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Limiting angle of Brownian motion
in certain two-dimensional

Cartan-Hadamard manifolds

PEI HSU(1) and WILFRID S. KENDALL(2)

Annales de la Faculté des Sciences de Toulouse Vol. I, n° 2, 1992

RESUME. - Soit IH une surface du type Cartan-Hadamard dont la

courbure admet une borne supérieure negative tres faible mais pas de
borne inférieure. Nous montrons que lorsque le temps croit vers le

temps d’explosion alors le processus angulaire du mouvement brownien
riemannien sur IH tend vers une limite non dégénérée dont la distribution
est partout dense sur le cercle a 1’infini de la variété IH.

ABSTRACT. - Suppose that IH is a two-dimensional Cartan-Hadamard
manifold with sectional curvatures satisfying a weak negative upper bound
and no lower bound. Then the angular part of Brownian motion on IH
tends to a limit as time tends to the explosion time of the Brownian
motion. Moreover this limit angle has a distribution whose closed support
is dense on the circle at infinity.

KEY-WORDS : Brownian motion, Cartan-Hadamard manifold, compar-
ison arguments, geodesic, limiting angle, sectional curvature, stochastic
differential equations.

Subject Classification 60J65, 58G32

1. Introduction

Recall that a Cartan-Hadamard manifold H is a simply- connected com-
plete Riemannian manifold for which all the sectional curvatures are non-

positive. The theorem of Cartan-Hadamard states that IH is diffeomorphic
to Euclidean space, furthermore that this diffeomorphism is realized by the
exponential map Expo : ~-i --> IRn at any fixed reference point o E IH.
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Thus Cartan-Hadamard manifolds allow the existence of global systems of
geodesic polar coordinates (r, 8), where r(x) = and 8 is defined

by
Expo (r(.c), 8(~)~ = x for all z E IH

(the argument of Exp being given in Euclidean polar coordinates).
We denote Brownian motion on IH by BM(H), and ordinary real-valued

Brownian motion by BM(R). If we wish to emphasize the starting point
we use a suffix; thus BMo(R) denotes real-valued Brownian motion begun
at 0. Note that has a lifetime £ (the explosion time) which may
be finite (because there is no lower bound on the curvature). We shall use
the notation of Kendall [15] for the basic constructs of stochastic differential
geometry. See Elworthy [4] or Rogers and Williams [22] for other treatments
of stochastic differential geometry.

The purpose of this paper is to establish that if IH is a two-dimensional

Cartan-Hadamard manifold with sectional curvatures satisfying a weak
negative upper bound then the angular part 0 of BM(H) tends to a

limit as time tends to the explosion time ~. Moreover this limit angle
has a distribution whose closed support is dense on the circle at infinity.
This result extends the work of Kendall [11] and itself shows promise of
generalizing to higher dimensions at the price of requiring a lower (but
generous) bound on the curvatures.
We first give a brief survey of work on the limiting angular behaviour of

Brownian motion on Cartan-Hadamard manifolds with at least some upper
curvature bound.

Dynkin ~3~ introduced the problem of studying the asymptotic behaviour
of Brownian motion on a negatively curved manifold. Prat [21] established
existence of a limiting angle of Brownian motion on Cartan-Hadamard man-
ifolds with constant negative upper and lower curvature bounds. Similar

results were obtained at the same time by Kifer ~17~ .
Kendall ([10], announced in [9]) proved limiting angle and density of

limiting angle distribution for a class of processes related to Brownian

motion (what would now be called r-martingales of K-bounded dilatation),
living on Cartan-Hadamard manifolds with constant negative upper and
lower curvature bounds. These results were used to prove generalized
Picard’s little theorem for harmonic maps. Goldberg and Mueller [5]
generalized this to a case of upper bound on curvature decaying to zero
at infinity at an appropriate rate and constant negative lower bound on
curvature.



