Math. Ann. 309, 331-339 (1997)

Mathematische
Annalen

© Springer-Verlag 1997

Integration by parts in loop spaces

Elton P. Hsu

Department of Mathematics, Northwestern University, Evanston, IL 60208, USA
(e-mail: elton@@math.nwu.edu)

Received: 28 April 1996 / Revised version: 6 September 1996
Mathematics Subject Classification (19960D58, 28D05

1. Introduction

We assume throughout this paper thais an-dimensional compact Riemannian
manifold andO(M) its orthonormal frame bundle. We uggto denote theRrd-
valued Cameron-Martin space over the intervallJowith zero initial values and
Hp the subspace dfl with zero values at 1. We fix a poimte M and a frame
Up € O(M) overo. We useW,(M) to denote the set d¥l -valued paths (of time
length 1) starting frono andL,(M) the set of loops ab, i.e., the set of paths
in W,(M) such thaty(1) =o.

The Levi-Civita connection determines a Laplace-Beltrami operatoon
M. We user to denote the Wiener measure @(M) generated byA/2. The
measure/, defined intuitively by

vo() = v(|w(1) =0)

is a measure on the loop spacgM ), which we call the Wiener measure on
Lo(M).

For a smooth or a typical Brownian € W,(M) or Lo(M), let U (v) be the
horizontal lift of v such thatU (v), = up. Fix anh € H (or Hp) , the “vector
field” Dy on Wo(M) (or Lo(M)) is defined by

1) Dn(7)s = U (7)shs.

There is a complete theory of integration by partsBgron W, (M), developed
by Driver[1] and supplemented by Hsu[5]. See also Enchev and Stroock][3] for
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another approach. In the case of the loop spa¢® ), Driver[2] proved an inte-
gration by parts formula for vector field¥, with lipschitzianh and the complete

result for all Cameron-Martin vector fields was proved in Enchev and Stroock[4].
The purpose of this paper is to give an alternative approach to integration by
parts in loop spaces. Armed with an upper estimate orMthigp(s, X, y) due

to Sheu[8] (see (7) below), we prove an integration by parts formula in the loop
spacelq(M) through the corresponding formula for the path spagéM ). Such

an approach avoids the quasi-invariance of the Wiener measure in the loop spaces
thus providing a more direct route to the result.

2. Integration by parts in path spaces

Let i« be the usual Wiener measure on the pA{R"). Let {Us} be the solution
of the stochastic differential equation @(M)

(2) dUs = HUs o dws, Up = Uo.

HereH = {H;,i =1 ...,d} are the canonical horizontal vector fields ©iM )
and{ws} is the coordinate process &, (R"). Let vs = m(Us) be the projection
of U in Wo(M). The 1D mapJ : Wo(R") — W,(M) is defined byJw = ~. It
is well known that the law ofy is v, the Wiener measure ow,(M), i.e., J
carries the Wiener measureon W, (R29) to the Wiener measure on Wy (M).
The inversel ~1 : W, (M) — W, (I29) is the stochastic development map.

A function F : Wo(M) — R?! is called cylindrical if there is a positive

integerl, a set ofl points 0< 5 < - < § < 1 and a smooth function
f:M x---xM — R! such that
©) FO) =f (3s,-++575) -

The set of cylindrical functions od,(M) is denoted byZ".
We will useL?(v) to denote the Hilbert space of measurable functiBrsn
W, (M) such that

IF |2 = /W o FOvEn) < o

The inner product oh?(v) is denoted by ( 2@y Or simply ¢, -).
Let F € £ be given by (3). From the defintion of the vector fiég in (1)
it is natural to define

|
@) DhF () =Y (VOF(1),UMshs,),
p=1

whereVP'F denotes the gradient éfwith respect to theth variable.
Let h € H, define
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1
Ih(7) :/ (hs + 2R|CU5hS> dws),
0

wherew = J~1v, U = U (v) is the horizontal lift ofy to O(M), and Rig : R" —
R" is the Ricci transform an € O(M).

Theorem 2.1. (Integration by parts in path space) Let & be two cylindrical
functions on W(M). Then

(5) (DnF.G) = (F,D;G).,

where
Dﬁk = —Dp +1j.

The assumption thdt € H implies that there exists a constant> 0 such
thatEl,eC||h|2 < oo. By a standard functional analysis argument, the integration by
parts formula implies thddy, is closable and the adjoiflt; is densely defined (the
closability of Dy, requires onlyl, € L%(v)). There are plenty of functions in Dom
(Dy). More precisely, we have the following result. Let'(v) = Up>2 LP(v).

Theorem 2.2. Leth € H. Then 3y : ¢ — L?(v) is closable in B(v) and has a
densely defined adjoint;D Furtheremore,

Dom(Dp) N L?*(v) ¢ Dom (D)
and for all G € Dom(Dy) N L?*(v) we have

DiG = —DnG + 11 G.

