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Abstract: LetW,(M) be the space of paths of unittime length on a connected, complete
Riemannian manifold/ such thaty(0) = o, a fixed point onM, andv the Wiener

measure oriV,(M) (the law of Brownian motion onV/ starting ato). If the Ricci
curvature is bounded by then the following logarithmic Sobolev inequality holds:

/ F?log|F|dv < e*||DF|? + || F||*log || F]].
Wo(M)

1. Introduction

Logarithmic inequalities were introduced in Gross [5] as a tool for studying hypercon-
tractivity of symmetric Markov semigroups. LeX(v) be a probability space arfla
densely defined nonnegative quadratic form/@{X, ). We say that the logarithmic
Sobolev inequality holds faof if
/ F?log|F|dv < E(F,F)+||F|?log||F|, VF € Dom().
X
Gross [5] proved that it holds for the standard gaussian meas&é’ dar any N with

E(F,F)= / |VF|2dv.
RN

This implies immediately by a simple argument that the logarithmic Sobolev inequality
holds for the quadratic form

E(F,F)= / |DF|*dv,
Wo(RN)

* Research was supported in part by NSF grant DMS-9406888.
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on the probability spacei(,(RY),v), whereW,(RY) is the path space oR" and
v the Wiener measure, and is the gradient operator oiv,(R™) (see the definition
below). It was proved in Gross [6] that the logarithmic Sobolev inequality holds for
the Wiener measure oW, (G), whereG is a connected Lie group with the gradient
operator derived from the Cartaf:)-connection. Note that for these connections the
curvature vanishes. It has been conjectured by the author that a logarithmic Sobolev
inequality on the path space over a general complete, connected Riemannian manifold
holds with a bounding constant which can be estimated in terms of the Ricci curvature.
This conjecture is completely borne out by the main result of the present work.

Let M be a complete, connected Riemannian manifold of dimensidimroughout
this work we assume thdt/ has bounded Ricci curvature. We wrijiic,| < ciif

sup{|Ric(v,v)| v € T,M,|v| =Lz € M} <ec.
Fix a pointo € M and let
Wo(M) = {~ € C([0,1], M) : 7(0) = o},

be the space of pinned paths fronWe will work with the Wiener measuteon W, (M),
which can be defined as follows. LEX{ ) be the bundle of orthonormal frames over
M andr : O(M) — M the canonical projection. Fix an orthonormal frameato and
let {U,} be the solution of the following stochastic differential equatiorOgiV/):

dUs = Hy, o dws, Up = uy, (1.2)

where{w;} is anR™-valued Brownian motion. Herél = {H;,1 <i < n} are the
canonical horizontal vector fields @W(M). The projected procesg = nUs is a Brow-
nian motion onV/ starting fromo. The Wiener measuteis just the law of the Brownian
motion{~;}.

We now introduce the gradient operafoion the path space. LEtbe theR™-valued
Cameron-Martin space, i.e., the space&Rdtvalued functions: such thatho = 0 and
h € L?([0, 1]; R™). It is a Hilbert space with the norm

1 -
\h|H:/ s
0

For eachh € H, let D), be the vector field on the path spadé,(M) defined by
Dy(v)s = U(y)shs, whereU(w) is the horizontal lift ofy with initial value u,. Let
{¢},t € R} be the flow on the path spad¥, (1) generated by the vector field;,.
Let F' be a real-valued function div,(M). We define

PG — FO)
t )

if the limit exists inL2(v). The gradienD F is defined to be th&l-valued functionD F
suchthat DF, h)y = Dy, F for all h € H. Suppose thaf is a cylindrical function given

by

2, ds.

DpF(y) = lim

F(’V) :f(’ysp"'a’Ysl)v (12)

wheref : M x --- x M — RYis smoothand & s; < --- < 5; < 1. Then it is easy

to verify that
l

DF() =Y (s As)UM);'VOF(), (1.3)
i=1
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whereV® F denotes the gradient gfwith respect to the'” variable.
From definition we have foF’ in (1.2)

2
l l
IDFE = (s —si0) | US'VOF| (1.4)

i=1 j=i

This formula will be useful later.
We state the main result of the present work.

Theorem 1.1. Suppose thal/ is a complete, connected manifold such fRa¢, | < c.
Then the following logarithmic Sobolev inequality on the path spagé\/):
/ F?log|F|dv < &*||DF||>+ || F||*log||F||,  VF € Dom(D).
Wo(M)

We conclude this introduction by stating a few well known consequences of the
logarithmic Sobolev inequality (see Gross [7]). The self-adjoint opelator-D* D is
a generalization of the usual Ornstein-Uhlenbeck operator for a euclidean path space.
Let Q; = eL*/2 be the associated Markovian semigroup.

Theorem 1.2. Let M be a complete, connected Riemannian manifold suchiat;|
<ec Lethy = e3¢,
(i) The semigroud Q: } on the path spac®/,(M) is hypercontractive:

. q— 1
1Qillr@y—rawy <1 if et > ﬁ

(ii) The spectral gap of. exists and is at leask,;, nhamely the following Poincér
inequality holds: ifF" € Dom(D), then

IF — EF|* < A3/ [IDF|%.
(iii) If F € L?(v), then
IQ:F — EF|| < e ™2 F|.