Greene and Wu [6] conjectured that a Cartan-Hadamard manifold al-
ways possesses nonconstant bounded harmonic functions if outside a fixed

compact set its curvature satisfies an upper bound -e/r(x~2 decaying pro-
portionally to the inverse of squared geodesic distance from a fixed point o.
Sullivan [24] used limiting angle and density of angular distribution for
Brownian motion to settle the Greene-Wu conjecture for the special case of
a Cartan-Hadamard manifold of constant negative upper and lower curva-
ture bounds. (At the same time Anderson [1], proved the same results using
analytic methods.)

Kendall [11] proved limiting angle and density of limiting angle distribu-
tion for Brownian motion on a two-dimensional Cartan-Hadamard manifold

with no lower bound on the curvature and a constant negative upper cur-
vature bound. (Equivalent results were proved using analytic methods in
Choi, [26]).

Hsu and March [7] proved limiting angle and density of limiting angle
distribution for Brownian motion on a Cartan- Hadamard manifold with

variable lower and upper negative bounds on curvature. Essentially, the
Hsu-March result works for the Greene-Wu upper curvature bound 2014c/r(:c)~
when c = a(a - 1) > 2, if the lower bound is for ,Q with

x(l 2014 /3) > 2. (The survey of Kendall [14], gives a statement of the
corresponding r-martingale result).

The lower curvature bound is annoying. It occurs in all the cases

above except for the two-dimensional case. March [18] discusses the

rotationally-symmetric case where the lower bound is not needed. It is

natural to wonder whether the intervention of the lower bound is simply
due to limitations of present techniques. This appears not to be the

case: Ancona (unpublished) has constructed a three- dimensional example
of a warped product of Riemannian manifolds, for which the limiting
direction of Brownian motion has positive probability of taking one specific
value (although it is easily seen that there are many nonconstant bounded
harmonic functions corresponding to this single discrete event). It seems

plausible that a refinement of this construction would produce cases where
the limiting behaviour of the Brownian motion was of spiral form, with
no limiting direction at all. In any case this casts strong doubt on the

ability of direct angular convergence techniques to resolve the Greene-Wu
conjecture, since Ancona’s example shows that in the case of uncontrolled
negative curvature it is no longer possible to obtain full information about
the asymptotics of Brownian motion by means of direct comparison with

geodesic rays at fixed angles.



In this paper we set ourselves the modest target of extending the ideas
of Kendall [11] and Hsu-March [7] to deal with the case of limiting angle
of Brownian motion on a two-dimensional Cartan-Hadamard manifold with

no lower bound on the curvature and an upper curvature bound which

is nonconstant, decaying to zero at infinity at an appropriate rate. The

proof in Kendall [11] was based on a simple comparison argument using
the distance of Brownian motion from a fixed geodesic line - the distance
may be bounded below by real-valued Brownian motion plus drift which
is bounded away from zero when the distance is bounded away fro:n zero.

This simple comparison argument is not powerful enough if the curvature
is allowed to decay to zero at infinity, since the argument does not then
bound the drift away from zero. It is necessary to employ also what might
be called the classical argument, which is to say the line of attack used in
most of the above references and which appears first in Prat [21].

In the next section, section 2, we establish the fundamental compari-
son which underlies our arguments here and which also forms tbe basis
of Kendall [11], concerning the distance between Brownian motion and
geodesic in a two-dimensional Cartan-Hadamard manifold. The argument
in Kendall [11] uses an incorrect formula (though the main lines of the ar-
gument are not affected by this). We therefore here give a full proof of a
correct version of the formula in question.

In section 3 we establish a sequence of preliminary lemmas which build
up to the main result. We state the main result here for ease of reference:

THEOREM (Theorem 3.6 below.). Let IH be a two-dimensional Cartan-

Hadamard manifold with sectional curvatures bounded above by -c/r2 for
some c > 0 off a compact set, and let X be BM(H). Then O = )
converges to a limit O(oo) as time tends to the explosion time 03BE. Further-

more the distribution of O(oo) has as closed support the entire circle ,51 of
directions.

From this result there follows immediately as a corollary the full Greene-
Wu conjecture in the two-dimensional case. Of course this corollary is of
no particular interest since stronger results follow from complex analysis
(Greene and Wu (6~, Proposition 7.5). However the result does give us a
probabilistic way of constructing nonconstant bounded harmonic functions,
and further information on the probabilistic effects of negative curvature
in the two-dimensional case. Note also that our Theorem 3.6 give specific
information about the asymptotic angular behaviour of BM(IH), and this
information is not available from complex analysis methods.



