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Abstract: LetWo(M ) be the space of paths of unit time length on a connected, complete
Riemannian manifoldM such thatγ(0) = o, a fixed point onM , andν the Wiener
measure onWo(M ) (the law of Brownian motion onM starting ato). If the Ricci
curvature is bounded byc, then the following logarithmic Sobolev inequality holds:∫

Wo(M )
F 2 log |F |dν ≤ e3c‖DF‖2 + ‖F‖2 log‖F‖.

1. Introduction

Logarithmic inequalities were introduced in Gross [5] as a tool for studying hypercon-
tractivity of symmetric Markov semigroups. Let (X, ν) be a probability space andE a
densely defined nonnegative quadratic form onL2(X, ν). We say that the logarithmic
Sobolev inequality holds forE if∫

X

F 2 log |F |dν ≤ E(F, F ) + ‖F‖2 log‖F‖, ∀F ∈ Dom(E).

Gross [5] proved that it holds for the standard gaussian measure onRN for anyN with

E(F, F ) =
∫

RN

|∇F |2dν.

This implies immediately by a simple argument that the logarithmic Sobolev inequality
holds for the quadratic form

E(F, F ) =
∫

Wo(RN )
|DF |2dν,
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on the probability space (Wo(RN ), ν), whereWo(RN ) is the path space onRN and
ν the Wiener measure, andD is the gradient operator onWo(Rn) (see the definition
below). It was proved in Gross [6] that the logarithmic Sobolev inequality holds for
the Wiener measure onWo(G), whereG is a connected Lie group with the gradient
operator derived from the Cartan (±)-connection. Note that for these connections the
curvature vanishes. It has been conjectured by the author that a logarithmic Sobolev
inequality on the path space over a general complete, connected Riemannian manifold
holds with a bounding constant which can be estimated in terms of the Ricci curvature.
This conjecture is completely borne out by the main result of the present work.

Let M be a complete, connected Riemannian manifold of dimensionn. Throughout
this work we assume thatM has bounded Ricci curvature. We write|RicM | ≤ c if

sup{|Ric(v, v)| : v ∈ TxM, |v| = 1, x ∈ M} ≤ c.

Fix a pointo ∈ M and let

Wo(M ) = {γ ∈ C([0, 1], M ) : γ(0) = o} ,

be the space of pinned paths fromo. We will work with the Wiener measureν onWo(M ),
which can be defined as follows. LetO(M ) be the bundle of orthonormal frames over
M andπ : O(M ) → M the canonical projection. Fix an orthonormal frameuo ato and
let {Us} be the solution of the following stochastic differential equation onO(M ):

dUs = HUs
◦ dωs, U0 = uo, (1.1)

where{ωs} is an Rn-valued Brownian motion. HereH = {Hi, 1 ≤ i ≤ n} are the
canonical horizontal vector fields onO(M ). The projected processγs = πUs is a Brow-
nian motion onM starting fromo. The Wiener measureν is just the law of the Brownian
motion{γs}.

We now introduce the gradient operatorD on the path space. LetH be theRn-valued
Cameron-Martin space, i.e., the space ofRn-valued functionsh such thath0 = 0 and
ḣ ∈ L2([0, 1]; Rn). It is a Hilbert space with the norm

|h|2H =
∫ 1

0
|ḣs|2Rnds.

For eachh ∈ H, let Dh be the vector field on the path spaceWo(M ) defined by
Dh(γ)s = U (γ)shs, whereU (γ) is the horizontal lift ofγ with initial value uo. Let{
ζt
h, t ∈ R1

}
be the flow on the path spaceWo(M ) generated by the vector fieldDh.

Let F be a real-valued function onWo(M ). We define

DhF (γ) = lim
t→0

F (ζt
hγ) − F (γ)

t
,

if the limit exists inL2(ν). The gradientDF is defined to be theH-valued functionDF
such that〈DF, h〉H = DhF for all h ∈ H. Suppose thatF is a cylindrical function given
by

F (γ) = f (γs1, · · · , γsl
), (1.2)

wheref : M × · · · × M → R1 is smooth and 0≤ s1 < · · · < sl ≤ 1. Then it is easy
to verify that

DF (γ) =
l∑

i=1

(s ∧ si)U (γ)−1
si

∇(i)F (γ), (1.3)
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where∇(i)F denotes the gradient off with respect to theith variable.
From definition we have forF in (1.2)

|DF |2H =
l∑

i=1

(si − si−1)

∣∣∣∣∣∣
l∑

j=i

U−1
si

∇(i)F

∣∣∣∣∣∣
2

. (1.4)

This formula will be useful later.
We state the main result of the present work.

