; such that 0 < ¢; < b < ¢2. Without assuming any smoothness on the
data, by a solution of the problem D(Q, F, ; f) we mean a function u which

is continuous on {1 and satisfies
(r.7) = Ga[bF(u); 8] + Ho(f;0)

where

Galvsb] =~ 2 - ok To %Ew.i

and

Hq(f;8) = E. [e(ra) f(B,,)].

A solution in this sense is classical if the data are sufficiently smooth; see the
discussion in [5]. To simplify notation we often write 7 = g,

As in [5], the method used here can be applied to Markov branching
diffusion of more general type and to the case where F' may depend on the
space variables and may take both signs. See also (8] for discussions of related

problems from a different point of view.

§2. Basic Representation Theorem

Under our assumption on F, we have F' (1) < oo. Therefore m(t) < o0 a.s. for
any finite ¢. Furthermore, for any bounded function f, there exists an e > 0
such that f*(X;) is integrable for 0 <t < e Hence u(t,z) in (1.3) is well
defined as least for small time. These facts can be proved by using formula
(7) of [1], p.1086.

Let uy be defined as in (1.6). For a nonnegative f, function uy is always

defined but may be infinite.

Proposition 2.1, Suppose that f is bounded or nonnegative. Then uy sat-
isfles (1.7).

Proof. This is a simple application of the strong Markov property. Let 7 = Ta

a8 before. We always use B to denote the base Brownian motion of X. Recall
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that T is the first splitting time. Using the Markov property at 7 AT, we have

by (1.2)

us(z) =Bz [Ex, .. [f*(X;); N < o0]]
=E; [f(B;);7 < T|+ E, Ew? [F*(X:); N < o0];7 > i
=E, |f(B,);r < T)+ E; [F(u(Br));7 > T).

(1.7) follows from this identity and (1.1).

Before proving the next proposition, we need a lemma.
Lemma 2.2. Let u(t,z) = E; [u*(Bryat)]. If uis bounded and satisfies (1.7),
then u(t, z) = u(z).
Proof. Note that @ priori we do not know the random variable u*(X;,¢) is
integrable., But from the remark at the beginning of this section we know it
is so for small £. Thus by the semigroup property, it is sufficient to establish

the result for small . Split the integral Ej [u*(X; )] into three pieces: |7 <
T),t < T < 7] and [T < rAt]. Using (1.1) and (1.2) and the Markov property,

(2.1) u(t, z) =Ez [u(Brat)e(r)] + Bz [u(Be)(e(t) — e(7));t < 7]
+ E, [F(u(t - T,Br);T < 1At

=E° ?Hm;ﬁuan? At)]
+ E, ﬁ ’ F(u(t - u.h;b&&ﬁ.&b&* .

0

On the other hand, from (1.7) we have

(22)  u(z) = Es [u(Bone)e(r At)] + B ﬁ \o " P (a(BL)e(s)b(BL)ds -

Subtracting (2.2) from (2.1) and using |F(u) — F(v)| < K|u — v|, we obtain
e(t,z) < b\\on E;le(t — s,B,);8 < 7]ds

with €(t,z) = |u(t,z) — u(z)|. Integrating over 0 and using Gromwall’s in-
3

equality, we see €(t,z) = 0. The lemma is proved.
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Theorem 2.3. Suppose u is a solution of D(Q, F,b; f). Then
def
{M. w8, 05t 2 0)
is a P;-martingale for any z € Q.

Proof. By Proposition 2.1 and Lemma 2.2, the random variable M, is inte-
grable. Now for any s < t,

E, T«&LN)L = .@wﬂ;. H§n>?laL = gn?ﬂ*>sv = M,.
Therefore, M = {M;t>0}isa 7 ae-martingale.

Proposition 2.4. (Minimality of the probabilistic solution) Let f > 0 and
let u be a solution of D(Q, F,b; f). Let u; be the probabilistic solution (1.6).
Then 0 < ur <u,

Proof. Follows easily from the preceding proposition. We have

u(z) =E, [u*(X;ae)] > mn_mwo Ey [w*(X,pe); N < oo]

>E, rmﬁ w(Xoa)i N < 0] 2 By [u* (X,); N < ool

=uy(z).