The approach used in this paper has some potential for extension to

higher dimensions, although there are several technicalities which must

be overcome. We hope to explore this at a later date. We discuss

this possibility, and also the essential limitations of the approach, in the

concluding section of this paper.
The first-named author gratefully acknowledges support from an EC

twinning grant, and the hospitality of the Mathematics Institute of the
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2. The distance of Brownian motion from a geodesic

Kendall [11] used a stochastic analysis of the distance of Brownian motion
from a geodesic to show that the limiting angle exists for Brownian motion
on a two-dimensional Cartan-Hadamard manifold with curvatures bounded

above by a strictly negative constant. Unfortunately the formula (3.2) given
there is wrong, both because a scaling argument is applied wrongly and also
because it uses a formula for the Laplacian of this distance (Greene and Wu
[6], page 117) which appears to be incorrect. The conclusions of Kendall [11]
remain correct since they depend only on the general form of the analysis.
We shall need this analysis in Section 3 and therefore we give a corrected
treatment here.

THEOREM 2.1.2014 Let H be a two-dimensional Cartan-Hadamard mani-

fold, and suppose the sectional curvatures in IH are everywhere bounded above
by a non-positive constant (possibly zero ) -H2  0. Let X be B M (IH). . Let
~y : R - IH be a geodesic line and define

R(t) = dist (X (t) .

Then there is a BMo (R), namely B, (perhaps stopped at a Markov random
time) such that

up to the first time that R vanishes.

Remark. - Only the case H = 0 is important for the work below, in
contrast to Kendall ~11~ which requires the case H > 0.



Proof. - This follows from the geometric form of Itô’s lemma (see for
example Kendall [15], Theorem 2) and estimates on Jacobi vectorfields
following from comparison arguments. Let E and M be the stochastic

parallel transport and development for X (so in particular M is a Euclidean
Brownian motion, stopped at the explosion time ~ of X if that is finite). The
geometric form of Ito’s lemma shows that for any C2 function f : : H  IR
we have

(where dI f(X), dIM are Itô differentials).
We may apply the above to so long as we stop

the resulting stochastic differential equation as soon as smoothness fails

(precisely when R hits 0). The triangle inequality and differentiation along
the minimal geodesic from x to 1m ’1 together show ( grad = 1 on 
Hence the stochastic differential [grad f(X) . E] dIM integrates to yield a
real-valued Brownian motion B begun at 0, stopped at the Markov time £
if it is finite.

On the other hand d[M, M] is diagonal in form, with diagonal entries of
dt. Hence the second term reduces:

Now in this two-dimensional case

where A is a unit-speed geodesic begun at x and with initial velocity
.1’(0) normal to the minimal geodesic from x to Imr. Working with the
appropriate geodesic rectangle we may deduce

Here J = {J(s) : s E is the Jacobi vectorfield running along the
minimal geodesic from x to Imi, with J(0) = 03BB’(0) and = 0.

Note that J(s) is located at distance s from z. Comparison arguments for
Jacobi vectorfields (following Cheeger and Ebin [2], Lemma 1.22) show that



where the function J is derived from the corresponding Jacobi vectorfield
in the case of constant curvature -H2:

Hence

The result follows from the usual comparison theorem for stochastic differ-
ential equations (Yamada [25]). D

Remark. - Note that 8 is identified in the course of the proof as arising
from integration of the gradient composed with the parallel transport
against the stopped Euclidean Brownian motion which is the stochastic

development. Hence ~ is adapted to the intrinsic filtration of X.

Remark 2014 A similar result can be proved for r-martingales in H, except
that h must be replaced by a continuous real-valued local martingale and
the ds term in the integral must be replaced by a component of the stochastic
parallel transport applied to the differential of the quadratic variation of the
stochastic development. In order to obtain useful results in such cases one

requires bounds on the "dilatation" of the r-martingale, after Kendall ([9],
[10]. [12]).