Theorem 1.1. Suppose thatM is a complete, connected manifold such that|RicM | ≤ c.
Then the following logarithmic Sobolev inequality on the path spaceWo(M ):∫

Wo(M )
F 2 log |F |dν ≤ e3c‖DF‖2 + ‖F‖2 log‖F‖, ∀F ∈ Dom(D).

We conclude this introduction by stating a few well known consequences of the
logarithmic Sobolev inequality (see Gross [7]). The self-adjoint operatorL = −D∗D is
a generalization of the usual Ornstein-Uhlenbeck operator for a euclidean path space.
Let Qt = eLt/2 be the associated Markovian semigroup.

Theorem 1.2. LetM be a complete, connected Riemannian manifold such that|RicM |
≤ c. LetλM = e−3c.
(i) The semigroup{Qt} on the path spaceWo(M ) is hypercontractive:

‖Qt‖Lp(ν)→Lq(ν) ≤ 1 if eλM t ≥ q − 1
p − 1

.

(ii) The spectral gap ofL exists and is at leastλM , namely the following Poincaré
inequality holds: ifF ∈ Dom(D), then

‖F − EF‖2 ≤ λ−1
M ‖DF‖2.

(iii) If F ∈ L2(ν), then

‖QtF − EF‖ ≤ e−λM t/2‖F‖.

Remark 1.3.Using a Clark-Haussman-Ocone formula for path spaces, Fang [4] proved
directly the existence of a spectral gap for the Ornstein-Uhlenbeck operatorL on the
path space over a connected, compact Riemannian manifold.

2. Gradient of a Wiener Functional

The key to the present proof to the logarithmic Sobolev inequality is a formula for
∇ExF , the gradient of the expected value of a cylindrical functionF .

Define the matrix-valued process{φs} by

φs = I − 1
2

∫ s

0
φτ RicUτ

dτ, (2.1)

where Ricu : Rn → Rn denotes the Ricci curvature transform read at the frameu and
I is the identity matrix.
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Proposition 2.1. LetF be a cylindrical function given by (1.2). Then

∇ExF = UxEx

{
l∑

i=1

φsi
U−1

si
∇(i)F

}
. (2.2)

Proof. The casel = 1 is due to Bismut (see Bismut [2], p.82). We give a proof here
based solely on Itô’s formula for the horizontal Brownian motion{Us}, see (1.1). Letf
be a smooth function onM and consider the functionJ(τ, u) = Eπuf (γτ ). It satisfies
the equation

∂τJ(s − τ, u) +
1
2
1HJ(s − τ, u) = 0, (2.3)

where1H =
∑n

i=1 H2
i is Bochner’s horizontal Laplacian onO(M ). This implies that

{J(s − τ, Uτ ), 0 ≤ τ ≤ s} is a martingale. We now apply Itô’s formula to the horizontal
gradient∇HJ(s − τ, Uτ ), using the fact that{Uτ} is a diffusion generated by1H :

dτ∇HJ(s − τ, Uτ )

= ∂τ∇HJ(s − τ, Uτ )dτ + 〈∇H∇HJ(s − τ, Uτ ), dωτ 〉
+

1
2
1H∇HJ(s − τ, Uτ )dτ

= 〈∇H∇HJ(s − τ, Uτ ), dωτ 〉 +
1
2

[
1H , ∇H

]
J(s − τ, γτ )dτ

+∇H

{
∂τJ(s − τ, Uτ ) +

1
2
1HJ(s − τ, Uτ )

}
dτ

= 〈∇H∇HJ(s − τ, Uτ ), dωτ 〉 +
1
2

RicUτ
∇HJ(s − τ, Uτ )dτ.

Here we have used (2.3) and Bochner’s formula[
1H , ∇H

]
J(u) = Ricu∇HJ(u)

for the lift J of a function onM . It follows that{
φτ∇HJ(s − τ, Uτ ), 0 ≤ τ ≤ s

}
is a martingale. Equating the expected values atτ = 0 andτ = s we obtain

∇HJ(s, uo) = E
{
φs∇HJ(0, Us)

}
,

This is equivalent to what we wanted because by definition∇HJ(τ, u)=u−1∇Eπuf (γτ ).
By the Markov property and the casel = 1 we have

∇ExF = ∇Exg(γs1) = UxEx

{
φs1U

−1
s1

∇g(γs1)
}

, (2.4)

where
g(y) = Ey {f (y, γs2−s1, · · · , γsl−s1)} .