Remark 1.3.Using a Clark-Haussman-Ocone formula for path spaces, Fang [4] proved
directly the existence of a spectral gap for the Ornstein-Uhlenbeck opédrainrthe
path space over a connected, compact Riemannian manifold.

2. Gradient of a Wiener Functional
The key to the present proof to the logarithmic Sobolev inequality is a formula for

VE,F, the gradient of the expected value of a cylindrical functian
Define the matrix-valued proce$s.} by

o=+ / 6, Ricy, dr, (2.1)
2 0

where Rig, : R® — R" denotes the Ricci curvature transform read at the frarand
I is the identity matrix.



12 E.P. Hsu
Proposition 2.1. Let F' be a cylindrical function given by (1.2). Then

l
VE,F=U,E, {Z ¢SiU;1V(i)F} . (2.2)
=1

Proof. The casd = 1 is due to Bismut (see Bismut [2], p.82). We give a proof here
based solely on dts formula for the horizontal Brownian motidii/; }, see (1.1). Lef

be a smooth function oM and consider the functiof(r, u) = Er., f(v.). It satisfies
the equation

1
8TJ(8—T,u)+§AHJ(s—T,u) =0, (2.3)
whereA = >, H? is Bochner's horizontal Laplacian an()). This implies that

{J(s—1,U;),0 <7 < s}isamartingale. We now applyd's formula to the horizontal
gradientV?.J(s — 7, U,), using the fact thafU, } is a diffusion generated bx

d.VH J(s —7,U;)
=0,V J(s — 7, U )dr + (VEVH (s — 1,U,), dw,)

1
+§AHVHJ(3 — 1, U;)dr

= (VIVH J(s — 7,U,), dw,) + % (AT VH] J(s — 7,7.)dr
+VH {aTJ(s —-7,U)+ %AHJ(S -7, UT)} dr

1_.
= (VEVH J(s — 7,U,), dw,) + ERICUTVHJ(S —7,U,)drT.

Here we have used (2.3) and Bochner’s formula
(AT VH] J(u) = Ric, V7 J(u)
for the lift J of a function on)/. It follows that
{6, V7 J(s —1,U;),0< 7 < s}
is a martingale. Equating the expected valuesat) andr = s we obtain
VI (s,u0) = E{¢s VT J(0,Uy)}

Thisis equivalentto what we wanted because by definWi&n/ (7, u) =u "V E ., f (7).
By the Markov property and the cake 1 we have

VE,F =VE;g(7s) = U Ex {66,U*Vg(7s) } . (2.4)

where
g(y) = Ey {f(yafy‘s‘z—sm e 778[—51)} .
Using the induction hypothesis we have

Vg(y) = Ey {v(l)f(y’ Vso—s1y " astl—sl)}
l
+Uy Z Ey {Qbslv—slU;iSlV(i)f(% Vsa—s15 """ 7751—31)} ’
=2

whereU,, is any orthonormal frame at and{U,} starts at/,. Substituting this into
(2.4) and using the Marko property again we obtain the desired equality.]
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The following corollary to Proposition 2.1 is known and appeared as a special case
of Theorem 6.4¢(iii) in Donnelly and Li [3].

Corollary 2.2. Suppose thaRic,; > —c for a nonnegative constant Then
IVEf()] < €/2E |V f(75)].

Proof. This follows from the preceding proposition (with= 1) and the inequality
|ps| < e°/2, which is a consequence of the assumption on the Ricci curvaturél
3. A Finite Dimensional Case

Let i, be the gaussian measure®h given by

n/2

1

= (L)
2ms

Gross [6] proved the following logarithmic Sobolev inequality:

| r0a\fldus <5 [ (9P + 1112, Tog 1

The first step towards proving a logarithmic Sobolev inequality in path space is to
generalize the above result to Riemannian manifolds with the gaussian measure
replaced by, .(dz) = p(s, z, z)dz, wherep(s, z, x) is the heat kernel. Note thaf .

is the distribution of Brownian motion (starting &Y at times. The main result of this
section is Theorem 3.1 below. As before, let

Puf(2) = ven(f) = /M F@)ps, 2, 2)dx

be the heat semigroup.

Theorem 3.1. Suppose thaRic,; > —c for a nonnegative constamt Then for any
smooth functiory on M,

e —1
/M f2log| fldv, - < vy

Cc

2 tls

0. 109 flo....
Proof. We may assume that is strictly greater than a fixed positive constant/an
Otherwise consider the functiof = \/f2 + €2 and lete — 0. Letg = f2 and consider
the functionH, = P.¢(Ps_,g), whereg(t) = 2~ ¢ logt. Differentiating with respect to
r and noting thatA commutes withP, we have

dH, 1 1 ,
dr - EP’I”A(b(PS*Tg) EP’I“ {¢ (Psfrg)APsfrg}

1
= 5P ¢ (Pes) AP g+ 6 (P r9) VP gl |

1
~ 5P {0/ (Paerg) AP g}

= %Pr {¢”(Psfrg) IVPsfrglz} :
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Now using Corollary 2.2 and then the inequality
{Psr|Vgl}? < 4Ps_gPs |V f]?,

we have

2
i _Lonp { G\ }

dr — 4 Ps_rg
< et AP |V}
- GC(S_T)PS|Vf|2.