Remark. 2014 There are obvious higher-dimensional generalizations; for ex-
ample the case of the distance of a Brownian motion from a totally geodesic
hypersurface in a Cartan-Hadamard manifold. However, in contrast to the
two-dimensional case, totally-geodesic hypersurfaces are in short supply in
general higher-dimensional manifolds. It may be possible to exploit gener-
alizations to distances from geodesically convex hypersurfaces, and we hope
to return to this at a later time.

We now state a corollary which is the special case of the above which we
will use in the next section.

COROLLARY 2.2. - Let !H be any two-dimensional Cartan-Hadamard

manifold and let X be BM(H). . Given a geodesic 03B3 : !R ~ !H there ,
a BMo(R) adapted to the filtration of X, such that

up to the first time which is a zero 



3. The limiting angle

In the following IH will be a two-dimensional Cartan-Hadamard manifold
with curvature function -~2 : IH - (-oo, 0~ satisfying the upper bound

- 03BA2(x)  - , c for all x E IH off a fixed compact set JC

for some constant c > 0 and some fixed reference point o E IH . It is

convenient to define the associated constant a > 1 by

c=a(a-1).

We set R = x E J~C } .
Let X be BM(H). The main result of this paper concerns the asymptotic

behaviour of the angular process 0 = 8(X ). We shall show (Theorem 3.6
below) that as time tends to the explosion time ~ so the angular process 0
converges to a limiting direction.

Before stating and proving our Theorem we review some well-known
geometric comparison results and prove a number of preliminary lemmas.

Suppose the metric on H is given in geodesic polar coordinates based at
o by the formula

ds2 = dr ® dr + ® d8 . .

Then g solves the Jacobi equation: its second radial derivative is given by

with initial conditions g(o) = 0 and 9) = 1 for all 8.

Comparison arguments for second-order ordinary differential equations,
which we sketch here, then show that

( i) there is a constant Ci > 0 (depending on K such that for all points y

g(y) > Cl dist(y, o)a . .

This follows by comparison of g with g(r, 8) = Clra. The Jacobi

equation for g is nonconjugate (since the curvature is nonpositive
everywhere) and so gr never vanishes. Hence we may choose Ci



so that g > gr whenever r = R. For r > R we find

grr = a(a - 1)g/r, and note that r~2(x) > cx(a - l)/r. So we may
apply a comparison theorem found in Milnor [19] (see also Greene
and Wu [6], Lemma 2.31) to deduce the required inequality.

(ii) for all r we have

where b(r) is given by replacing gr /g by the corresponding expression
for the explicit solution g(r) of the Jacobi equation with 

replaced by 0 for r ( x  R and by for > ?Z and initial

conditions §(0) = 0, = 1;

and hence for each 11 > 0 there is > ?Z such that for all r > P’r1 we

have

Essentially this follows from Milnor’s comparison result given above,
applied to the Jacobi differential equations governing

Because of nonconjugacy it would follow from f’(0)  /’(0) that
f(r)  /(r). But we know f(r) = 0 = /(r).

The first lemma is a stochastic differential equation comparison result for
the radial process R = r(X).

LEMMA 3.I. - There exists a BMO(R), B, possibly stopped at the ez-

plosion time of X, and in any case adapted to the filtration of X, such
that

where b is the function given above.



Proof. - The Itô stochastic differential equation for R is

where B is BMo(R), stopped at the explosion time of X when this is finite,
and adapted to the natural filtration of X. This follows ftom the same

argument used to analyse in the proof of Theorem 2.1 above,
and the facts that grad r = 1 and that Ar = gr /g. The result follows from
the bound above on gr /g and the comparison argument of Yamada ~25~ . ~

The Bessel process Y of index a solves the stochastic differential equation

dY = dB -E- a dt
2Y

for B a BM(R). If a is a nonnegative integer then Y arises as the radial
part of Brownian motion in (1 + 03B1)-dimensional Euclidean space. If a > 1

then Y is transient. It follows that R -~ oo as time tends to infinity (under
the convention that R is frozen at oo after the explosion time). For each

time R reaches a high enough level it has a positive chance of escaping to
infinity, by comparison with a Bessel process of index just less than a. In
the following BES~ will denote a Bessel process of index a started at level
r. Let P denote the probability measure for BES03B1r (information about the
index a and the starting level r being carried in the notation BES~).
We formalize this comparison in a lemma. Let abbreviate the con-

ditional probability measure obtained from p ( where p is the probability
measure for the Riemannian Brownian motion X with some random start-

ing point with probability density positive over the whole manifold) by
conditioning on R(0) = r, 0(0) = 8.