§3. Existence of Solutions

In view of Proposition 2.1, we look for conditions on the boundary function

under which the expression (1.6) is meaningful. We use a very simple-minded
estimate:

(31) lus(2)] < 37 1I£11% gn(2)-

Here ¢,(z) = P, [N = n]. Thus the boundedness of ¢y depends on the de-
creasing rate of the probabilities gn. Letting f = & in (1.7) and comparing

coefficients for powers of a, we see that ¢, satisfies the following recursion

formula:

(3.2) 9n = GalbHn(q1, -, qn_y);b]
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where H,’s are determined by
o0 00 "
F MUnS.m: = MMN:AQT.I.O:I_VM y
n=1 n=2

and
@1 = E.[e(ra)].
We say that F terminates at my if p, = 0 for n > mo. We need the following
simple lemma, whose proof we omit.
Lemma 3.1. (3) Assume that F terminates. Let sequence Ap,n 2 1 be
e .1.

defined by A, = 1 and A, = maﬁb_‘,..:halv. Then the power series
%, Ané™ has a positive radius of convergence r 2 3 — 2V/2. (b) Let I, be
n=1

defined by " o0
nl I Agnu.‘.una!wvmaf
Pro n:m M "

n=2
Let ¢ > 0. Let sequence Bp,n > 1 and let defined by By = ¢ and B, =
I,(Bi,...,Bn-1). Then the power series Yone.i Baé™ has a finite radius of
w(Bi1y.-- -

convergence.
The following result gives a lower and an upper bound for the probabilities

gn ().

uunowo&ﬁvu 3.2. (a) Assume that F terminates at mo. There exist a K,

and a positive y independent of F' such that for alln > 1

n

(3.3) llgnlleo < K ?__Q__s_:_p:v moT

(b) Assume Q is bounded and smooth. There exist positive constants K; and

B such that foralln >1

(3.4) gn(z) > Ko™ h(z).

Here
h= Qs?w S =1-FE. TT.QZ .
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Proof. (a) Upper bound. Define 4, as in the preceding lemma. We prove by
induction that

(33) l9nllo < An [RIEE.
The inequality holds obviously for n = 1. To go from n — 1 to n, we have by
(8.2) and the hypothesis that F terminates at mo.

tn =Ga[Hn(q1,...,qn-1)b; ]

LTES
Sllhlls®™ Ho(Ay, ..., Any)Galb; 4]

n—1

SAnhllc ™"
This proves (3.5). Now by the preceding lemma there are positive constants
K; and 7, such that 4, < K;q9}. On the other hand we have for some

constant universal constant 7,

e < 2o [ [ e6180B.046] < 1l B ] < el

0
(8.3) follows with 4 = ~;7,.

(b) Lower bound. Take ¢ = min, e Bz [e(rq)] > 0 and define B, as in

the preceding lemma. We prove by induction that

(3.6) 9n(7) 2 Bnfy ™" h(z)

where
— in Galh"b;b](2)
AT
B1 > 0 because by the smoothness of the domain, both Gq [h™0b;b] and h

vanish on the boundary exactly to the first order. Now (3.6) holds for n = 1

by the definition of ¢, since ¢,(z) = E, [e(q)]. For the induction step, we

have
gn 2Gq :&:AQT ey Gn—1)b; b]

> 21, (02, .. 1y Bn—1)Gp[h™0b; b)

2Bnfr 'k
Now by part (b) of the preceding lemma, there exist K, and B2 such that
By, > K353, (3.4) follows with B = B, Ba.

The following results follow immediately from the lower and upper bounds

and Proposition 2.1 and 2.4.
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Theorem 3.3. (i) Assume that F terminates at mo. There exists a constant

~ independent of F such that the problem D(Q, F\b; f) has a solution if

1flloo < (lblleol2®) 77T

(ii) Assume Q is bounded and smooth. There exists a constant B = (0, F,b)
such that the problem has a solution if || f ||l < 8 2nd has no positive bounded

solution if f > B.

§4. The case ||f]joo <1

In this section a soluticn means a solution with [|t]je < 1. Define

def .
= = f ==
AA.: A= \/nﬁynv L“Wﬂo .\.S bv?

The infimum is attained by a positive continuous function ¢ vanishing on the

boundary in the sense that for any continuous v vanishing on the boundary

(

(4.2) \ogn > w\agnoes
and
(4.3) ¢= wns@&.