3. Some preliminary results

In this section we collect some results which will be used in the proof of inte-
gration by parts formula on the loop space in the next section.
We denote byp(s, X, y) the heat kernel of the half Laplaciai/2 onM.

Proposition 3.1. There exists a constant depending only on M such that for all
(5,%,¥) € (0, 1) x M x M,

© viogpx.y)| < ¢ { M+ 1
dx,y)? 1
) vlogpsx.y) < ¢ {7+ 1.

Proof. As far as we know, these results are due to Sheu[8]. See also Hsu[7] and
Stroock and Trubetsky[9] for further discussions. O
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Lemma 3.2. For each positive integer N there is a constant Gepending only
on N and M such that

EVod(rYSao)N S CN min {SN/27(1_ S)N/z} .

Proof. This inequality is intuitively clear and can be proved based on the estimate
(6). See Driver[2] or Hsu[6] for detalils. O

Lemma 3.3. (Hardy’s inequality) Let he Hp, then

/

Proof. We have for anyt € (0, 1),

t 1
2
/O|hs| d[l_s}

th o F 2
z/ Mo e gy N
0

1-s 1-t
1 t
< )
= 2

hs
In the last step we have used inequality

hs

2 1.
< 2ds.
1—s ds_4/0 |hs|* ds

o
n
1

? Lo, I
+2 h + .
1—s ds /O|S| ds 1t

1
2ab < za2 +2b2.

Therefore
hs Z‘ht |2

t
./o 1-s 1-t

The desired inequality follows by letting— 1 in the above inequality because
1

/ hsds
t

4. Integration by parts on loop spaces

2 t
ds§4/ |hs|?ds +
0

> _ 1

2 1
= < hs/?ds — 0. O
1-t 1-t —,/t IPsl"ds —

Recall that in path spac&, (M) the adjoint ofDy, is given by
(8) DIT :_Dh+|ha
wherely, : Wo(M) — R" is defined by

1
. 1.
|h(7):/ <hs+2R|CUsh57dws>~
0

Here U is the horizontal lift ofy andw = J 1y is the stochastic development
of +. On the loop spacé,(M), we defineDyF for a cylindrical function by
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the same formula (4) as in the path space. The next proposition showsg that
well defined under the measurg. This step is necessary becausandv, are
mutually singular.

Let {Ih s} be ther-martingale

S ) 1
Ih,s = / <h-,— + RiCUTh.,., dw7.>,
0 2

Let {.#%,0 < s < 1} be the standard filtration of-fields onW,(M). Then the
measures/, and v are mutually absolutely continuous oy for all s < 1.
Hence the procesfl; 5,0 < s < 1} is well defined under the measurg. The
next lemma concerns the limit & s ass — 1 under the measurng,.

Proposition 4.1. The limit b s — I, exists in (v,) as s — 1. Furthermore
Ih € L%(vp).

Proof. Under the measure, the stochastic development= J 1~ is a Brownian
motion. Under the measutg, it is a local semimartingale before time 1 and its
martingale part{bs} is a Brownian motion. The measurg is characterized by
the fact that

S
ws = bg +/ U *Vlogp(l - 7,v,,0)dr.
0
Let
Qs =Ug 'Vliogp(1 - s, 7s,0),
1 1
Fs=hs — / Ricy_h,dr
2 Js

for simplicity. We have fors < 1

|h,s

/0 “E L db)+ /0 “E,.Qud7)

/ (F,.db,) — / (F,,dQ,) + (Qs. Fs) — (Qo, Fo)
0 0
= lys—las+lzs — (Qo, Fo).

Now Ricyh; is uniformly bounded, anti € L[0, 1]. These facts imply that
the limit 1, — 11 exists inL?(v,) and

1
u:/o (Fs. dby).

For I3 s we have|Fs| < C {|hs| + (1 — s)} and using (6) and Lemma 3.2 we
have
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Evol(Fs,Qs)| = CA{lhs|+(1—9)}E,|VIogp(l—s,s,0)|
EVod(’757o) 1
< C1{|hs|+(1—s)}{ L +¢1_S}
l.
< Cz{\/l—S\//s h.,-ZdT+(1—S)} \/11—5
— 0.

This shows thats s — 0 in L(y).
Forl,s we use 10's formula on theR"-valued function

Qs =Ug 'V logp(l — s,7,0) = V" log P(1 — s, Uy)

of (s,Us) € (0,1) x O(M), whereP(s,u) = p(s,wu,0). Using the stochastic
differential equation (2) fotJs we have for the th component

(9) dH; logP (1 — s, Uy)
= (HiV"logP(1 - s, Us), dhy) + ;(Ricuse, , V' logP(1 - s,Uq))ds

+H; {DH logP(1 —s,Us) + ;NH logP(1 —s, US)IZ} ds,

where

1 0
H - AH +
D 2 0s’

and A" = Zjnzl H]-2 is Bochner’s horizontal Laplacian. Note that in the above
computation we need to use the second structural equation