LEMMA 3.2. - For each E > 0 such that a - E > 1 there is a 

which can be defined on and adapted to the same probability space as X ,
such that for all r > pE

Proof . This follows from the comparison result in lemma 3.1, a further
comparison with the stochastic differential equation for using
Yamada [25], and calculation of the probability of hitting the level
pE D



We exploit this comparison using a result stated in Shiga and Watanabe

~23~ and essentially due to Motoo ~20~; since the Bessel process of dimension
higher than 2 escapes to infinity at a rate which may be estimated, we may
obtain a lower bound on the rate of escape for the radial process R as well.

LEMMA 3.3. - For all sufficiently small positive ~, and for each E such
that a - E > 1,

where

Note that the probability on the left-hand side of the bound therefore con-
verges to 1 uniformly in 8 as r tends to 00 .

Proof. - Because of lemma 3.2 it suffices to work with rather

than R.

Theorem 3.2 part ti~ of Shiga and Watanabe ~23~ , attributed there to
Motoo ~20~, shows that almost surely for any such Bessel process 

Moreover

Comparison of BES03B1-~r with now shows

which is as required because of Lemma 3.2. 0

Remark. - An alternative proof of the special case of the Motoo-Shiga-
Watanabe result required above is given in Kendall [16], using the computer
algebra methods of symbolic Ito calculus.



The next lemma is an adaptation of Hsu and March ((7] , lemma 2) to
suit the concerns of this paper.

LEMMA 3.4. - Fiz z E Il-l )(o) and e > 0. Let 03B3 be the geodesic through o
in lH such that 1’(0) is at the angle 8(z)+e . Suppose r(z ) > R+dist (z, Im i) .
Then

which provides a bound on E in terms of and 

Proof . Observe

where the integration is carried out along the minimal geodesic running
from x to 1m,. Hence we can use the non-decreasing property of g;

where y is the point on closest to x. For by the negative curvature
of IH it follows that y is the point closest to o on the minimal geodesic
from x to The proof is completed by use of the triangle inequality
r ( y) > r ( x ) - dist(x, ?~, and use of the bound on g when r > R. 0

The next lemma is the last preliminary result, and deals with the main
technical issues of this paper. First we introduce some notation. Let 03B303B8 be
the geodesic through o with angle 8.

Consider the following sequence of stopping times To, Ti, ..., which

measure intervals of time (Tn, over which the angle changes by
progressively smaller quantities bounded by the random intervals , En ~ :

Here t may be replaced by any number lying in (0,1). Note that En are 
measurable random variables. If Tn = oo then we set ~±n = E;+1 = ... = 0.
Set En = (and note En > 0 if Tn  oo).



The next lemma concerns the convergence of the sum 03A3 ~n.

LEMMA 3.5. - For any rand 8 the sum ~ E~ converges with probability
1 under p’’~8. . Moreover, for any a > 0 we have

Proof. - Suppose Tn is finite. Consider the time increment Ln+1 =
Tn. By Theorem 2.1 this time increment is bounded below by the

minimum of two random times which are the times taken by two different

(co-adapted, but not independent) Brownian motions to attain the level
The Brownian motions in question are the increments from time

Tn of the martingale parts of the distance processes 

By the strong Markov property these two random times are independent
of conditional on R(Tn) , and under this conditioning have distributions
which are first passage times of real-valued Brownian motion to the level

They are not independent (in cases of strong negative curvature
they will indeed be very strongly related) but the simplest estimate of the
distribution of their minimum, and hence of Ln, will suffice:

where Tk(BMo(R)) is the first passage time of BMo(R) to the level k and
the last step uses Brownian scaling. (Note that the event {R(Tn) = r~ is
FTn-measurable, and is included in the conditioning above simply to allow
us to replace R(Tn) by r.) )

Fix l > 0 and choose a so that

.~ = 1 - 2 ~ p  a~
(thus making the lower bound a positive constant). It follows that a strong
law of large numbers may be applied to the sequence of events

We give a coupling argument for this.