Here Gq = (—A/2)7! is the Green operator of f} with Dirichlet boundary

condition. Let 1
a=F(1)-1- m\f?. a).

The following results can be established. Let

A(t, E) = the number of particles in E C {2 at time ¢.

We have

(4.4) E. [A(t, E)] = ¢#4 () \m ¥+ o(e)




80

where £ is the first eigenvalue of A/2 + [F'(1) — 1]b:

L IV = [F(1) - 1), bo?
(4.5) p=- inf 250 T ?

and ¢ is its normalized eigenfunction. Furthermore, let

Ig¥
u(E) = 72—
Jo¥
Then there is a sequence ¢, — oo such that for any z € Q)
Alt,, E) _ _

Both (4.4) and (4.6) can be proved by eigen-expansion, starting from (1.4)
(cf.[5]). We also notice that a and § always take the same sign. This is an
immediate consequence of the variational characterizations (4.1) and (4.5),

the definition of & and the lower bound of b.

Theorem 4.1. Suppose u is a solution of D(0, F, b; f), lulloo <1 but w1,

Then it is the unique solution with such property.

Proof. By the assumption, there must be a set E of positive measure on which

|| < €< 1. From Theorem 2.3,
(4.7 u(z) = E; [w(Brp); N < 0] + E, [u(Xrae); N = o0].

If Pz [N = oo] = 0, the second term on the right side is zero. Otherwise using
(4.6), we obtain

| Bz [u(Byae, ); N = o] | < E, Tﬁ?.m:? = oog —0.

The uniqueness follows then by taking limit in (4.7).

It follows from the theorem that the boundary value problem has exactly
one solution if ||f|lc < 1 but f# 1 and at most two solutions if f=1. The
case f = 1 is critical because 1 is the root of F(u) —u = 0. The case b =

const. of the following result was discussed in [5].
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Theorem 4.2. If o < 0 then u =1 is the unique solution of D(Q}, F,b;1),

and N < 00 a.s. If a > 0 then the extinction probability
u(z) = Pz [N < o0}

is the only other solution of the problem and 0 < u; < 1.

Proof. (a) a £ 0. Assume u is a solution. Let v=1-u. If v # 0, we have by

(1.7) and F(1—-v) -1> vF'(1),
v = Gq[b(1 — v) = bF(1 — v)] < —F'(1)Ga(bv).

Multiply both sides by v and integrate. Using (4.2), we have

Q\. bv? >0,
Q

a contradiction. Therefore v = 0.
Here is an alternative proof. By (4.7), it is enough to show PN < 0] =1

forallz € O As mentioned above, a < 0 is equivalent to f < 0. Thus by
(4.4) we see that E;[A(t,Q)] < M for a constant M. On the other hand,
since b is bounded from above, we can show that with probability one either
A(t, Q) — 0 or o0 as t — oo (cf.[4]). Consequently we must have A(t,0) — 0,
a.s., which is equivalent to N < 00, a.s.

(b) @ > 0. By Theorem 4.1, we need only prove the assertion 0 < u; < 1.
Let v = 1 — e, where ¢ is the first eigenfunction; see (4.3). vy <1 is implied

by the assertion that
AQ o v (Xrqat)it 2 cv

is a P,-supermartingale for small €. For then we have

1>v(z) > E; [v(Xrat)] 2 Ex Twmmo v(Xeae)i N < oog

=P, [N < 00| = u(2).

To show that Q is a supermartingale, all we need is

(4.8) o(t,5) & B, [v(Xone)] < v(2).
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We have as in (2.1)

(4.9) v(t,z) =E; [v(Brae)e(r A t))
+ E, _H\. F(u(t =, .w.vvﬁm.vm?v& .

But instead of (2.2), we have by (4.3)

(4.10) v(z) =E, _cﬁm;n\v,w? At)]
+ B, ﬁ\o @\5 —u(B) - QELV QE_EPVL .

Let § = €||4]|o. Choose € so that F'(1 —6) — 1 — 2 > 0. Then we have
F(v) £1~(1-v)F'(1 - 6). Now subtracting {4.10) from (4.9) we obtain

TAL

€(t,z) < F'(1-6)E, h\. (t—s, m.v&mbm?v%“ .
0

where €(t,z) = max{v(t,z) — v(z),0}. From this it follows that et,z) =0
(see the end of the proof of Lemma 2.2).
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