[Hi, Hjl = 2(Hi, Hj)”*
to exchangeH; andH; (£2* is the canonical vertical vector field corresponding

to 2 € o(n)). The last term in (9) vanishes becauysg, x,y) satisfies the heat
equation. Hence we have

S
s = / (F,,U2V2logp(1 — 7, 77, 0), db, )
0

1 /5
+2/ (Ricy, F-,U "V logp(1 — 7,7,,0)d7).
0

To show that the limit, s — I, exists inL2(1,) it is enough to show that

1
(10) E, / Fe2- [V2logp(L — s, 5, 0)[2ds < o0
0

and L
(11) €., [ IFsf?- [V logp(1 - 5.1, 0)ds < o.
0
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From the definition of~5 there exists a constaft such that
12) |Fs| < C {|hs|+(1—9)}.

Using the estimate (7) and Lemma 3.2 we see that there exists a cabstach
that

2 _ 2 <
Bo[V7I0gp(L =575, 0)" = ) oo

It follows from Lemma 3.3 that

1
s, [ [Fsf? - [7210gp( - 5,75, o)
0
1 2
|hs|+(1—s)}
C ds
/0{ (1-9)
1
8C {/ |hs|2ds+1}.
0

This proves (10). From (6) and Lemma 3.2 there is a consfastich that

IN

IN

EV0|Vlogp(1_ S7 75,0)‘2 S 1 o S-

Using this inequality and (12) we have
1
EVO/ |F5|2|VIng(l—57’}/5,0)|2ds
0

bl + (1 9))° 4
0 1-s

1
8C {/ |hs|>ds + 1}.
0

This proves (11). It follows that the limit s — I, exists in L%(r,) and

IA

C

IN

1
= / (Fo, Us V2 logp(L — $, 75, 0), dby)
0

1/t
+2/ (Ricy,Fs, Ug 'V logp(1 — s, 7s, 0)ds).
0

To summarize, we have

|h,s =lys —los+lzs — <Q07 FO>;

l1s — l1,l25 — lp, both inL?(5), andlzs — 0 in LY(1p). It follows that the
stochastic integral

.o
|h:/ (hs + _Ricy,hs, dws)
0 2

(w=J71y) exists as the1(1,)-limit of Iy s ass — 1 andlp € L2(vp). 0
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We now prove the main theorem.

Theorem 4.2. (Integration by parts formula in loop space) Let& be two cylin-
drical functions on k(M). Then

(DnF, G2y = (F,DyG) L2(5) ’

where
Dﬁ =—-Dp+ Ih

and b € L?(1,) is defined by

1
. 1.
Ih(7) :/ (hs + 2R|CU5hS> dws).
0

Herew = J 1y is the stochastic developmentpfind U is the horizontal lift of
-

Proof. Suppose thaF andG depend on the path up to ting < 1. Then we
have for alls € (s*, 1),
(DhF R G)Lz(uo) =GC, (DhF , Gp(l —S, s, 0))|_2(l,) y

where C, = p(1,0,0)"1. By the integration by parts formula (5) for the path
space, we have
(DnF, G)12()
= Co (F. Dy {GP(L - 5,75,0)}) 2,
= —GCo (F,DnGp(1 — s,7s,0)) 12
—Co (F,GDnp(1 — s,7s,0))12()
+Co (F,1nGp(1 — s, 75, 0))12()
= —(F,DnG)2(,) — (F,GDnlogp(l — s, 7s, 0)) 2,

+ (F7 |h7SG)L2(VD) .

SinceF andG are uniformly bounded, by Proposition 4.1 we have
(F, lhvSG)Lz(uo) — (F,1hG) 12, -
It is therefore enough to show
(F,GDnlogp(1 —s,7s, 0))12(,,) — O.

This is implied by
(13) E.,|Dnlogp(1 —s,7s,0)| — 0.

We have
Dh |Og p(l - Sa Vs» O) = <h37 Usilv |Og p(l ) Vs O)>

By (6) and Lemma 3.2 we have
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E.,|Dnlogp(l —s,7s,0)| Ihs| - E.,|VP(1 —s,7s, 0)|

Ey d(’YSa 0) 1 }
< C|h ° +
< Chy { o b
< Cilhs|
- JV1-s

C1 /1 :
= h.d
V1—s|/s !

l .
S Cl |h-,—|2d7'

S
— 0.

This shows (13) and the theorem is proved. O

As a consequence of the above integration by parts formula and the fact that
Ih € L?(vo), we have the following result parallel to Theorem 2.2. Bét,) be
the space of,-essentially bounded measurable functionsdg(M ).

Theorem 4.3.Lethe Hp. Then ) : ¢ — L2(1,) is closable in B(v,) and has
a densely defined adjoint;D Furthermore

Dom([Dn) N B(v,) € Dom(Dy)
and for all G € Dom(Dy) N B(,) we have
(14) DiG = —DnG +11G.
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