Integrating over- from 0 to s we obtain the desired inequality. [

4. Proof of the Main Theorem

We are in a position to prove our main result Theorem 1.1. We divide the proof into two
steps, Lemma 4.1 and Lemma 4.3 below.

Lemma 4.1. Let M be a Riemannian manifold such tHit,; > —cfor a nonnegative
constanic. Suppose thak' is a cylindrical F' given by (1.2). Defingg, s, s > so} by
d 1 .
%qf)so,s = _§¢SO,SRICUS? (bso,so = I (41)

Then
2

l l
/ F? log |F|dv < e° Z(Sl —si_1)F Z bs;,s, U;lv(j)F
Wo(M) pry ’

j=i
+(|F[[*log | F |-
Proof. For the sake of simplicity we assume that
F(y) = f(Vs1s Vsos Vss)-
Using the Markov property and Theorem 3.1 we have

17?10 || 7| (4.2)

1
EEE’Ysl f(“Yoa Vsa—s15 733—81)2 IOg EE’Ysl f(’VOa Vsa—s1s ’753—51)2

S BRGL100 B,

et —1

> - E‘Vf]_("}/sl”z +Ef1(751)2 |Og|f1("}/51)|,

Wheref]_(l') =V Erf(707 752—51)2' Letg(ac) = Emf(707 Ysa—s1> 753—51)2' We have

[Vgl?

2
IV fa]° = 4
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Now computeVg by Proposition 3.1 and use the Cauchy-Schwarz inequality. We have
BV () < EJUSNVOF + 6, LULWOF + 6, U WOF]

Using this and the inequality(®* — 1)/c < seforc > 0and 0< s < 1in (4.2) we
have

|F[|*log || F|| (4.3)
>~ 1B [US'VOF +6,, UL VOF + 6, UL VOF[
+Ef1(’751)2 |Og |fl(751)|'

Repeating the same calculation for the last term

1
fl('r)z Iog |f1(l')| = EEIf(’YOa Yso—s1s 753—51)2 IOg Exf(70> Vso—s19 733—51)2?
we have

E f1(v5,)? 109 f1(7s,)| (4.4)
> —¢(sy — 51)E |USVOF + ¢, JUVOF|?
+E fo(Vs1, ’732)2 log | f2(7s1» Vs,)s

wherefa(z,y) = \/EEy f(,Y, Vs,—s,)?. We have for the same reason

EfZ(’YSU Py‘sz)z Iog |f2(’7817 752)' (45)
> —¢(s3 — 55)E |USVOF[* + E {F2log |F|} .

The desired inequality follows immediately from (4.3)—(4.5). O

Remark 4.2.The above proof is reminiscent of the Federbush—Faris—Gross addivity
property of logarithmic Sobolev inequalities for product measure spaces (see Gross [7]).
The independence property needed in the original proof is replaced by the weaker prop-
erty of Markov dependence. The same idea appeared in the works of Stroock and Ze-
garlinski [9, 10], especially p. 118 in the second article.

Lemma 4.3. Suppose thal/ is a Riemannian manifold such th&ic,;| < c. Then

2

l l
S (i = 5im0) | Y 6., UDVOF| < | DFJ2. (4.6)
i=1 =i

Proof. Let Z; = Zé’:i U, *VUF. From (4.1) and the assumption on the Ricci curvature
we have
C Sj C(S—S;
||¢s7:,s_7 - ¢s71,5_7‘—1H < 5/ € ( L)/2d5~
Sj—1

Note that this is the only place we have to use the absolute bound of the Ricci curvature
instead of just the lower bound. Now we have
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2 2
l l
Z(Zssq,sj Us;lv(i)F = Zz' + Z (Qbsls] - d)s,;,sj,l) Zj
Jj=i j=itl
2
e < S e/
<1zil+5 3" 12 / e/ 24
j=i+l Sj—1

2
2| p1
(1+)\)|Zi2+(1+i>c4 / er=sdg dr| |

i

IN

whereg, = |Z;| if s € [s;_1, s;). It follows that
the left-hand side of (4.6)

1 1N\ 2 [t gt 2
< (1+)) / g2ds + <1+) = / / eT=2¢ _dr| ds
0 A 4 0 s
1 1 t,
<KL+A+= [ 1+= ) (ce®—e“+1) gsds.
4 A 0

Note that|DF|g = fol g2ds by (1.4). We complete the proof by using the inequality
ce® — e+ 1 < e and choosing\ = (¢/2)e /2. d
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