Using the induction hypothesis we have

∇g(y) = Ey

{∇(1)f (y, γs2−s1, · · · , γsl−s1)
}

+Uy

l∑
i=2

Ey

{
φsi−s1U

−1
si−s1

∇(i)f (y, γs2−s1, · · · , γsl−s1)
}

,

whereUy is any orthonormal frame aty and{Us} starts atUy. Substituting this into
(2.4) and using the Marko property again we obtain the desired equality.�
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The following corollary to Proposition 2.1 is known and appeared as a special case
of Theorem 6.4(iii) in Donnelly and Li [3].

Corollary 2.2. Suppose thatRicM ≥ −c for a nonnegative constantc. Then

|∇Exf (γs)| ≤ ecs/2Ex|∇f (γs)|.
Proof. This follows from the preceding proposition (withl = 1) and the inequality
|φs| ≤ ecs/2, which is a consequence of the assumption on the Ricci curvature.�

3. A Finite Dimensional Case

Let µ be the gaussian measure onRn given by

µs(dx) =

(
1

2πs

)n/2

e−|x|2/2sdx.

Gross [6] proved the following logarithmic Sobolev inequality:∫
Rn

f2 log |f |dµs ≤ s

∫
Rn

|∇f |2dµs + ‖f‖2
µs

log‖f‖µs
.

The first step towards proving a logarithmic Sobolev inequality in path space is to
generalize the above result to Riemannian manifolds with the gaussian measureµs

replaced byνs,z(dx) = p(s, z, x)dx, wherep(s, z, x) is the heat kernel. Note thatνs,z

is the distribution of Brownian motion (starting atz) at times. The main result of this
section is Theorem 3.1 below. As before, let

Psf (z) = νs,z(f ) =
∫

M

f (x)p(s, z, x)dx

be the heat semigroup.

Theorem 3.1. Suppose thatRicM ≥ −c for a nonnegative constantc. Then for any
smooth functionf onM ,∫

M

f2 log |f |dνs,z ≤ ecs − 1
c

‖∇f‖2
νs,z

+ ‖f‖2
νs,z

log‖f‖νs,z
.

Proof. We may assume thatf is strictly greater than a fixed positive constant onM .
Otherwise consider the functionfε =

√
f2 + ε2 and letε → 0. Letg = f2 and consider

the functionHr = Prφ(Ps−rg), whereφ(t) = 2−1t log t. Differentiating with respect to
r and noting that1 commutes withPr we have

dHr

dr
=

1
2
Pr1φ(Ps−rg) − 1

2
Pr {φ′(Ps−rg)1Ps−rg}

=
1
2
Pr

{
φ′(Ps−rg)1Ps−rg + φ′′(Ps−rg) |∇Ps−rg|2

}
−1

2
Pr {φ′(Ps−rg)1Ps−rg}

=
1
2
Pr

{
φ′′(Ps−rg) |∇Ps−rg|2

}
.
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Now using Corollary 2.2 and then the inequality

{Ps−r|∇g|}2 ≤ 4Ps−rgPs−r|∇f |2,
we have

dHr

dr
≤ 1

4
ec(s−r)Pr

{(
Ps−r|∇g|)2

Ps−rg

}
≤ ec(s−r)Pr

{
Ps−r|∇f |2}

= ec(s−r)Ps|∇f |2.
Integrating overr from 0 tos we obtain the desired inequality. �

4. Proof of the Main Theorem

We are in a position to prove our main result Theorem 1.1. We divide the proof into two
steps, Lemma 4.1 and Lemma 4.3 below.

Lemma 4.1. LetM be a Riemannian manifold such thatRicM ≥ −c for a nonnegative
constantc. Suppose thatF is a cylindricalF given by (1.2). Define{φs0,s, s ≥ s0} by

d

ds
φs0,s = −1

2
φs0,sRicUs

, φs0,s0 = I. (4.1)

Then

∫
Wo(M )

F 2 log |F |dν ≤ ec
l∑

i=1

(si − si−1)E

∣∣∣∣∣∣
l∑

j=i

φsi,sj U
−1
sj

∇(j)F

∣∣∣∣∣∣
2

+‖F‖2 log‖F‖.

Proof. For the sake of simplicity we assume that

F (γ) = f (γs1, γs2, γs3).