Augment the underlying probability space by constructing V2, V2, ...

to be independent, identically distributed random variables, with uniform
distribution on the range [0,1], and such that the whole sequence of new
random variables is independent of .~~ = Vn Set

and

Then takes values 0 and 1 and is measurable with respect to the
u-field generated by and ..., Furthermore

where the second equality follows from the fact that is independent of
the other quantities involved, while the third equality follows from the fact
that Vl, ..., Vn are independent of .

Thus the Un+1 form an independent and identically distributed sequence
of nondegenerate {0, 1} valued random variables and, by construction,

> We may now employ the information we have
on the growth rate of R.

Lemma 3.3 shows that at sufficiently large times R is bounded below
by a power of time just less than square-root with high probability. To be
precise, for any sufficiently small positive r~,

Now



and so with Pr,03B8-probability at least p(r)

Thus by induction, for some constant C2 depending on a, .~, and r~, and with
P(r,03B8)-probability at least p(r),

where

Now by lemma 3.4,

By lemma 3.3 we see that if r > (3?Z/2)2 then with probability at least
p( T ) ,

Using the lower bound of Tn given above we conclude that with probability
at least p(r),

(recall a > 1). The conclusion of the Lemma follows directly from the law
of large numbers and the fact that p(r) ~ 1 as r ~ ~. D

We now state and prove the main theorem of this paper.

THEOREM 3.6. - Limiting angle of BM(H ) . . Let H be as above and

let X be BM(H). . Then O = 8(X ) converges to a limit O(oo) as time tends
to the explosion time 03BE. Furthermore the distribution of O(oo) has as closed
support the entire circle S1 of directions.

Proof . This follows immediately from Lemma 3.5 above, since the sum
bounds the oscillation of the process O(t) - 0(0). D



4. Conclusion

It is natural to ask whether these methods can be extended to cover

Proposition 7.5 of Greene and Wu ~6~, which says that if the upper curvature
bound for two-dimensional IH is

off a compact set then IH has the complex structure of the unit disc. This
is possible in the rotationally symmetric case (see March [18]). However

the methods given above do appear to depend on having curvature decay
at most inverse quadratic in the radial distance - we can make available to
the interested enquirer an argument which indicates this.

Generalizations to higher dimensions must deal with the technical diffi-
culties of applying comparison arguments not to geodesics but to geodesic
cones, with consequent problems about loci of focal points. We think that
this can be dealt with, at the price of introducing a lower curvature bound,
and we believe that the ensuing results will improve on those of Hsu and
March [7]; we hope to return to this point in a later paper.

However this approach, and any others which in the end depend on com-

parisons of Brownian motion with radial geodesic processes, is unlikely to

provide a final answer to the Greene-Wu conjecture mentioned in the in-
troduction. Ancona’s counterexample makes this clear; take a rotationally-
symmetric and stochastically explosive Cartan-Hadamar manifold H with
constant negative upper bound on its negative curvature and consider the
warped metric product IH x (0, oo) parametrized by (h,, y) and using the
metric 

_ _

where glH is the metric for IH . . It can be shown that

(i) the product manifold is Cartan-Hadamard, with constant negative
upper bound on its negative curvature,

(ii) with positive probability, the limiting angle of its Brownian motion
is the angle pointing up the positive y-axis,

(iii) but in fact nonconstant bounded harmonic functions may be con-
structed using the limiting angle obtained by projection onto the IH
manifold.



It is clear that direct angular comparison with geodesic rays is no longer
sufficient to extract all the information about asymptotic behaviour. It

therefore seems that a final answer to the Greene-Wu conjecture must
somehow exploit comparison of Brownian motion with itself, rather than
with geodesic rays as has been the practice hitherto. The ideas of Kendall

([12], [13]) may prove helpful here.
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