Using the Markov property and Theorem 3.1 we have

‖F‖2 log‖F‖ (4.2)

=
1
2
EEγs1

f (γ0, γs2−s1, γs3−s1)
2 logEEγs1

f (γ0, γs2−s1, γs3−s1)
2

=
1
2
Ef1(γs1)

2 logEf1(γs1)
2

≥ −ecs1 − 1
c

E|∇f1(γs1)|2 + Ef1(γs1)
2 log |f1(γs1)|,

wheref1(x) =
√

Exf (γ0, γs2−s1)2. Let g(x) = Exf (γ0, γs2−s1, γs3−s1)
2. We have

|∇f1|2 =
|∇g|2

4g
.
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Now compute∇g by Proposition 3.1 and use the Cauchy-Schwarz inequality. We have

E|∇f1(γs1)|2 ≤ E
∣∣U−1

s1
∇(1)F + φs1,s2U

−1
s2

∇(2)F + φs1,s3U
−1
s3

∇(3)F
∣∣2

.

Using this and the inequality (ecs − 1)/c ≤ sec for c ≥ 0 and 0≤ s ≤ 1 in (4.2) we
have

‖F‖2 log‖F‖ (4.3)

≥ −ecs1E
∣∣U−1

s1
∇(1)F + φs1,s2U

−1
s2

∇(2)F + φs1,s3U
−1
s3

∇(3)F
∣∣2

+Ef1(γs1)
2 log |f1(γs1)|.

Repeating the same calculation for the last term

f1(x)2 log |f1(x)| =
1
2
Exf (γ0, γs2−s1, γs3−s1)

2 logExf (γ0, γs2−s1, γs3−s1)
2,

we have

Ef1(γs1)
2 log |f1(γs1)| (4.4)

≥ −ec(s2 − s1)E
∣∣U−1

s2
∇(2)F + φs2,s3U

−1
s3

∇(3)F
∣∣2

+Ef2(γs1, γs2)
2 log |f2(γs1, γs2),

wheref2(x, y) =
√

ExEyf (x, y, γs3−s2)2. We have for the same reason

Ef2(γs1, γs2)
2 log |f2(γs1, γs2)| (4.5)

≥ −ec(s3 − s2)E
∣∣U−1

s3
∇(3)F

∣∣2
+ E

{
F 2 log |F |} .

The desired inequality follows immediately from (4.3)–(4.5). �

Remark 4.2.The above proof is reminiscent of the Federbush–Faris–Gross addivity
property of logarithmic Sobolev inequalities for product measure spaces (see Gross [7]).
The independence property needed in the original proof is replaced by the weaker prop-
erty of Markov dependence. The same idea appeared in the works of Stroock and Ze-
garlinski [9, 10], especially p. 118 in the second article.

Lemma 4.3. Suppose thatM is a Riemannian manifold such that|RicM | ≤ c. Then

l∑
i=1

(si − si−1)

∣∣∣∣∣∣
l∑

j=i

φsi,sj
U−1

sj
∇(j)F

∣∣∣∣∣∣
2

≤ e2c|DF |2H. (4.6)

Proof. LetZi =
∑l

j=i U−1
sj

∇(j)F. From (4.1) and the assumption on the Ricci curvature
we have

‖φsi,sj
− φsi,sj−1‖ ≤ c

2

∫ sj

sj−1

ec(s−si)/2ds.

Note that this is the only place we have to use the absolute bound of the Ricci curvature
instead of just the lower bound. Now we have



16 E.P. Hsu

∣∣∣∣∣∣
l∑

j=i

φsi,sj
U−1

sj
∇(i)F

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣Zi +
l∑

j=i+1

(
φsi,sj

− φsi,sj−1

)
Zj

∣∣∣∣∣∣
2

≤
|Zi| +

c

2

l∑
j=i+1

|Zj |
∫ sj

sj−1

ec(τ−si)/2dτ


2

≤ (1 +λ) |Zi|2 +

(
1 +

1
λ

)
c2

4

∣∣∣∣∣
∫ 1

si

ec(τ−si)gτdτ

∣∣∣∣∣
2

,

wheregs = |Zj | if s ∈ [sj−1, sj). It follows that

the left-hand side of (4.6)

≤ (1 +λ)
∫ 1

0
g2

sds +

(
1 +

1
λ

)
c2

4

∫ 1

0

∣∣∣∣∣
∫ 1

s

ec(τ−s)/2gτdτ

∣∣∣∣∣
2

ds

≤
{

1 +λ +
1
4

(
1 +

1
λ

)
(cec − ec + 1)

} ∫ 1

0
g2

sds.

Note that|DF |2H =
∫ 1

0 g2
sds by (1.4). We complete the proof by using the inequality

cec − ec + 1 ≤ c2ec and choosingλ = (c/2)ec/2. �
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